JPS61167012A - High-strength, ultrafine acrylic fibers and production thereof - Google Patents

High-strength, ultrafine acrylic fibers and production thereof

Info

Publication number
JPS61167012A
JPS61167012A JP324785A JP324785A JPS61167012A JP S61167012 A JPS61167012 A JP S61167012A JP 324785 A JP324785 A JP 324785A JP 324785 A JP324785 A JP 324785A JP S61167012 A JPS61167012 A JP S61167012A
Authority
JP
Japan
Prior art keywords
strength
fiber
less
fibers
intrinsic viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP324785A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Tanaka
宏佳 田中
Hideo Komatsu
小松 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP324785A priority Critical patent/JPS61167012A/en
Publication of JPS61167012A publication Critical patent/JPS61167012A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/4508Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
    • H03F3/45085Long tailed pairs
    • H03F3/45094Folded cascode stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:An acrylonitrile polymer solution of a specific intrinsic viscosity is made into fibers through a specific dry-wet process, drawn, then subjected to the secondary drawing at a specific draw ratio to give the titled fibers of ultrafineness, high strength and reduced fusion between filaments. CONSTITUTION:An acrylonitrile polymer solution of more than 2 intrinsic viscosity and more than 1,000 poise solution viscosity at 45 deg.C is filtered with a filter of less than 5mu sieve opening. The resultant spinning dope is extruded through a spinneret having 50 or more nozzle holes of less than 0.12mmphi diameter into air or inert gas atmosphere and allowed to run therein, then introduced into a coagulation bath. The resultant fiber yarn is washed with water, drawn and dried, further subjected to the second drawing so that the total draw ratio exceeds 10 based on their original filament length to give the objective fibers of higher than 10g/d tensile strength, higher than 4g/d loop strength and less than 1 denier filament fineness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単糸繊度が1.0デニール(d)以下で、機
械的強度、特に引張り強度が10g/d以上、ループ強
度4 g/d以上という優れた繊維物性を有するマルチ
フィラメントの極細アクリル系繊維に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to a fiber having a single yarn fineness of 1.0 denier (d) or less, a mechanical strength, especially a tensile strength of 10 g/d or more, and a loop strength of 4 g/d. The present invention relates to a multifilament ultrafine acrylic fiber having excellent fiber physical properties of d or more.

〔従来の技術〕[Conventional technology]

従来アクリル系繊維は、その優れた繊維物性、たとえば
発色性、鮮明性および堅牢性などの染色性、耐光性、耐
食性などに優れた繊維として知られているが、機械的強
度が充分でなく、その用途は肌着、毛布、カーテンなど
の一部の衣料用が中心であり、他の汎用繊維、特にポリ
エステル系繊維に比べて汎用性に乏しかった。
Conventionally, acrylic fibers are known for their excellent fiber physical properties, such as color development, brightness, dyeability such as fastness, light resistance, and corrosion resistance, but they lack sufficient mechanical strength. Its use is mainly for certain types of clothing such as underwear, blankets, and curtains, and it is less versatile than other general-purpose fibers, especially polyester fibers.

これら従来の市販アクリル系繊維の大部分は、湿式また
は乾式紡糸法によって工業的または商業的に製造され、
一部の特殊な用途に乾・湿式紡糸法によって製造されて
いるが、これらの紡糸法はいずれもアクリロニトリル系
重合体(以下、ANポリマと略する)をその溶剤に溶解
した溶液を紡糸原液として用い、この紡糸原液を口金孔
を通して凝固浴中に導き凝固させ、未延伸凝固繊維を形
成させる工程があり、この工程がアクリル系繊維の製造
プロセスの特徴の一つといわれている。このようなプロ
セス上の特徴を有するアクリル系繊維の製造において、
該繊維の機械的強度を改良、向上させるために、最近に
なってポリマの分子量が40万を超える超高分子量AN
系重合体を使用したアクリル系繊維の製造法が提案され
ている (特開昭50−199098号公報)。
Most of these conventional commercial acrylic fibers are manufactured industrially or commercially by wet or dry spinning methods;
It is manufactured by dry and wet spinning methods for some special purposes, but in both of these spinning methods, a solution of an acrylonitrile polymer (hereinafter referred to as AN polymer) dissolved in its solvent is used as a spinning stock solution. There is a step in which the spinning dope is introduced into a coagulation bath through a spinneret hole and coagulated to form an undrawn coagulated fiber, and this step is said to be one of the characteristics of the acrylic fiber manufacturing process. In the production of acrylic fibers with such process characteristics,
In order to improve and improve the mechanical strength of the fibers, ultra-high molecular weight AN, whose molecular weight exceeds 400,000, has recently been developed.
A method for producing acrylic fibers using such polymers has been proposed (Japanese Patent Application Laid-open No. 199098/1983).

しかしながら、上記凝固工程を必須の工程とするアクリ
ル系繊維の製造においては、AN系重合体の分子量が増
大するにつれて、紡糸原液の粘度の増加が増大してその
紡糸性を低下させ、この紡糸性を紡糸原液のポリマ濃度
を低くすることによって回避せんとすると、紡糸時に繊
維の失透化し易くなったり、ボイドの発生が生じ易く、
良好な繊維が得られないし、また、ポリマの分子量の増
大は凝固繊維糸条の延伸性を低下させ、必ずしも分子量
の増大が得られる繊維の機械的強度の増大をもたらすも
のではなかった。
However, in the production of acrylic fibers in which the above-mentioned coagulation step is an essential step, as the molecular weight of the AN polymer increases, the viscosity of the spinning dope increases, reducing its spinnability. If this is attempted to be avoided by lowering the polymer concentration of the spinning dope, the fibers are more likely to devitrify during spinning, and voids are more likely to occur.
Good fibers cannot be obtained, and an increase in the molecular weight of the polymer reduces the drawability of the coagulated fiber yarn, and an increase in the molecular weight does not necessarily lead to an increase in the mechanical strength of the resulting fiber.

本発明者らは、これらの紡糸法の中で、乾・湿式紡糸法
は、AN系ポリマの分子量の増大に対して、比較的延伸
性の低下が少なく、特定の範囲内でAN系ポリマの分子
量を大きくすれば、機械的強度の著しい向上が可能であ
ることを見出し、先に提案した。
The present inventors have found that among these spinning methods, the dry/wet spinning method has relatively little deterioration in stretchability as the molecular weight of the AN-based polymer increases, and that It was discovered and proposed earlier that mechanical strength can be significantly improved by increasing the molecular weight.

しかしながら、この乾・湿式紡糸法は、マルチフィラメ
ントのような多糸条繊維を製造す為ときは、単糸間融前
の発生を防止することが極めて困難であり、特にその単
糸繊度が小さくなるにつれて融着を防止することが難し
く、繊維性能、品質の良好な多糸条繊維を得るたとが困
難である。
However, when using this dry/wet spinning method to produce multifilament fibers such as multifilaments, it is extremely difficult to prevent the occurrence of unmelting between single filaments, especially when the single filament fineness is small. As the temperature increases, it is difficult to prevent fusion, and it is difficult to obtain multifilament fibers with good fiber performance and quality.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記高分子量のAN系ポリマからなる
高強度で単糸間の融着の少ないアクリル系の極細繊維糸
条を提供するにあり、他の目的は、このような極細で、
高強度のアクリル系繊維糸条の工業的製造法を提供する
にある。
The purpose of the present invention is to provide an acrylic ultrafine fiber yarn made of the above-mentioned high molecular weight AN-based polymer with high strength and less fusion between single filaments.
An object of the present invention is to provide an industrial method for producing high-strength acrylic fiber yarn.

C問題点を解決するための手段〕 このような本発明の目的は、前記特許請求の範囲に記載
した発明、すなわち、極限粘度が少なくとも2.0のA
Nを主成分とするAN系ポリマからなり、引張り強度が
Log/d以上、ループ強度が4g/d以上および単糸
繊度が1.0デニール以下である実質的に単糸間融前を
有しない高強度極細アクリル系繊維によって達成するこ
とができる。
Means for Solving Problem C] The object of the present invention is to achieve the invention described in the claims, that is, to solve the problem A with an intrinsic viscosity of at least 2.0.
It is made of an AN-based polymer whose main component is N, has a tensile strength of Log/d or more, a loop strength of 4 g/d or more, and a single fiber fineness of 1.0 denier or less, and has substantially no unmelted fibers. This can be achieved with high-strength ultra-fine acrylic fibers.

本発明のアクリル系繊維を構成するAN系ポリマとして
は、その分子量が極限粘度で表示して、少なくとも2.
0、好ましり2.5、さらに好ましくは2.5〜6.0
であるANを主成分とするポリマ、具体的には、ANホ
モポリマおよび少なくともANを95モル%、好ましく
97モル%以上とtf A Nに対して共重合性を有す
る5モル%以下、好ましくは3モル%以下のビニル系モ
ノマ、たとえば、アクリル酸、メタクリル酸、イタコン
酸およびそれらの低級アルキルエステル類、酢酸ビニル
、アリルスルホン酸、メタリルスルホン酸、2−アクリ
ルアミド−2−メチルプロパンスルホン酸、p−スチレ
ンスルホン酸、ビニルスルホン酸およびそれら金属塩類
などとの共重合体を挙げることができる。
The AN polymer constituting the acrylic fiber of the present invention has a molecular weight of at least 2.
0, preferably 2.5, more preferably 2.5 to 6.0
A polymer whose main component is AN, specifically, an AN homopolymer and at least 95 mol%, preferably 97 mol% or more, of AN and 5 mol% or less, preferably 3 mol% or less, copolymerizable with tf A N. Mol% or less of vinyl monomers, such as acrylic acid, methacrylic acid, itaconic acid and their lower alkyl esters, vinyl acetate, allylsulfonic acid, methallylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, p - Copolymers with styrene sulfonic acid, vinyl sulfonic acid and their metal salts can be mentioned.

本発明において、アクリル系繊維を構成するAN系ポリ
マの極限粘度は、引張り強度が少なくとも約10g/d
 、ループ強度が4g/d以上という要件を満足する上
で重要であるばかりでなく、極細繊維糸条(マルチフィ
ラメント)を構成する単糸繊維を1d以下とする上でも
重要である。
In the present invention, the intrinsic viscosity of the AN-based polymer constituting the acrylic fiber has a tensile strength of at least about 10 g/d.
, is important not only in satisfying the requirement that the loop strength is 4 g/d or more, but also in making the single fibers constituting the ultrafine fiber yarn (multifilament) 1 d or less.

すなわち、極限粘度が2.0よりも小さくなると、後述
する本発明のアクリル系繊維の製造法を適用しても、得
られる繊維の引張り強度に限界があり、10g/dを超
え、かつ1d以下の極細繊維糸条を製造することが困難
になるのである。
That is, when the intrinsic viscosity becomes smaller than 2.0, even if the manufacturing method of the acrylic fiber of the present invention described below is applied, there is a limit to the tensile strength of the obtained fiber, which is more than 10 g/d and less than 1 d. This makes it difficult to produce ultrafine fiber yarns.

また、本発明の1d以下という極細繊維糸条は、後述す
る製造法、特に、紡糸方法として乾・湿式紡糸法を適用
し、延伸性の著しく優れた凝固繊維糸条を形成せしめた
ことに依存するが、このような極細繊維糸条でありなが
ら、羽毛や糸切れは勿論、繊維糸条を構成する単糸間に
実質的に融着かないことは、驚くべきことである。
In addition, the ultrafine fiber yarn of 1 d or less of the present invention relies on the production method described below, in particular, the application of dry and wet spinning methods as the spinning method to form a coagulated fiber yarn with extremely excellent drawability. However, it is surprising that even with such an ultra-fine fiber yarn, not only do feathers and yarn breakage occur, but also the single yarns constituting the fiber yarn do not substantially fuse together.

このような本発明のアクリル繊維は、前記AN系ポリマ
の溶剤溶液、具体的には、ジメチルスルホキシド(DM
SO) 、ジメチルホルムアミド(DMF) 、ジメチ
ルアセタミド(DMAC)などの有機溶剤、硝酸、チオ
シャン酸アルカリ、ロダンソーダ、塩化亜鉛などの無機
塩の濃厚水溶液などに該AN系ポリマを溶解したものを
紡糸原液として使用し、この紡糸原液をホール数が少な
くとも30ケ、好ましくは50ホ一ル以上、1000ホ
ール以下、孔径が0.12ミクロン(ロ)、好ましくは
0.10μの多孔紡糸口金を使用し、これらの紡糸口金
孔を通して、一旦空気または窒素、アルゴン、ヘリウム
などの不活性雰囲気中に吐出し、次いで吐出繊維糸条を
凝固浴中に導いて凝固を完結せしめる乾・湿式紡糸法を
適用し、得られた凝固繊維糸条を高倍率に延伸する、す
なわち、凝固繊維糸条の全延伸倍率が少なくとも10倍
、好ましく15倍以上になるように延伸することにより
得られる。換言すれば、本発明は、極限粘度が少なくと
も2.0の高重合度AN系ポリマを前記特定の孔径を有
する多孔紡糸口金を用いて乾・湿式紡糸することによっ
て、延伸性に優れた未延伸凝固繊維糸条を形成せしめ、
この凝固繊維糸条を高度に延伸することによって機械的
強度に優れた極細繊維の製造に成功したものである。
Such acrylic fibers of the present invention can be prepared using a solvent solution of the AN-based polymer, specifically, dimethyl sulfoxide (DM
The AN-based polymer is dissolved in an organic solvent such as SO), dimethylformamide (DMF), and dimethylacetamide (DMAC), or a concentrated aqueous solution of an inorganic salt such as nitric acid, alkali thiocyanate, rhodan soda, or zinc chloride, and then spun. Use this spinning dope as a stock solution, and use a multi-hole spinneret with a hole number of at least 30 holes, preferably 50 holes or more and 1000 holes or less, and a pore diameter of 0.12 microns (b), preferably 0.10 μm. A dry/wet spinning method is applied in which the fibers are once discharged into air or an inert atmosphere such as nitrogen, argon, or helium through these spinneret holes, and then the discharged fiber threads are introduced into a coagulation bath to complete coagulation. It is obtained by drawing the obtained coagulated fiber yarn to a high magnification, that is, by drawing the coagulated fiber yarn so that the total stretching ratio of the coagulated fiber yarn is at least 10 times, preferably 15 times or more. In other words, the present invention provides an unstretched product with excellent drawability by dry/wet spinning a high degree of polymerization AN-based polymer having an intrinsic viscosity of at least 2.0 using a multi-hole spinneret having the specific pore diameter. forming coagulated fiber threads,
By highly drawing this coagulated fiber thread, we succeeded in producing ultrafine fibers with excellent mechanical strength.

すなわち、前記のように乾・湿式紡糸により得られた未
延伸凝固繊維糸条は、水洗、延伸、乾燥等の処理を施し
た後、後述する乾熱二次延伸を適用することにより、前
記凝固繊維糸条の原長当り少な(とも10倍という高倍
率延伸が可能であり、これによって繊維の高強度化と極
細化を達成することに本発明の特徴がある。
That is, the undrawn coagulated fiber yarn obtained by dry/wet spinning as described above is subjected to treatments such as washing with water, stretching, and drying, and then is subjected to the dry heat secondary drawing described below to obtain the coagulated fiber yarn. The present invention is characterized in that it is possible to draw the fiber yarn at a high magnification of 10 times the original length, thereby achieving high strength and ultra-fine fibers.

ここで、乾熱二次延伸は、約1g/d、好ましくは1.
5〜2.0 g/dの延伸張力の発現下に160〜24
0℃の加熱空気中で延伸する手段、たとえば、熱板、熱
ロール、熱チユーブなど、好ましくは加熱空気を供給、
排出することができるチューブ状の加熱筒を使用して延
伸する手段である。
Here, the dry heat secondary stretching is about 1 g/d, preferably 1.
160-24 under a stretching tension of 5-2.0 g/d
means for stretching in heated air at 0° C., such as hot plates, hot rolls, hot tubes, etc., preferably supplying heated air;
This is a means of stretching using a tubular heating cylinder that can be discharged.

実施例1〜3.比較例1.2 アクリロニトリル100%をI;)MSOに溶解し、溶
液重合を行い、極限粘度3.3のアクリル重合体を作成
した。この溶液を濾材の目びらきを変更し、3000 
Hの口金を用いて乾・湿式紡糸を行った。
Examples 1-3. Comparative Example 1.2 100% acrylonitrile was dissolved in I;) MSO and solution polymerized to create an acrylic polymer with an intrinsic viscosity of 3.3. Change the mesh size of the filter medium and apply this solution to 3000
Dry/wet spinning was performed using a nozzle H.

紡糸口金と凝固溶液面間の距離は51mに設定し、凝固
浴としては5℃の30%DMSO水溶液を用いた。
The distance between the spinneret and the surface of the coagulation solution was set to 51 m, and a 30% DMSO aqueous solution at 5° C. was used as the coagulation bath.

得られた凝固糸条を夫々熱水中で5倍に延伸し、水洗後
120℃で緊張乾燥し、さらに195℃のホットプレー
トを用いて乾熱二次延伸を行った。最大延伸倍率の85
%で延伸を行い得られた繊維の物性と単糸間接着状態を
第1表にまとめた。
Each of the obtained coagulated threads was stretched 5 times in hot water, washed with water, strain-dried at 120°C, and further subjected to dry heat secondary stretching using a hot plate at 195°C. Maximum stretching ratio of 85
Table 1 summarizes the physical properties of the fibers obtained by drawing the fibers and the adhesion state between the single filaments.

(本頁以下余白) 実施例4〜7.比較例3〜5 実施例1の焼結金属1μで濾過した原液を用いて、口金
を変更して乾・湿式紡糸行った。凝固浴としては15℃
の50%DMSO水溶液を用い、凝固後熱水中で5倍に
延伸し、水洗後130°Cで緊張乾燥し、195℃のホ
ットプレートで二次延伸を行い単糸デニール0.7dの
繊維を得た。
(Margin below this page) Examples 4 to 7. Comparative Examples 3 to 5 Dry/wet spinning was performed using the stock solution filtered through 1μ of the sintered metal of Example 1 by changing the nozzle. 15℃ for coagulation bath
Using a 50% DMSO aqueous solution of Obtained.

その時の紡糸の安定性と単糸間接着についてまとめた結
果を第2表に示した。
Table 2 summarizes the results regarding spinning stability and inter-filament adhesion.

第2表 実施例8〜10.比較例6,7 実施例6と同様にして、デニールを変更したサンプルを
試作した。強度は夫々12g/dとなるように二次延伸
倍率を設定した。得られた繊維を51にカットし、セメ
ント補強用繊維を作成した。
Table 2 Examples 8-10. Comparative Examples 6 and 7 Samples with different deniers were produced in the same manner as in Example 6. The secondary stretching ratio was set so that the strength was 12 g/d. The obtained fibers were cut into 51 pieces to create cement reinforcing fibers.

アクリル繊維1.5重量部、セルロースバルブ2重量部
、シリカ粉末101Eit部、ポルトランドセメン)8
7.5重量部を固形分濃度が5重量%となるように水と
混和し固形分に対して500ppmのポリアクリルアミ
ドを凝集剤として添加し、得られたスラリーを50メツ
シユの丸型金網を用いた抄造した。
1.5 parts by weight of acrylic fiber, 2 parts by weight of cellulose bulb, 101 parts of silica powder, Portland cement) 8
7.5 parts by weight was mixed with water so that the solid content concentration was 5% by weight, and 500 ppm of polyacrylamide was added as a flocculant based on the solid content, and the resulting slurry was mixed using a 50-mesh round wire mesh. I made a paper.

この時の抄造性とセメント曲げ強度の測定結果を第3表
にまとめた。
Table 3 summarizes the measurement results of paper formability and cement bending strength at this time.

(本頁以下余白) 第3表(Margins below this page) Table 3

Claims (3)

【特許請求の範囲】[Claims] (1)極限粘度が少なくとも2.0のアクリロニトリル
を主成分とするアクリロニトリル系重合体からなる引張
り強度が10g/d以上、ループ強度が4g/d以上お
よび単糸繊度が1.0デニール以下である実質的に単糸
間融着を有しない高強度極細アクリル系繊維。
(1) Made of an acrylonitrile polymer mainly composed of acrylonitrile with an intrinsic viscosity of at least 2.0, the tensile strength is 10 g/d or more, the loop strength is 4 g/d or more, and the single yarn fineness is 1.0 denier or less. High-strength ultra-fine acrylic fiber with virtually no inter-filament fusion.
(2)特許請求の範囲第1項において、アクリロニトリ
ル系重合体の極限粘度が少なくとも2.5以上であり、
引張り強度が12g/d以上、ループ強度が4.5g/
d以上である高強度極細アクリル系繊維。
(2) In claim 1, the acrylonitrile polymer has an intrinsic viscosity of at least 2.5 or more,
Tensile strength is 12g/d or more, loop strength is 4.5g/d
High-strength ultrafine acrylic fiber with a strength of d or more.
(3)極限粘度が少なくとも2.0、45℃における溶
液粘度が少なくとも1000ポイズであるアクリロニト
リル系重合体溶液を目開き5ミクロン以下の濾材を用い
て濾過し、得られた紡糸原液をホール数が少なくとも5
0ヶ、孔径が0.12mmφ以下の多孔紡糸口金孔から
吐出し、一旦空気または不活性雰囲気中を走行させた後
、凝固浴中に導入して凝固せしめる乾・湿式紡糸法によ
り凝固繊維糸条を形成せしめ、得られた凝固繊維糸条に
水洗、延伸乾燥等の処理を施し、次いで全延伸倍率が前
記凝固繊維糸条の原長当り約10倍以上になるように二
次延伸し、単糸繊維が1.0以下の延伸繊維糸条を形成
せしめることを特徴とする高強度極細アクリル系繊維の
製造方法。
(3) An acrylonitrile polymer solution having an intrinsic viscosity of at least 2.0 and a solution viscosity at 45°C of at least 1000 poise is filtered using a filter medium with an opening of 5 microns or less, and the resulting spinning stock solution has a hole number of at least 5
A coagulated fiber yarn is produced by a dry/wet spinning method in which the fiber is discharged from a multi-hole spinneret with a diameter of 0.12 mm or less, run in air or an inert atmosphere, and then introduced into a coagulation bath and coagulated. The coagulated fiber yarn thus obtained is subjected to treatments such as washing with water and stretching and drying, and then secondarily stretched so that the total stretching ratio is about 10 times or more per the original length of the coagulated fiber yarn. A method for producing high-strength ultrafine acrylic fibers, which comprises forming drawn fiber threads having a thread fiber size of 1.0 or less.
JP324785A 1985-01-14 1985-01-14 High-strength, ultrafine acrylic fibers and production thereof Pending JPS61167012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP324785A JPS61167012A (en) 1985-01-14 1985-01-14 High-strength, ultrafine acrylic fibers and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP324785A JPS61167012A (en) 1985-01-14 1985-01-14 High-strength, ultrafine acrylic fibers and production thereof

Publications (1)

Publication Number Publication Date
JPS61167012A true JPS61167012A (en) 1986-07-28

Family

ID=11552127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP324785A Pending JPS61167012A (en) 1985-01-14 1985-01-14 High-strength, ultrafine acrylic fibers and production thereof

Country Status (1)

Country Link
JP (1) JPS61167012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040429A (en) * 2011-08-19 2013-02-28 Mitsubishi Rayon Co Ltd Method for producing fibrous structure, carbon fiber and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112310A (en) * 1979-02-22 1980-08-29 Nippon Zeon Co Ltd Production of acrylonitrile hollow fiber
JPS59199809A (en) * 1983-04-20 1984-11-13 Japan Exlan Co Ltd Polyacrylonitrile yarn having high strength and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112310A (en) * 1979-02-22 1980-08-29 Nippon Zeon Co Ltd Production of acrylonitrile hollow fiber
JPS59199809A (en) * 1983-04-20 1984-11-13 Japan Exlan Co Ltd Polyacrylonitrile yarn having high strength and its preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040429A (en) * 2011-08-19 2013-02-28 Mitsubishi Rayon Co Ltd Method for producing fibrous structure, carbon fiber and method for producing the same

Similar Documents

Publication Publication Date Title
US4659529A (en) Method for the production of high strength polyacrylonitrile fiber
JP2729837B2 (en) Polytetrafluoroethylene filament and method for producing the same
EP0150513B1 (en) High-tenacity, fine-denier polyvinyl alcohol fiber and a method for production thereof
JPS6211089B2 (en)
JPH03167309A (en) Fiber, filament and yarn based on cellulose and polyvinyl chloride and production thereof
US4902452A (en) Process for producing an acrylic fiber having high fiber characteristics
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JP2010100970A (en) Method for producing carbon fiber
US4397831A (en) Production of carbon fibers from acrylonitrile based fibers
JP2011042893A (en) Method for producing polyacrylonitrile-based fiber and method for producing carbon fiber
US4663232A (en) Acrylic fiber having excellent durability and dyeability and process for preparation thereof
JPH0711086B2 (en) High-strength, high-modulus acrylic fiber manufacturing method
JP2011017100A (en) Method for producing carbon fiber
JPS61167012A (en) High-strength, ultrafine acrylic fibers and production thereof
JP2004027396A (en) Method for producing acrylic precursor for carbon fiber
JPH0718052B2 (en) Manufacturing method of high strength acrylic fiber
JPS6385105A (en) Organic high-strength yarn with excellent abrasion resistance
JPS61119710A (en) Production of acrylic fiber having high tenacity and modules
JP2011213774A (en) Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber
JPH0491230A (en) Production of precursor
Bajaj Acrylic fibres
JPH06257013A (en) Polycarbonate multifilament
JPS62164734A (en) Production of cation-exchangeable fiber
JPH0533212A (en) Production of acrylic precursor yarn for carbon fiber
JPS61152811A (en) High tenacity acrylic fiber yarn and production thereof