JPS6116759B2 - - Google Patents

Info

Publication number
JPS6116759B2
JPS6116759B2 JP9171580A JP9171580A JPS6116759B2 JP S6116759 B2 JPS6116759 B2 JP S6116759B2 JP 9171580 A JP9171580 A JP 9171580A JP 9171580 A JP9171580 A JP 9171580A JP S6116759 B2 JPS6116759 B2 JP S6116759B2
Authority
JP
Japan
Prior art keywords
melt
single crystal
liquid phase
phase growth
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9171580A
Other languages
Japanese (ja)
Other versions
JPS5717496A (en
Inventor
Yoshio Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP9171580A priority Critical patent/JPS5717496A/en
Publication of JPS5717496A publication Critical patent/JPS5717496A/en
Publication of JPS6116759B2 publication Critical patent/JPS6116759B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は化合物半導体単結晶液相成長法に関
する。 −族化合物半導体単結晶、例えばリン化カ
リウム単結晶を素材とする発光素子は、普通リン
化カリウム単結晶基板上にリン及び所望不純物を
含んだガリウム融体を1000℃程度で接触させた後
徐冷することにより、基板上に所望単結晶層を液
相成長させて得ている。このような液相成長法で
は製造される液相成長層に所望される特性に従
い、基板に接触するガリウム融体に各種の不純物
が添加されることになる。 例えば不純物補償法によりリン化ガリウム緑色
発光素子を形成する際には、硫黄を添加されたn
型リン化ガリウム単結晶基板上に硫黄添加n型単
結晶層を、次に硫黄及び窒素添加n型単結晶層
を、更に亜鉛、窒素添加p型単結晶層を順次液相
成長させる。このため、まず硫黄添加n型リン化
ガリウム単結晶基板を基板ホルダに装着し、金属
ガリウムを融体溜に装填し、成長装置内で凡そ
1000℃の高温下で基板上にガリウム融体を接触さ
せる。この接触状態を一定時間保持する。この時
この温度できまるリン化ガリウム溶解度に従い、
基板はこの基板に添加されている硫黄を併せ界面
でガリウム融体に溶出する。このあとこの成長装
置を例えば950℃の一定温度T2まで徐冷すると基
板上に硫黄添加の第一n型単結晶液相成長層が成
長する。温度T2にしばらく保持してからこの装
置内の雰囲気にアンモニアを微量添加して融体溜
にある融体中に窒素を添加する。この後成長装置
を例えば900℃の一定温度T3まで更に徐冷すると
硫黄及び窒素を添加された第二n型単結晶液相成
長層が成長する。温度T3のまゝ暫くおき雰囲気
中に適量の亜鉛蒸気を添加すると融体中に亜鉛が
添加される。このあと、結晶成長をほゞ終了する
例えば800℃の温度T4まで更に徐冷して亜鉛、窒
素、硫黄を添加された第三p型単結晶液相成長層
が成長する。このようにして第1図に示すように
硫黄を添加されたn型リン化ガリウム単結晶基板
1上に順次硫黄添加の第一n型単結晶液相成長層
2、硫黄及び窒素添加の第二n型単結晶液相成長
層3、硫黄、窒素及び亜鉛添加の第三p型単結晶
液相成長層4を成長させたリン化ガリウム緑色発
光素子ウエハ5が得られる。この素子ウエハ5で
各液相成長層の不純物量は適当に制御され、窒素
を発光中心とする高性能素子が得られる。 この場合融体溜に装填されたガリウムの融体
は、液相成長層の成長を終了すると、添加された
硫黄、窒素、亜鉛を含み、新たに使用するには不
向きとなる。しかしガリウムは普通99.999%程度
の高純度が必要なので、このような純度のものが
供給されて使用するので、高価であるため上述の
ような一度だけの使用方法をとると、発光素子の
コストを低下させることは出来ない。それ故もし
も使用されたガリウム融体を再使用出来るとなれ
ば、緑色発光素子製造に対して極めて好ましいこ
とになる。 この発明は一度使用されたガリウム融体の再使
用を可能にするよう改良した化合物半導体単結晶
液相成長法にあつて、即ち(1)化合物半導体単結晶
基板表面に高温で成長晶源融体を接触させた後徐
冷して、基板上に化合物半導体単結晶を液層成長
させるに際し、成長晶源融体が既に使用されたも
のであるとき、この融体は、既に経過した液相成
長時の温度又はこの温度以上の熱処理を施されて
から再使用に供されるものである化合物半導体単
結晶液相成長法、又は(2)再使用に供される融体は
還元性雰囲気中で熱処理を施されたものである前
記項に記載の化合物半導体単結晶液相成長法にあ
る。 このようなこの発明で化合物半導体単結晶基板
は、例えばリン化ガリウム、ヒ化ガリウム等が用
いられ、成長晶源融体は、例えばリン化ガリウ
ム、又はヒ化ガリウムと所望不純物とを溶解した
ガリウム融体が用いられるものであつて、熱処理
温度は例えばガリウム融体が既に経過した液相成
長時の温度とするか、又はこの温度より高温とす
る。尚高温を選ぶとき熱処理時間を短縮して良
い。熱処理雰囲気は不活性雰囲気又は還元性雰囲
気とする。又使用された不純物は熱処理によつて
排除されるものとし、蒸気から添加され又はそう
でなく添加されたものを含む。 前述の液相成長例で第1図に示すリン化ガリウ
ム緑色発光素子を形成して融体溜に残留した成長
晶源融体、この場合硫黄、窒素及び亜鉛である不
純物及びリン化ガリウムを溶解したガリウム融体
に、水素雰囲気中で1000℃3時間保持の熱処理を
施す。このように熱処理されたガリウム融体を同
じ液相成長工程に再度使用し、第1図リン化ガリ
ウム緑色発光素子ウエハを同様にして形成した時
の各層成長方向不純物濃度分布を第2図イに示
し、このウエハにより構成したリン化ガリウム緑
色発光素子の20A/cm2での発光効率を10ロツトに
ついて表イに表示する。第2図ロの不純物濃度分
布及び表ロの発光効率は、比較のために純度
99.999%のガリウム融体を使用して得られるもの
で、第1図リン化ガリウム緑色発光素子ウエハを
形成した場合について第2図イ及び表イに対応さ
せて示したものである。両図、両表とも優劣を示
していない。
The present invention relates to a compound semiconductor single crystal liquid phase growth method. A light-emitting device made of a - group compound semiconductor single crystal, for example, a potassium phosphide single crystal, is usually produced by bringing a gallium melt containing phosphorus and desired impurities into contact with a potassium phosphide single crystal substrate at about 1000°C, and then gradually reducing the temperature. By cooling, a desired single crystal layer is grown on the substrate in a liquid phase. In such a liquid phase growth method, various impurities are added to the gallium melt that comes into contact with the substrate, depending on the desired characteristics of the liquid phase growth layer to be manufactured. For example, when forming a gallium phosphide green light-emitting device using the impurity compensation method, sulfur-doped n
On a gallium phosphide single crystal substrate, a sulfur-doped n-type single crystal layer, then a sulfur and nitrogen-doped n-type single crystal layer, and then a zinc and nitrogen-doped p-type single crystal layer are successively grown in liquid phase. For this purpose, first, a sulfur-doped n-type gallium phosphide single crystal substrate is mounted on a substrate holder, metallic gallium is loaded into a melt reservoir, and approximately
A molten gallium is brought into contact with the substrate at a high temperature of 1000℃. This contact state is maintained for a certain period of time. At this time, according to the solubility of gallium phosphide determined at this temperature,
The substrate combines the sulfur added to the substrate and dissolves into the gallium melt at the interface. Thereafter, when this growth apparatus is slowly cooled to a constant temperature T2 of, for example, 950° C., a sulfur-added first n-type single crystal liquid phase growth layer is grown on the substrate. After maintaining the temperature at T 2 for a while, a small amount of ammonia is added to the atmosphere inside this apparatus, and nitrogen is added to the melt in the melt reservoir. Thereafter, when the growth apparatus is further slowly cooled to a constant temperature T3 of, for example, 900° C., a second n-type single crystal liquid phase growth layer doped with sulfur and nitrogen is grown. If the temperature is kept at T 3 for a while and an appropriate amount of zinc vapor is added to the atmosphere, zinc is added to the melt. Thereafter, the third p-type single crystal liquid phase growth layer to which zinc, nitrogen, and sulfur are added is grown by further slow cooling to a temperature T4 of, for example, 800° C. where crystal growth is almost completed. In this way, as shown in FIG. 1, on an n-type gallium phosphide single crystal substrate 1 doped with sulfur, a first n-type single crystal liquid phase growth layer 2 to which sulfur is added, a second n-type single crystal liquid phase growth layer to which sulfur and nitrogen are added, A gallium phosphide green light emitting device wafer 5 is obtained on which an n-type single crystal liquid phase growth layer 3 and a third p type single crystal liquid phase growth layer 4 added with sulfur, nitrogen and zinc are grown. In this device wafer 5, the amount of impurities in each liquid-phase growth layer is appropriately controlled, and a high-performance device whose emission center is nitrogen can be obtained. In this case, the gallium melt charged in the melt reservoir contains added sulfur, nitrogen, and zinc after the growth of the liquid phase growth layer is completed, and becomes unsuitable for new use. However, since gallium normally requires a high purity of around 99.999%, it is expensive to supply and use gallium, so using the one-time method described above will reduce the cost of the light emitting device. It cannot be lowered. Therefore, if the used gallium melt could be reused, it would be extremely advantageous for the production of green light emitting devices. This invention relates to a compound semiconductor single crystal liquid phase growth method improved to enable the reuse of a gallium melt once used, namely (1) a crystal source melt grown at high temperature on the surface of a compound semiconductor single crystal substrate; When the growth crystal source melt has already been used for liquid layer growth of compound semiconductor single crystals on the substrate by slow cooling after contact with compound semiconductor single crystal liquid phase growth method in which the material is subjected to heat treatment at or above this temperature before being reused, or (2) the melt to be reused is in a reducing atmosphere. The compound semiconductor single crystal liquid phase growth method according to the above item is a compound semiconductor single crystal liquid phase growth method that has been subjected to heat treatment. In this invention, the compound semiconductor single crystal substrate is made of, for example, gallium phosphide, gallium arsenide, etc., and the growth crystal source melt is, for example, gallium phosphide or gallium in which gallium arsenide and desired impurities are dissolved. When a melt is used, the heat treatment temperature is, for example, the temperature at which the gallium melt has already undergone liquid phase growth, or is higher than this temperature. Note that when a high temperature is selected, the heat treatment time may be shortened. The heat treatment atmosphere is an inert atmosphere or a reducing atmosphere. Also, impurities used shall be removed by heat treatment, including those added from steam or otherwise. In the above liquid phase growth example, the gallium phosphide green light emitting device shown in FIG. 1 is formed, and the growing crystal source melt remaining in the melt reservoir, in this case impurities, which are sulfur, nitrogen and zinc, and gallium phosphide are dissolved. The molten gallium is then heat treated at 1000°C for 3 hours in a hydrogen atmosphere. The gallium melt heat-treated in this way was used again in the same liquid phase growth process to form a gallium phosphide green light-emitting device wafer in the same manner as shown in Fig. 1. The impurity concentration distribution in each layer growth direction is shown in Fig. 2A. The luminous efficiency at 20 A/cm 2 of the gallium phosphide green light emitting device constructed from this wafer is shown in Table A for 10 lots. The impurity concentration distribution in Figure 2 B and the luminous efficiency in Table B are for comparison purposes.
It is obtained using a 99.999% gallium melt, and the case where a gallium phosphide green light emitting device wafer is formed in FIG. 1 is shown in correspondence with FIG. 2A and Table I. Both figures and tables do not show superiority or inferiority.

【表】 ガリウム融液にこのような熱処理を施すときに
は、少くとも融液として繰返し10回程度再使用す
ることが出来、製品の特性の良好なものが得られ
る。この結果ガリウムの使用量を低減することが
できて、発光素子の価格の低減に寄与することが
できる。
[Table] When a gallium melt is subjected to such heat treatment, it can be reused as a melt at least 10 times, and a product with good properties can be obtained. As a result, the amount of gallium used can be reduced, contributing to a reduction in the price of light emitting elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はリン化ガリウム緑色発光素子ウエハ断
面図、第2図イ及びロは、第1図に示すウエハ各
層の不純物濃度分布図にして、イはこの発明の成
長晶源融体によるもので、ロははじめて使用され
た成長晶源融体によるものである。
Figure 1 is a cross-sectional view of a gallium phosphide green light emitting device wafer, and Figures 2A and 2B are impurity concentration distribution diagrams of each layer of the wafer shown in Figure 1. , b are due to the growth crystal source melt used for the first time.

Claims (1)

【特許請求の範囲】 1 化合物半導体単結晶基板表面に高温で成長晶
源融体を接触させた後徐冷して、基板上に化合物
半導体単結晶を液相成長させるに際し、成長晶源
融体が概に使用されたものであるとき、この融体
は、既に経過した液相成長時の温度又はこの温度
以上の熱処理を施されてから再使用に供されるも
のであることを特徴とする化合物半導体単結晶液
相成長法。 2 再使用に供される融体は還元性雰囲気中で熱
処理を施されたものであることを特徴とする特許
請求の範囲第1項に記載の化合物半導体単結晶液
相成長法。
[Scope of Claims] 1. When a compound semiconductor single crystal is brought into liquid phase growth on a substrate by bringing the growth crystal source melt into contact with the surface of a compound semiconductor single crystal substrate at high temperature and then slowly cooling the substrate, the growth crystal source melt When the melt has been generally used, the melt is characterized in that it is subjected to heat treatment at or above the temperature during liquid phase growth that has already passed before being reused. Compound semiconductor single crystal liquid phase growth method. 2. The compound semiconductor single crystal liquid phase growth method according to claim 1, wherein the melt to be reused is heat-treated in a reducing atmosphere.
JP9171580A 1980-07-07 1980-07-07 Liquid phase growing method for single crystal of compound semiconductor Granted JPS5717496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9171580A JPS5717496A (en) 1980-07-07 1980-07-07 Liquid phase growing method for single crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9171580A JPS5717496A (en) 1980-07-07 1980-07-07 Liquid phase growing method for single crystal of compound semiconductor

Publications (2)

Publication Number Publication Date
JPS5717496A JPS5717496A (en) 1982-01-29
JPS6116759B2 true JPS6116759B2 (en) 1986-05-01

Family

ID=14034200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9171580A Granted JPS5717496A (en) 1980-07-07 1980-07-07 Liquid phase growing method for single crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS5717496A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143952A (en) * 1984-08-08 1986-03-03 株式会社 神戸屋 Bread making method
JPH07112617B2 (en) * 1990-03-23 1995-12-06 三菱マテリアル株式会社 Casting method for double layer casting

Also Published As

Publication number Publication date
JPS5717496A (en) 1982-01-29

Similar Documents

Publication Publication Date Title
US3960618A (en) Epitaxial growth process for compound semiconductor crystals in liquid phase
US3893875A (en) Method of making a luminescent diode
JPS6116759B2 (en)
US4417262A (en) Green light emitting device
US4004953A (en) Method for growing crystals of III-V compound semiconductors
US3660312A (en) Method of making doped group iii-v compound semiconductor material
US3619304A (en) Method of manufacturing gallium phosphide electro luminescent diodes
JPS6350851B2 (en)
US3773553A (en) Silicon carbide junction diode
US3694275A (en) Method of making light emitting diode
GB1468106A (en) Method and apparatus for crystal growth
US3669763A (en) Traveling solvent method of growing silicon carbide crystals and junctions utilizing yttrium as the solvent
JPH0218319B2 (en)
US3648120A (en) Indium aluminum phosphide and electroluminescent device using same
US3179541A (en) Vapor growth with smooth surfaces by introducing cadmium into the semiconductor material
JPS59214276A (en) Manufacture of gallium phosphide green light-emitting element
JP3097587B2 (en) Epitaxial wafer for light emitting semiconductor device
JPH01234400A (en) Semiconductor crystal
JPS626338B2 (en)
US4371420A (en) Method for controlling impurities in liquid phase epitaxial growth
JPS59111379A (en) Manufacture of light emitting semiconductor device
JP3116495B2 (en) Manufacturing method of light emitting diode
JP2587493B2 (en) Manufacturing method of GuP green light emitting diode
JP3859383B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH0214317B2 (en)