JPS6116680B2 - - Google Patents

Info

Publication number
JPS6116680B2
JPS6116680B2 JP14535081A JP14535081A JPS6116680B2 JP S6116680 B2 JPS6116680 B2 JP S6116680B2 JP 14535081 A JP14535081 A JP 14535081A JP 14535081 A JP14535081 A JP 14535081A JP S6116680 B2 JPS6116680 B2 JP S6116680B2
Authority
JP
Japan
Prior art keywords
propeller
wing
blade
blades
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14535081A
Other languages
Japanese (ja)
Other versions
JPS5847698A (en
Inventor
Takeo Nojiri
Yasuo Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP14535081A priority Critical patent/JPS5847698A/en
Publication of JPS5847698A publication Critical patent/JPS5847698A/en
Publication of JPS6116680B2 publication Critical patent/JPS6116680B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H2001/145Propellers comprising blades of two or more different types, e.g. different lengths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Ship Loading And Unloading (AREA)

Description

【発明の詳細な説明】 この発明は船舶推進用のプロペラに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a propeller for propelling a ship.

通常、船舶推進用のプロペラは、設計上の作動
点で最高の推進効率が得られるように、その最高
直径を定めるのが効果的であるが、一般的には吃
水線との関係とか振動上の制約から、往々にして
この最適直径よりも小径とせざるを得ず、このた
めにプロペラを推進効率的にかなり悪い状態で使
用しているのが現状である。一方、このような現
状において、より効果的に推進効率を向上させ得
るプロペラ型式として、同一プロペラ軸上の前後
に2個のプロペラを離間して設けたいわゆるタン
デム型プロペラがある。このタンデム型プロペラ
は、一軸上に2個のプロペラを設けているために
プロペラ軸が長くなつて、軸強度はもとよりのこ
と、このプロペラ軸を支持する軸受も補強する必
要がある。また軸線方向の長さが通常のプロペラ
より長くなるため、船尾、舵板間寸法の関係から
通常のプロペラを使用している現用船舶に対して
は交換ができないという不利があつた。
Normally, it is effective to determine the maximum diameter of propellers for ship propulsion so that the highest propulsion efficiency can be obtained at the designed operating point, but generally speaking Due to these constraints, propellers are often forced to have smaller diameters than this optimum diameter, and as a result, propellers are currently used in conditions that are quite poor in terms of propulsion efficiency. On the other hand, under such current circumstances, as a propeller type that can more effectively improve propulsion efficiency, there is a so-called tandem type propeller in which two propellers are provided spaced apart at the front and rear on the same propeller shaft. Since this tandem propeller has two propellers on one shaft, the propeller shaft is long, and it is necessary to strengthen not only the shaft strength but also the bearing that supports this propeller shaft. Also, since the axial length is longer than a normal propeller, there was a disadvantage that it could not be replaced on current vessels using normal propellers due to the dimensions between the stern and the rudder plate.

この発明は従来のこのような実情に鑑み、タン
デム型プロペラの利点を採り入れ、かつ欠点を解
消することにより、設計上の最高直径よりも小径
であつても、推進効率が最適直径のそれと殆んど
変わらないプロペラを提供するものである。
In view of these conventional circumstances, this invention incorporates the advantages of tandem type propellers and eliminates their disadvantages, thereby achieving a propulsion efficiency that is almost the same as that of the optimum diameter even when the diameter is smaller than the designed maximum diameter. It provides the same propeller.

以下、この発明に係るプロペラの実施例につ
き、添付図面を参照して詳細に説明する。
Embodiments of the propeller according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図ないし第3図はこの発明の実施例を示す
図で、第1図において、符号1は船舶の船尾部
分、2は舵板、はこの舵板2の前方にあつてプ
ロペラ軸上に設けられたプロペラである。
1 to 3 are diagrams showing an embodiment of the present invention. In FIG. 1, reference numeral 1 indicates the stern portion of a ship, 2 indicates a rudder plate, and 3 indicates a portion located in front of the rudder plate 2 and located on the propeller axis. It is a propeller installed on the

このプロペラは、第2図a,bおよび第3図
に示されているように、ボス4の外周面に所定の
直径とされた少なくとも4枚以上偶数枚のプロペ
ラ翼5,6が設けられており、相隣接する個々の
プロペラ翼5,6のうち、一方のプロペラ翼5
(以下、前翼という)は回転軸線CLに直交する面
に対して、その基準線G1がレーキ角θR1だけ前方
に傾斜されると共にピツチ角θP1を有する。他方
のプロペラ翼6(以下、後翼という)は反対に回
転軸線CLに直交する面に対して、その基準線G2
が前記一方の翼5の基準線G1と同一展開面とし
たときに、回転軸線CLの反対側において角度Δ
θで交叉するように、すなわち各基準線G1,G2
がボス4の外周面に接する点において間隔dだけ
の差を生ずるように、レーキ角θR2だけ後方に傾
斜され、かつ前記ピツチ角θP1よりも大きいピツ
チ角θP2を有している。なお、これらの前翼5と
後翼6とは、後述する理由ならびに船尾と舵板へ
の干渉を避けるためにタンデム型に形成すること
なく、周方向で少なくとも翼の一部7が重なり合
うように配設される。
As shown in FIGS. 2a, b and 3, this propeller 3 has at least four or more even number propeller blades 5, 6 each having a predetermined diameter provided on the outer peripheral surface of a boss 4. Among the adjacent propeller blades 5 and 6, one propeller blade 5
(hereinafter referred to as the front wing) has its reference line G1 inclined forward by a rake angle θ R1 and a pitch angle θ P1 with respect to a plane orthogonal to the rotational axis CL. On the other hand, the other propeller blade 6 (hereinafter referred to as the rear blade) has its reference line G 2 with respect to the plane perpendicular to the rotational axis CL.
is the same development plane as the reference line G1 of the one wing 5, and the angle Δ is on the opposite side of the rotation axis CL.
In other words, each reference line G 1 , G 2
The boss 4 is inclined rearward by a rake angle θ R2 so that a difference of the distance d occurs at the point where the boss 4 contacts the outer circumferential surface of the boss 4, and has a pitch angle θ P2 larger than the pitch angle θ P1 . Note that these front wings 5 and rear wings 6 are not formed in a tandem shape for reasons described later and to avoid interference with the stern and rudder plate, but are designed so that at least a portion 7 of the wings overlaps in the circumferential direction. will be placed.

従つてこの実施例の場合、共通の軸ボス4上に
設けられる前翼5、後翼6の相隣接する翼相互間
のレーキ角およびピツチ角がそれぞれに異なるた
めに、前方に傾斜した前翼5によつて加速された
流れのなかに後方に傾斜した後翼6が存在するこ
とになる。そしてこのためにプロペラの作動条件
(回転数、流速)および直径が多少変化したとし
ても、前翼5は従来のプロペラと同様の特性変化
をするが、後翼6は前翼5よりもピツチ角が大い
こともあつて、その特性変化が加速された流れの
なかにあつて弱められることになり、この後翼6
は前記条件下でもその推進効率の低減が、従来の
ものよりも少なくなる。ちなみに第4図にこの実
施例によるプロペラaと従来のプロペラbとにつ
いて、その直径Diaと推進効率ηoとの関係を示
す。同図にあつて符号cは最適直径を示す。
Therefore, in the case of this embodiment, since the rake angles and pitch angles between the adjacent front wings 5 and rear wings 6 provided on the common shaft boss 4 are different, the front wings are tilted forward. In the flow accelerated by 5, there is a rear wing 6 tilted rearward. For this reason, even if the operating conditions (rotational speed, flow velocity) and diameter of the propeller change slightly, the characteristics of the front blade 5 will change in the same way as a conventional propeller, but the pitch angle of the rear blade 6 will be lower than that of the front blade 5. The change in characteristics is weakened in the accelerated flow, and after this the wing 6
Even under the above conditions, the reduction in propulsion efficiency is smaller than that of the conventional one. Incidentally, FIG. 4 shows the relationship between the diameter Dia and the propulsion efficiency ηo for the propeller a according to this embodiment and the conventional propeller b. In the figure, the symbol c indicates the optimum diameter.

こゝで発明者らの検討結果によれば、両プロペ
ラ翼5,6のレーキ角の和、すなわち前記第2図
bにおける角度Δθが10〜20゜、同両翼5,6間
のずれ間隔dが0.0〜0.2Dp(Dp:プロペラ直
径)、ならびに同両翼5,6のピツチ比(H/
Dp)の差Δ(H/Dp)が0.1〜0.3のときに、通
常のプロペラよりも高い効率を示すことが明らか
になつた。第5図はこの状態を表わしたもので、
図中、a1はΔθ=0゜、a2はΔθ=10゜、a3はΔ
θ=15〜20゜のときであり、これは前方のプロペ
ラ翼5と後方のプロペラ翼6との相対位置を適当
に選択することによつて、プロペラ翼5のウエー
キがプロペラ翼6への干渉による影響が揚抗比の
面で最適になることを示している。
According to the study results of the inventors, the sum of the rake angles of both propeller blades 5 and 6, that is, the angle Δθ in FIG. is 0.0 to 0.2Dp (Dp: propeller diameter), and the pitch ratio of both wings 5 and 6 (H/
It has become clear that propellers exhibit higher efficiency than normal propellers when the difference Δ(H/Dp) in Dp) is between 0.1 and 0.3. Figure 5 shows this state.
In the figure, a 1 is Δθ = 0°, a 2 is Δθ = 10°, a 3 is Δθ
This is when θ = 15 to 20 degrees, and by appropriately selecting the relative positions of the front propeller blade 5 and the rear propeller blade 6, the wake of the propeller blade 5 can be prevented from interfering with the propeller blade 6. This shows that the effect of

第7図は横軸を前後翼のレーキ角の和Δθと
し、縦軸を本発明と従来型プロペラの単独効率η
の差としてΔθが変化した時の本発明の効果を
示している。前方の翼と後方の翼のピツチ比が同
一の場合、翼を相互に傾斜させることは効果がな
く、むしろ有害である。しかる後方の翼のピツチ
比を前方の翼のピツチ比より大きくした場合、翼
を相互に傾斜させることにより、プロペラの単独
効率が向上し、性能が改善される。またΔθが20
゜以上になると性能改善量は減少し、15゜〜20゜
がΔθの最適の範囲である。
In Figure 7, the horizontal axis is the sum of the rake angles of the front and rear blades Δθ, and the vertical axis is the independent efficiency η of the propeller of the present invention and the conventional type.
It shows the effect of the present invention when Δθ changes as a difference of 0 . If the forward and aft wings have the same pitch ratio, it is ineffective and even harmful to tilt the wings relative to each other. If the pitch ratio of such rear blades is greater than the pitch ratio of the front blades, the independent efficiency of the propeller is increased and performance is improved by mutually tilting the blades. Also, Δθ is 20
The amount of performance improvement decreases when the angle exceeds Δθ, and 15° to 20° is the optimum range for Δθ.

第8図は横軸が前後のプロペラ翼のピツチ角の
差Δ(H/d)、縦軸が従来型プロペラの単独効
率ηの差としてΔ(H/d)を変化させた場合
の本発明の効果を示している。前方翼の前方傾斜
角θR1が−5゜で後方翼の後方傾斜角θR2が15゜
の場合、前方翼より後方翼のピツチ角を大きくす
ることにより効率が改善される。Δ(H/d)が
0で相互に傾斜させることは有害であることが本
図からも明らかである。
In Figure 8, the horizontal axis is the pitch angle difference Δ(H/d) between the front and rear propeller blades, and the vertical axis is the difference in the independent efficiency η 0 of the conventional propeller when Δ(H/d) is varied. This shows the effectiveness of the invention. If the forward inclination angle θ R1 of the forward wing is −5° and the aft inclination angle θ R2 of the aft wing is 15°, efficiency is improved by increasing the pitch angle of the aft wing than the forward wing. It is clear from this figure that mutually inclining when Δ(H/d) is 0 is harmful.

前方傾斜角θR1が0゜で、後方傾斜角θR2が15
゜の場合、同様に改善の傾向は示されるがその量
は小さい。
The forward inclination angle θ R1 is 0° and the backward inclination angle θ R2 is 15
In the case of ゜, a similar tendency of improvement is shown, but the amount is small.

すなわち、前方および後方に傾斜させ、後方翼
のピツチ角を前方翼のそれより大きくすることに
より最大の効果が得られ、Δ(H/d)は0.1〜
0.3が最適である。
In other words, the maximum effect can be obtained by tilting forward and backward and making the pitch angle of the rear wing larger than that of the front wing, and Δ(H/d) is 0.1 ~
0.3 is optimal.

また、本発明においては、本来プロペラ性能を
低下させる要因である翼先端渦(Tip Vortex)
を推力に有効に利用することにより、高いプロペ
ラ効率を得ることができる。すなわち、従来のプ
ロペラをキヤビテーシヨン水槽等において実験す
ると、翼先端から翼後方に螺旋状にTVC(Tip
Vortex Cavitation)が現われる。翼先端渦は翼
先端から発生する渦で、後方遠方まで連らなる渦
系として現われ、本来エネルギーの流出となりプ
ロペラ性能を低下させる一つの要素である。しか
し、本発明によれば、前翼5から発生する翼先端
渦が後翼6の背面上を通るため、後翼に推力を発
生させプロペラ性能を向上させることができる。
In addition, in the present invention, the blade tip vortex (Tip Vortex), which is a factor that originally reduces propeller performance,
High propeller efficiency can be obtained by effectively utilizing the propeller for thrust. In other words, when a conventional propeller is tested in a cavitation water tank, TVC (Tip) spirals from the tip of the blade to the rear of the blade.
Vortex Cavitation) appears. A blade tip vortex is a vortex generated from the tip of a blade, and appears as a vortex system that continues far behind the blade, and is an element that causes energy to flow out and degrades propeller performance. However, according to the present invention, the blade tip vortex generated from the front blade 5 passes over the back surface of the rear blade 6, so that thrust can be generated in the rear blade and the propeller performance can be improved.

第9図aは従来型プロペラをキヤビテーシヨン
水槽においてTVCを観察した例で、翼先端から
翼後方に螺線状にTVCが現れる状態を示してい
る。一方、同図bは本発明に係るプロペラにおい
て前方傾斜角θR1が−5゜、後方傾斜角θR2が−
15゜でピツチ角の差Δ(H/d)が0.2の例のキ
ヤビテーシヨン水槽でTVCの発生の観察結果
で、前翼5のTVCが後翼6の先端付近で、バツ
ク面近傍を通り、性能改善に寄与している状態を
示している。
Figure 9a shows an example of TVC observed in a conventional propeller in a cavitation water tank, and shows a situation where TVC appears in a spiral shape from the tip of the blade to the rear of the blade. On the other hand, in Figure b, the forward inclination angle θ R1 is −5° and the backward inclination angle θ R2 is −5° in the propeller according to the present invention.
The observation result of the occurrence of TVC in an example cavitation water tank where the pitch angle difference Δ(H/d) is 0.2 at 15 degrees shows that the TVC of the front wing 5 passes near the tip of the rear wing 6, near the back surface, and the performance Indicates a state that contributes to improvement.

但し、プロペラの流れは、螺線状で、解りにく
いので、流れの螺線面に沿つて前翼と後翼の流れ
の干渉状態を図化して示すと第10図のようにな
る。複合翼で効率の改善をはかる場合、1つは既
に述べたTVの干渉があり、他には前翼のウエー
キを後翼に干渉させて揚抗比を向上させることが
ある。第11図は流れの円筒面に沿つた前翼と後
翼の流れの状態を示している。前翼のウエーキの
後翼への干渉を利用して揚抗比を向上させるに
は、図に示すように前翼のウエーキを後翼のフエ
ース側(圧力面側)に通し、また前翼の迎え角α
(ピツチ角)より後翼の迎え角α(ピツチ
角)より大きくすることが有効である。
However, since the flow of the propeller is spiral-shaped and difficult to understand, the state of interference between the flow of the front blade and the rear blade along the spiral plane of the flow can be diagrammed as shown in FIG. 10. When trying to improve efficiency with a composite wing, one is the TV interference mentioned above, and the other is to make the wake of the front wing interfere with the rear wing to improve the lift-drag ratio. FIG. 11 shows the flow conditions of the front and rear wings along the cylindrical plane of flow. In order to improve the lift-drag ratio by utilizing the interference of the wake of the front wing with the rear wing, as shown in the figure, pass the wake of the front wing through the face side (pressure side) of the rear wing, and also Angle of attack α
It is effective to make the angle of attack α 2 (pitch angle) of the rear wing larger than 1 (pitch angle).

第10図は流れ後方より流れの螺線面に沿つた
後翼と前翼の関係を示している。(a)は前翼の前方
傾斜角θR1が−5゜の場合、(b)はθR1が0の場合
である。
FIG. 10 shows the relationship between the rear wing and the front wing along the spiral plane of the flow from the rear of the flow. (a) is the case where the forward inclination angle θ R1 of the front wing is -5°, and (b) is the case when θ R1 is 0.

前翼後流が縮流するので、前翼のTVは後翼の
0.90〜0.95R位置を通る。通常のプロペラの範囲
では、同図bに示すように、TVと前翼のウエー
キを有効に利用することができない。すなわち、
前翼のTVは後翼に当るか、フエース側(圧力面
側)を通り、TVによる力の改善が得られないば
かりでなく、プロペラが流力的に作動する上で重
量な0.5R〜0.8R部分において前翼のウエーキ
が、後翼から離れ過ぎ、この面でも揚抗比の向上
が得られない。これに対し、第10図aに示すよ
うに、前翼を前方に傾斜させることにより、前翼
のTVを後翼のバツク側(負圧面側)の適切な位
置を通すことができると同時にウエーキも後翼に
適切に干渉する状態となり、全体としてプロペラ
性能を向上させることができる。
As the trailing edge of the forewing contracts, the forewing's TV becomes smaller than the trailing wing's.
Passes through 0.90~0.95R position. In the range of a normal propeller, the TV and the wake of the front wing cannot be used effectively, as shown in Figure b. That is,
The TV on the front wing hits the rear wing or passes through the face side (pressure side), and not only does the TV not improve the force, but the propeller operates hydraulically and is heavy (0.5R to 0.8 The wake of the front wing is too far away from the rear wing in the R section, making it impossible to improve the lift-drag ratio in this area as well. On the other hand, as shown in Figure 10a, by tilting the front wing forward, the TV of the front wing can pass through an appropriate position on the back side (suction side) of the rear wing, and at the same time, the wake The propeller is now in a state where it properly interferes with the rear wing, improving propeller performance as a whole.

ところで、流れの特性から、余りゆがみの大き
な流れをつくることは好ましくない。前翼を大き
く前方に傾斜させると前翼のつくる螺線状の流れ
も前方に相対的に傾むき流れにゆがみが生ずる。
したがつて前翼の傾斜は小さくした方が好ましい
結果となる。
However, due to the characteristics of the flow, it is not desirable to create a flow with too much distortion. If the front wing is tilted forward significantly, the spiral flow created by the front wing will also be tilted relatively forward, causing distortion in the flow.
Therefore, it is better to reduce the slope of the front wing.

また、前方翼のウエーキの後方翼への干渉を有
効に利用するためには、前翼より後翼の迎え角を
大きくする必要があり、したがつて後翼のピツチ
角は前翼のピツチ角より大きくすることが効率向
上に有効である。
In addition, in order to effectively utilize the interference of the wake of the front wing on the rear wing, it is necessary to make the angle of attack of the rear wing larger than that of the front wing. Therefore, the pitch angle of the rear wing is equal to the pitch angle of the front wing. Making it larger is effective for improving efficiency.

以上の説明によつて明らかなように、上述のよ
うな利点を享受するためには、プロペラ翼5,6
のうち、単に一方の翼のみを傾斜させたのでは効
果的ではなく、前記角度Δθの範囲内で、一方の
翼5を前方に、他方の翼6を対方にそれぞれ傾斜
させると共に、前述したように両翼5,6のピツ
チ比に差を設けることにより得られる。
As is clear from the above explanation, in order to enjoy the above advantages, the propeller blades 5 and 6 must be
Of these, it is not effective to simply tilt only one of the wings; instead, one wing 5 is tilted forward and the other wing 6 is tilted in the opposite direction within the range of the angle Δθ. This can be achieved by providing a difference in pitch ratio between the wings 5 and 6 as shown in FIG.

第6図はこの状態を理論計算によつて表わした
ものである。同図において、a3は前翼5のレーキ
角θR1が5゜、後翼6のレーキ角θR2が15゜でピ
ツチ比の差が0.2、a4は前翼5のレーキ角θR1
0゜、後翼6のレーキ角θR2が15゜でピツチ比の
差が0.2、またa5は前翼5のレーキ角θR1が0
゜、後翼6のレーキ角θR2が15゜でピツチ比の差
が0のときである。この図からも明らかなよう
に、前翼5を前方に傾斜させ、かつ前翼5と後翼
6にピツチ比の差をもたせた構造が他のものに比
べプロペラ効率が高い。そしてまた前記実施例に
おけるプロペラ翼の製作を容易にするためには、
第1図に一点鎖線Sで示したとおり、各翼5,6
をそれぞれ軸ボス4の対応部分と共に分割して製
作し組み立てるのが便利である。
FIG. 6 shows this state based on theoretical calculations. In the same figure, in a 3 , the rake angle θ R1 of the front wing 5 is 5°, the rake angle θ R2 of the rear wing 6 is 15°, and the pitch ratio difference is 0.2, and in a 4 , the rake angle θ R1 of the front wing 5 is 15°. 0°, the rake angle θ R2 of the rear wing 6 is 15°, and the difference in pitch ratio is 0.2, and for a 5 , the rake angle θ R1 of the front wing 5 is 0.
This is when the rake angle θ R2 of the rear wing 6 is 15° and the pitch ratio difference is 0. As is clear from this figure, the structure in which the front blades 5 are tilted forward and the front blades 5 and the rear blades 6 have a difference in pitch ratio has higher propeller efficiency than other structures. Furthermore, in order to facilitate the manufacture of the propeller blades in the above embodiments,
As shown by the dashed line S in Fig. 1, each wing 5, 6
It is convenient to separately manufacture and assemble each of the parts together with the corresponding parts of the shaft boss 4.

以上詳述したようにこの発明のプロペラによれ
ば、軸ボス上に設けられる相隣接したプロペラ翼
の一方を前方に、他方を後方にそれぞれ傾斜させ
ると共に、前方のプロペラ翼のピツチ角よりも後
方のプロペラ翼のピツチ角を大きくして、前方の
プロペラ翼のウエーキおよび翼先端渦を後方のプ
ロペラ翼で積極的に利用するようにしたので、た
とえプロペラに対する作動条件および直径が変化
しても、推進効率が従来のプロペラよりも向上す
る。また、このような作用効果を得るために、前
翼と後翼とを周方向において重なり合うように配
設しているから、従来のタンデム型プロペラにお
けるように、プロペラの軸方向長さが長くなら
ず、従つてプロペラ軸とその軸受部などを補強せ
ずにすみ、併せて通常のプロペラを使用している
現用船舶にもそのまゝ交換実施できるなどの利点
もある。
As detailed above, according to the propeller of the present invention, one of the adjacent propeller blades provided on the shaft boss is tilted forward and the other backward, and the propeller blade is tilted backward relative to the pitch angle of the front propeller blade. By increasing the pitch angle of the propeller blades, the wake and tip vortices of the front propeller blades are actively used by the rear propeller blades, so even if the operating conditions and diameter of the propeller change, Propulsion efficiency is improved compared to conventional propellers. In addition, in order to obtain this effect, the front blade and the rear blade are arranged so as to overlap in the circumferential direction, so if the axial length of the propeller is long as in a conventional tandem propeller, First, there is the advantage that there is no need to reinforce the propeller shaft and its bearings, and that it can be replaced as is even on ships currently in use that use normal propellers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るプロペラの使用状態を
示す概略側面図、第2図aは同じくプロペラの正
面図、同図bは同上プロペラの各翼を同一展開面
に集めて示す図、第3図は同上各翼のピツチ角の
付与状態を示す図、第4図、第5図、第6図、第
7図および第8図はこの発明での作用、推進効率
を図式的に示す図、第9図は従来のプロペラとこ
の発明のプロペラの水槽での観察図、第10図は
前翼と後翼の干渉状態を示す図、第11図は前翼
のウエーキの後翼への干渉状態を示す図である。 ……プロペラ、4……軸ボス、5,6……プ
ロペラ翼、CL……回転軸線、G1,G2……各翼
5,6の基準線、θR1,θR2……各翼5,6のレ
ーキ角、Δθ……レーキ角の和、θP1,θP2……
各翼5,6のピツチ角。
FIG. 1 is a schematic side view showing the propeller according to the present invention in use, FIG. The figure shows how the pitch angle is applied to each of the blades, and the figures 4, 5, 6, 7 and 8 schematically show the operation and propulsion efficiency of this invention. Figure 9 is an observation diagram of a conventional propeller and the propeller of the present invention in a water tank. Figure 10 is a diagram showing the interference between the front and rear wings. Figure 11 is the interference of the wake of the front wing with the rear wing. FIG. 3 ...Propeller, 4...Shaft boss, 5, 6...Propeller blade, CL...Rotation axis, G1 , G2 ...Reference line of each blade 5, 6, θ R1 , θ R2 ...Each blade Rake angles of 5 and 6, Δθ...sum of rake angles, θ P1 , θ P2 ...
Pitch angle of each wing 5 and 6.

Claims (1)

【特許請求の範囲】[Claims] 1 偶数のプロペラ翼を有し、相隣接するプロペ
ラ翼の一方を前方に、他方を後方にそれぞれ傾斜
させると共に、前方のプロペラ翼のピツチ角より
も後方のプロペラ翼のピツチ角を大きくし、かつ
両翼が周方向において少なくとも一部が重なり合
うように配設してなり、前記両翼間のレーキ角の
和を10〜20゜、ピツチ比の差を0.1〜0.3の範囲に
設定したことを特徴とする船舶推進用プロペラ。
1 It has an even number of propeller blades, one of the adjacent propeller blades is tilted forward and the other backward, and the pitch angle of the rear propeller blade is larger than the pitch angle of the front propeller blade, and The blades are arranged such that at least a portion thereof overlaps in the circumferential direction, and the sum of the rake angles between the blades is set in the range of 10 to 20 degrees, and the difference in pitch ratio is set in the range of 0.1 to 0.3. Propeller for ship propulsion.
JP14535081A 1981-09-14 1981-09-14 Propeller for propelling ship Granted JPS5847698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14535081A JPS5847698A (en) 1981-09-14 1981-09-14 Propeller for propelling ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14535081A JPS5847698A (en) 1981-09-14 1981-09-14 Propeller for propelling ship

Publications (2)

Publication Number Publication Date
JPS5847698A JPS5847698A (en) 1983-03-19
JPS6116680B2 true JPS6116680B2 (en) 1986-05-01

Family

ID=15383149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14535081A Granted JPS5847698A (en) 1981-09-14 1981-09-14 Propeller for propelling ship

Country Status (1)

Country Link
JP (1) JPS5847698A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164600A (en) * 1984-09-06 1986-04-02 科学技術庁 航空宇宙技術研究所長 Propeller with mixed inclined rotor
JP2006118363A (en) * 2004-10-19 2006-05-11 Mitsuo Shinozaki High efficiency propeller
CN105083508A (en) * 2015-08-14 2015-11-25 苏州金业船用机械厂 Anti-compression type propeller

Also Published As

Publication number Publication date
JPS5847698A (en) 1983-03-19

Similar Documents

Publication Publication Date Title
US8435089B2 (en) Marine engine assembly including a pod mountable under a ship's hull
EP0863836B1 (en) Foldable propeller
JP5524496B2 (en) Ship propulsion device and ship equipped with the same
JP5113899B2 (en) Ship stern structure
US7806661B2 (en) Propeller
JPS6317679B2 (en)
JP2015116850A5 (en)
US4746314A (en) Combined propulsion and steering system for a motor boat with an inboard engine
US4514146A (en) Propeller for ship
KR101313183B1 (en) Propeller boss cap and Propulsion apparatus having the same
JPS6116680B2 (en)
JP3449981B2 (en) High lift rudder for ships
US20050175458A1 (en) Propeller, propeller propulsion system and vessel comprising propulsion system
US5573373A (en) Propellar having optimum efficiency in forward and rewarded navigation
JPH0659871B2 (en) Marine counter-rotating propeller
JPS6113435Y2 (en)
JPH0613316B2 (en) Counter-rotating propeller propulsion device for ships
RU2747323C2 (en) Method and device for reducing azimuthal torque acting on thrust screw-rudder column or azimuth thruster
WO2019014873A1 (en) Propeller for dredger
JPH08282590A (en) Propeller for vessel
GB2101693A (en) Ship's propellor blades
EP1541461A1 (en) Propeller, propeller propulsion system and vessel comprising propulsion system
WO1995023088A1 (en) Propeller for boats and ships
JP2020185810A (en) Rudder and ship with it
JPS6042195A (en) Propeller having automatically variable pitch