JPS61167833A - Balancing structure of rotating body for dynamic pressure liquid bearing - Google Patents

Balancing structure of rotating body for dynamic pressure liquid bearing

Info

Publication number
JPS61167833A
JPS61167833A JP858985A JP858985A JPS61167833A JP S61167833 A JPS61167833 A JP S61167833A JP 858985 A JP858985 A JP 858985A JP 858985 A JP858985 A JP 858985A JP S61167833 A JPS61167833 A JP S61167833A
Authority
JP
Japan
Prior art keywords
thrust
bearing
axis
hole
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP858985A
Other languages
Japanese (ja)
Other versions
JPH0530208B2 (en
Inventor
Yuji Hiraoka
平岡 佑二
Hiroyuki Kaji
加治 裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COPAL DENSHI KK
Nidec Copal Electronics Corp
Original Assignee
COPAL DENSHI KK
Copal Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COPAL DENSHI KK, Copal Electronics Co Ltd filed Critical COPAL DENSHI KK
Priority to JP858985A priority Critical patent/JPS61167833A/en
Publication of JPS61167833A publication Critical patent/JPS61167833A/en
Publication of JPH0530208B2 publication Critical patent/JPH0530208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Balance (AREA)

Abstract

PURPOSE:To prevent seizure by employing a static pressure liquid bearing for the balancing of a rotating body for a dynamic pressure liquid bearing. CONSTITUTION:A static pressure fixed axis 22 which has a hollow thrust hole (h) and a hollow rotating axis 26 fitted onto the fixed axis 22 externally are provided in the housing formed of a lower frame 40, a table 48 for measurement, and a flank flame 38. As the rotating axis 26 rotates in a specific direction through the operation of an excited magnet 30 and a stator 36 together with a polygon mirror 28, fluid (f) flowing in the hole (h) of the fixed axis 22 from a tube 54 passes through a thrust passage 40a to press up a thrust bearing 32 in a thrust direction and then support the load on the rotating axis 26, and at the same time fluid flowing in from the hole (h) flows in a gap (c) through radial passages 22a and 22b to serve to support the rotating axis 26 radially. Therefore, the rotating axis 26 is supported in both thrust and radial directions together with the polygon mirror 28 to rotate smoothly. Further, a sensor 50 is provided on a fixed axis 22, so balance in fast rotation is kept.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野] 本発明は動圧流体軸受kf用する際の回転体のノマラン
シング構造に関するものである。 (従来技術〉 従来この棟のつり合いを取るための構造について概略医
の二種のものが採用されていた。 第−棟はバランシング試験WAt便用してその目的を運
する方法である。この試験機利用によるバランシング測
定は、 、3,000−4,00 e) rpm6度で
の測定しかできす、72:とえ感度’iL<t、て実施
しても回転値以上の高速の物体例えば動圧流体軸受のよ
うな高速のものには実際のび用回転数でのノンランスが
取れないため、不適当であった。 更に第二種は、動圧機構tそのま一回転させて徐々に回
転数を増加させてノ々ランシングを設足するものが考え
られる。以下図面に基づいてその一例を説明する。第2
図は動圧流体軸受の便用例を図示する。 If 体aは上フレーム1、下フレーム2、側面フレー
ム3とで構成され、そのP’E部に、ランド部金有する
ヘリングーーン#lI5に外周に設けたシャフト4とこ
のシャフトの外側に、(ロ)転自在に嵌挿された円筒中
空状(ロ)転輪6並に回転軸に装着した部材ニジなる(
口)転体RII−収谷する。回転軸6の7ランシ7に多
面鏡8を支承固定す築。回転軸6のフランジ7の下側に
外周にマグネット10’に設け。 これに対向するように側面フレーム3にステータ11i
設ける。符号12はマグネッ)10の下に配設したスラ
スト受であり、巣に入フスト受の下方のフレーム2上に
スラスト軸受13を設ける。 回転軸6の上部は上蓋14に工り閉鎖される。又符号1
5はマグネット】0の磁極位置と回転軸6の回転数ケ検
出するホール素子16?I−保持する基°板である。ス
ラスト軸受13のスラスト受12に対向する面にtrL
第3図に図示のようにランド1″7′ケ具えたスノぐイ
ラル#]7?r刻設する。シャフト4の下方外側にセン
サ部材18會装着し、このセンサエり引出したコード2
0に振動計(図示せず)奮設ける。 先ツステータ1】のコイルを励磁するとこのステータと
(ロ)転軸に設は几マグネツMOとの作用に工り、回転
軸6が多面鏡8と共に一転する。この(ロ)転に応じて
ヘリングノーン溝5とスラスト軸受のスパイラル溝17
に流入し次流体fにぶり勤王を発生するので、この圧力
に工り回転軸6を浮上させつ\シャフト4の外周を矢印
方向に(第3図)円滑に回転させる。ヘリングゼーン#
’に通過する流体はラジアル方向に、又スラスト軸受1
3のスパイラル溝17を通過する流体はスラスト方向に
、それぞれ(2)転輪6tシヤフト4と非接触状態で支
持しょうとする力が働く。従ってシャフト4と回転軸6
との嵌合する空隙Cは非常に高い精度例えば数ミクロン
の精度1!l−要し、又回転軸、シャフトとともに真円
度、表面あらさにサブミクロンの精度が要求される。更
に回転軸6の回転に起因する熱による焼き付r防止する
ためにバランシングを保持するためにセンサ18のコー
ド20に振動計を設けてノ々ランシングの測定を笑施し
ているが充分の効−果が゛得られ、ず、これに加えて゛
シャフト4の垂直度を保持する点等を考慮に入れなけれ
ばならない。従って関係部材の加工その他が煩鎖となり
コスト高となる等の欠陥が存在する。 ノ々ランシングに直接関係する部材としてはシャフト1
4の端部に装着し次セナサ18と振動計(図示せず)と
を連結するコード20がある。このIEIIE流体軸受
と回転体とのノ々ランシング方法として、勤王流体軸受
に支承されて回転する回転体の(ロ)転に対応して発生
する振動を振動計にエリ測定しつ\徐々に回転数ケ検出
せしめ、振動の増加によるアンバランシングの位置と程
度が分る工うに振動計を構成しておけば、そ、の回転数
におけるノ々ランシングを取ることはで籾る。 次に同じ動作を繰返して行えば、最後に筐用回転数にお
けるバランシングをとることができる。 しかし乍ら上述の構成においては、動圧による支持剛性
は備かであり、動圧流体固定軸と回転軸との隙間も数ミ
クロン程度に設定しであるから、低速回転の際焼き付き
が生じる恐れもある等の欠陥が生じ友。 (発明の解決しようとする問題点1手段1作用)そこで
本発明においては、従来例の欠点を除去することを目的
とするもので、動圧用流体軸受を開用せずして、静圧用
流体軸受により回転体全支承し、静圧用排気孔を設けた
その固定軸ヲ使用すれば給気圧に工って軸受の内部圧力
を高く保つことにエリ、支持剛性を高め、振動計に工り
振動状態をチェックしながらアンバランスの位置と大き
さが判明する工う−に構成した。従って、両軸部材、の
焼き付ヶ防止できると共に所望Ill!1転数でのバラ
ンシング保持も可能となり、固定軸に七ンサ會応用した
振動計を取りつければ、工り一層高速度回転でのバラン
シング維持を容易とする。
(Industrial Application Field) The present invention relates to a normalizing structure for a rotating body when using a dynamic pressure fluid bearing kf. (Prior Art) Conventionally, there have been two types of structures for balancing this structure. The method used in Building 1 was to carry out the purpose by using the balancing test WAt.Balancing measurement using this testing machine was carried out at , 3,000-4,00 e) rpm 6 degrees. 72: Even if the sensitivity is 'iL<t', high-speed objects such as dynamic pressure fluid bearings may have non-lance at the actual extension speed. Furthermore, the second type is one in which the dynamic pressure mechanism t is rotated one revolution and the number of revolutions is gradually increased to install a nono lancing.The following is based on the drawing. An example is explained below.Second
The figure illustrates an example of a convenient use of a hydrodynamic bearing. If Body a is composed of an upper frame 1, a lower frame 2, and a side frame 3, a shaft 4 is provided on the outer periphery of a herringoon #lI5 having a land portion metal at its P'E portion, and a ) A cylindrical hollow shape rotatably inserted (b) A member attached to the rotating shaft as well as the rolling wheel 6 (
口)Transformation RII-convergence. A polygonal mirror 8 is supported and fixed on the seven runci 7 of the rotating shaft 6. A magnet 10' is provided on the outer periphery of the lower side of the flange 7 of the rotating shaft 6. The stator 11i is mounted on the side frame 3 to face this.
establish. Reference numeral 12 denotes a thrust bearing disposed below the magnet 10, and a thrust bearing 13 is provided on the frame 2 below the nested thrust bearing. The upper part of the rotating shaft 6 is closed by being machined into an upper cover 14. Also code 1
5 is a magnet] Hall element 16 that detects the magnetic pole position of 0 and the number of rotations of the rotating shaft 6? I--A holding substrate. trL on the surface of the thrust bearing 13 facing the thrust bearing 12.
As shown in Fig. 3, a snog wire #]7?r with a land 1''7' is engraved.A sensor member 18 is attached to the lower outer side of the shaft 4, and the cord 2 is pulled out from the sensor member 18.
Install a vibration meter (not shown) at 0. When the coil of the stator 1 is excited, the rotary shaft 6 rotates together with the polygon mirror 8 due to the interaction between the stator and the rotary shaft. According to this rotation, the herringon groove 5 and the spiral groove 17 of the thrust bearing
Since the fluid F flows into the fluid F and generates pressure, this pressure is used to levitate the rotating shaft 6 and smoothly rotate the outer periphery of the shaft 4 in the direction of the arrow (FIG. 3). Hering Zane #
' The fluid passing through the radial direction and the thrust bearing 1
The fluid passing through the spiral grooves 17 of 3 exerts a force in the thrust direction to support the shaft 4 without contacting the shaft 4 (2) of the rollers 6t. Therefore, the shaft 4 and the rotating shaft 6
The gap C that is fitted with the is very high accuracy, for example, an accuracy of several microns 1! In addition, submicron precision is required for the roundness and surface roughness of the rotating shaft and shaft. Furthermore, in order to prevent seizing due to heat caused by the rotation of the rotating shaft 6, a vibration meter is installed on the cord 20 of the sensor 18 to measure the lancing in order to maintain balance, but this is not sufficiently effective. In addition to this, consideration must be given to maintaining the verticality of the shaft 4. Therefore, there are drawbacks such as complicated machining of related members and increased costs. Shaft 1 is a member directly related to Nono Lansing.
There is a cord 20 attached to the end of the sensor 4 to connect the next sensor 18 and a vibration meter (not shown). As a method of running the IEIIE fluid bearing and the rotating body, the vibrations generated in response to the rotation of the rotating body supported by the fluid bearing are measured using a vibration meter, and the rotating body is gradually rotated. If the vibration meter is configured in such a way that it can detect several vibrations and determine the position and degree of unbalancing caused by an increase in vibration, it will be possible to detect uneven lancing at that rotation speed. Next, by repeating the same operation, it is possible to finally balance the number of rotations for the housing. However, in the above configuration, the support rigidity due to dynamic pressure is insufficient, and the gap between the dynamic pressure fluid fixed shaft and the rotating shaft is set to about several microns, so there is a risk of seizure during low speed rotation. There are also such defects as friends. (Problem 1 Means 1 Effect to be Solved by the Invention) Therefore, the present invention aims to eliminate the drawbacks of the conventional example, and it is possible to solve the problem of static pressure fluid without using a hydrodynamic bearing for dynamic pressure. The rotating body is fully supported by a bearing, and by using a fixed shaft with a static pressure exhaust hole, it is possible to increase the supply pressure and keep the internal pressure of the bearing high. The structure is designed so that the position and size of the imbalance can be determined while checking the condition. Therefore, seizing of both shaft members can be prevented and the desired Ill! It is also possible to maintain balance at one rotation speed, and by attaching a vibration meter applied to a seven-speed rotation system to the fixed shaft, it becomes easier to maintain balance at even higher rotation speeds.

【笑施例】[lol example]

以下添付図面ケ用いて本発明の一実施例を説明する。上
フレーム(図示せず)2下フレーム40、測定用台48
,01111Aフレーム38により形成された筐体円部
に、本発明に係る中空スラスト孔hv有する靜圧固足軸
22とこの固定軸の外側に嵌挿され友中空の回転軸26
等が収容される。固定軸22のほぼ中央にスラスト方向
に穿設し友中空スラスト孔hKflラジアル通路22a
、22bが連通して、固定軸22と中空の1転軸26と
で形成する微小空隙Cに開口する。更に中空スラスト孔
りの下端附近にコ字状のスラスト通路40 a カ形成
され、この通路の端部FX41a、後述する回転軸26
のスラスト受32方向に開口する。 前記ラジアル通路22a、22b及びスラスト通路40
aU中空スラスト孔11−中心として放射基に設けるこ
ともできる。回転軸26の上部には上蓋34、下部には
コネクタ56に介して流体用チューブ54が連結される
。中空スラスト孔りの下端部にセンサ50が装溜され、
これはコード52に工り振動計(図示°せず)に連結さ
れる。この回転軸26は、固定軸22と微小空隙cf介
して、その外周に回転自在に嵌挿される。 前記回転軸26の上端附近の外周に多面鏡28が、又は
ぼ中央外周には、11面フレーム38内側に設けられた
ステータ36に対面する工うに、マグネット30が設け
られる。マグネットの下に前述のスラスト受、32が配
設される。42はホール素子44ケ固層し友ホー・ル累
子基板で、26a+26bは外部への排出孔である。又
46は測足用台48と筐体との間に挾持しfcfム板で
外部からの不要の振動を阻止するのに役立つ。 励磁されたマグネット30とス°テータ36との作用に
工り、l1g1転軸26は多面鏡28と共に所定方向に
回転するに伴って、、固定軸22の中空スラスト孔hヘ
チューブ54工り流入した流体fは、スラスト通路40
aY通過してスラスト受321にスラスト方向に押°上
げるよう作用して回転軸26の負荷會支えると同時に、
中空スラスト孔り工り流入した流体はラジアル通路22
a、22b7へて前記空隙Cに流入し、中空回転軸26
のラジアル方向支持に役立つ。従って回転軸26は多面
′a28と共にスラスト並にラジアル両方向に支承され
、円滑回転が可能となる。 上述の構成の静圧流体軸受をバランシングに便用すると
2、静圧用排気孔を有する固定軸を用いるので、給気圧
によって支持剛性が高まり、多少のアンバランスは無視
され両部材の焼き付き防止となる。又使用(ロ)転数で
のバランスをとる友めに固定軸にセ/すを設けておき、
その位置と大きさが判明する工うにしであるから、高速
回転でのツマランスそ保持することもできる。
An embodiment of the present invention will be described below with reference to the accompanying drawings. Upper frame (not shown) 2 lower frame 40, measurement stand 48
, 01111A In the circular part of the casing formed by the frame 38, there is a static fixed foot shaft 22 having a hollow thrust hole hv according to the present invention, and a hollow rotary shaft 26 fitted on the outside of this fixed shaft.
etc. are accommodated. A hollow thrust hole hKfl radial passage 22a is formed approximately in the center of the fixed shaft 22 in the thrust direction.
, 22b communicate with each other and open into a minute gap C formed by the fixed shaft 22 and the hollow one-turn shaft 26. Further, a U-shaped thrust passage 40a is formed near the lower end of the hollow thrust hole, and the end portion FX41a of this passage is connected to a rotating shaft 26 which will be described later.
It opens in the direction of the thrust receiver 32. The radial passages 22a, 22b and the thrust passage 40
aU hollow thrust hole 11 - can also be provided in the radial base as the center. A top lid 34 is connected to the upper part of the rotating shaft 26, and a fluid tube 54 is connected to the lower part thereof via a connector 56. A sensor 50 is installed in the lower end of the hollow thrust hole,
This is connected to a cord 52 to a mechanical vibrometer (not shown). This rotary shaft 26 is rotatably inserted into the outer periphery of the fixed shaft 22 via a small gap cf. A polygon mirror 28 is provided on the outer periphery near the upper end of the rotating shaft 26, or a magnet 30 is provided on the outer periphery at the center thereof, facing a stator 36 provided inside the 11-sided frame 38. The aforementioned thrust receiver 32 is arranged below the magnet. Reference numeral 42 denotes a companion hole stacker substrate on which 44 Hall elements are solidly layered, and 26a+26b are exhaust holes to the outside. Further, numeral 46 is an FCF board sandwiched between the foot measuring table 48 and the housing, which serves to prevent unnecessary vibrations from the outside. Due to the action of the excited magnet 30 and stator 36, as the l1g1 rotating shaft 26 rotates in a predetermined direction together with the polygon mirror 28, it flows into the hollow thrust hole h of the fixed shaft 22 through the tube 54. The fluid f flows through the thrust passage 40
It passes through aY and acts to push up the thrust receiver 321 in the thrust direction to support the load of the rotating shaft 26, and at the same time,
The fluid flowing into the hollow thrust hole is passed through the radial passage 22.
a, 22b7 into the gap C, and the hollow rotating shaft 26
Useful for radial support. Therefore, the rotating shaft 26 is supported in both the thrust and radial directions together with the multifaceted surface 'a28', allowing smooth rotation. When a hydrostatic fluid bearing with the above configuration is conveniently used for balancing, 2. Since a fixed shaft with a static pressure exhaust hole is used, support rigidity is increased by supply pressure, and slight unbalance is ignored and seizure of both components is prevented. . Also, provide a center on the fixed shaft to balance the number of rotations used.
Since the position and size of the shaft can be determined, it is possible to maintain the torque at high speed rotation.

【効果】【effect】

本発明は静圧流体軸全利用したノ々ランジング構成であ
るから、所定回転数でのつりあわせが可能であり、支持
剛性は動圧の場合よりも大きいから、多少のアンバラン
ス状態においても、焼付金防止できる等の効果がある。
Since the present invention has a non-lunging configuration that makes full use of the hydrostatic fluid axis, it is possible to balance at a predetermined rotation speed, and the support rigidity is greater than in the case of dynamic pressure, so even in a slightly unbalanced state, It has the effect of preventing baked-on metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は静圧流体軸受全採用し九本発明のノ々ランシン
グ構成の略庫断面図。第2図は従来例の動圧流体軸受を
用い次バランシング機構の路線断面図。第3図は第2図
のスラスト方向の上面図。 h・・・中空スラスト孔 22・・・静圧軸受、(固定軸) 22a・・・ラジアル通路 22b・・・ラジアル通路
26・・・回転軸 26a・・・排出口26b・・・排
出口 32・・・スラスト受40a・・・コ字状スラス
ト通路 46・・・ゴム板48・・・測定台 50・・
・センサ 52・・・コード54・・・チューブ 特許出願人  コ)j?ル電子株式会社代理人 弁理士
  小 林    栄 纂1図 第2図 第3図
FIG. 1 is a schematic cross-sectional view of the nono lancing configuration of the present invention, which fully employs hydrostatic fluid bearings. FIG. 2 is a cross-sectional view of a conventional balancing mechanism using a hydrodynamic bearing. FIG. 3 is a top view in the thrust direction of FIG. 2. h...Hollow thrust hole 22...Static pressure bearing, (fixed shaft) 22a...Radial passage 22b...Radial passage 26...Rotating shaft 26a...Discharge port 26b...Discharge port 32 ...Thrust receiver 40a...U-shaped thrust passage 46...Rubber plate 48...Measurement stand 50...
・Sensor 52...Code 54...Tube patent applicant ko)j? Le Denshi Co., Ltd. Representative Patent Attorney Eisuke Kobayashi Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、動圧流体軸受用の回転体のバランシングのために静
圧流体軸受を採用したことを特徴とする動圧流体軸受の
回転体のバランシング構造。 2、静圧流体軸受にセンサを設けこれを振動計と連結し
てなる特許請求の範囲第1項に記載の動圧流体軸受の回
転体のバランシング構造。
[Scope of Claims] 1. A balancing structure for a rotating body of a hydrodynamic bearing, characterized in that a hydrostatic fluid bearing is employed for balancing the rotating body of the hydrodynamic bearing. 2. A balancing structure for a rotating body of a dynamic pressure fluid bearing as claimed in claim 1, wherein a sensor is provided on the hydrostatic fluid bearing and the sensor is connected to a vibration meter.
JP858985A 1985-01-21 1985-01-21 Balancing structure of rotating body for dynamic pressure liquid bearing Granted JPS61167833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP858985A JPS61167833A (en) 1985-01-21 1985-01-21 Balancing structure of rotating body for dynamic pressure liquid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP858985A JPS61167833A (en) 1985-01-21 1985-01-21 Balancing structure of rotating body for dynamic pressure liquid bearing

Publications (2)

Publication Number Publication Date
JPS61167833A true JPS61167833A (en) 1986-07-29
JPH0530208B2 JPH0530208B2 (en) 1993-05-07

Family

ID=11697178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP858985A Granted JPS61167833A (en) 1985-01-21 1985-01-21 Balancing structure of rotating body for dynamic pressure liquid bearing

Country Status (1)

Country Link
JP (1) JPS61167833A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219532A (en) * 1988-02-26 1989-09-01 Shimadzu Corp Dynamic balance testing device for magnet rotor of dc motor
JPH03188341A (en) * 1989-12-18 1991-08-16 Osawa Seisakusho:Kk Balancing machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192622A (en) * 1981-05-22 1982-11-26 Fuji Electric Co Ltd Static pressure type fluid thrust bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192622A (en) * 1981-05-22 1982-11-26 Fuji Electric Co Ltd Static pressure type fluid thrust bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219532A (en) * 1988-02-26 1989-09-01 Shimadzu Corp Dynamic balance testing device for magnet rotor of dc motor
JPH03188341A (en) * 1989-12-18 1991-08-16 Osawa Seisakusho:Kk Balancing machine

Also Published As

Publication number Publication date
JPH0530208B2 (en) 1993-05-07

Similar Documents

Publication Publication Date Title
US5517858A (en) Method and instrument for measuring for measuring preload of rolling bearing
US4601195A (en) Apparatus and method for measuring viscoelastic properties of materials
JP3383537B2 (en) Testing machine for bearings
JP4146151B2 (en) Hydrostatic gas bearing and spindle device using the same
US20060018772A1 (en) Rotary vacuum pump, structure and method for the balancing thereof
US4794289A (en) Bearing structures
JP2007192737A (en) Method for evaluating performance of dynamic pressure bearing
JPS63255633A (en) Torque detector and torque measuring device
JPS61167833A (en) Balancing structure of rotating body for dynamic pressure liquid bearing
JPH09233762A (en) Built-in motor
US4235092A (en) Low friction bearing running torque measuring apparatus
JPH03188341A (en) Balancing machine
JP2010190350A (en) Static pressure gas bearing device
JPH10206270A (en) Method for calculating amount of eccentric mass of rotary head device of shaft fixing system, method for selecting position of eccentric mass and equipment therefor
JPH03176608A (en) Method and device for measuring rotation accuracy of roll bearing
JPH04351979A (en) Test apparatus of linear motor
JPS6237152Y2 (en)
CN1095803A (en) The equipment for inhibiting of vibration of whirler
JPS626133A (en) Adjusting method for balance of fluid bearing
JPH10115567A (en) Low-speed balancing apparatus for heavy object
KR102610065B1 (en) Rotator for concentricity measurement and runout adjustment
JPS6029711Y2 (en) Vertical balance testing machine
CN216593326U (en) Detection tool for assembling cylindrical workpiece
JP2860429B2 (en) Superconductor characteristic measuring device
JPH1068667A (en) Automatic rotor balancing device