JPS61166612A - Pressure controller for blow-off type wind tunnel - Google Patents

Pressure controller for blow-off type wind tunnel

Info

Publication number
JPS61166612A
JPS61166612A JP727585A JP727585A JPS61166612A JP S61166612 A JPS61166612 A JP S61166612A JP 727585 A JP727585 A JP 727585A JP 727585 A JP727585 A JP 727585A JP S61166612 A JPS61166612 A JP S61166612A
Authority
JP
Japan
Prior art keywords
pressure
controller
integral
regulating valve
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP727585A
Other languages
Japanese (ja)
Inventor
Kazumi Kimura
一己 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP727585A priority Critical patent/JPS61166612A/en
Publication of JPS61166612A publication Critical patent/JPS61166612A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To attain the quick adaptation and also to improve the suppression effect to the disturbance of the aggregate tunnel pressure, by using an integral proportion controller. CONSTITUTION:A digital controller 20 for aggregate tunnel pressure control system is provided with a pressure setting device 1, an integral proportion control gain constant setting device 22 and an integral proportion controller 21. The controller 21 contains a part for the proportional gain which performs the feedback compensation of the output 17 of an aggregate tunnel pressure converter and an integrator which performs integration of a control deviation, i.e., the difference between the output 17 and the set pressure 2. While the signal of the output 16 of an air tank pressure converter is used for calculation for compensation to the gain deterioration of a minor loop due to the reduction of the pressure 12 of an air tank. Such a pressure controller has no zero point detected in the transmission characteristics between the pressure 2 and pressure 13 owing to use of the controller 21. Furthermore the controller 21 has higher suppression effect than a proportional integration controller to the disturbance of the aggregate tunnel pressure.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は吹出式風洞の圧力制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a pressure control device for a blow-off type wind tunnel.

〔従来の技術〕[Conventional technology]

吹出式風洞の圧力制御は貯気槽と集合洞の間に調圧弁を
設け、調圧弁の開閉を制御することによって集合洞内圧
力をあらかじめ設定された規定値に保つように行うもの
である。
Pressure control in a blow-out type wind tunnel is performed by installing a pressure regulating valve between the air storage tank and the collecting tunnel, and controlling the opening and closing of the pressure regulating valve to maintain the pressure inside the collecting tunnel at a preset specified value.

第4図に従来の吹出式風洞の圧力制御系の概略構成ブロ
ック図を示す。
FIG. 4 shows a schematic block diagram of a pressure control system for a conventional blow-off type wind tunnel.

第4図において、(1)は圧力設定器、(2)は設定圧
力、(3)は誤差圧力、(4)は比例積分制御器、(5
)は比例積分制御ゲイン定数設定器、(6)は調圧弁制
御信号VC、(71は調圧弁制御信号用D / A変換
器、(9)は調圧弁ストローク検出器、サーボアンプ及
びサーボ弁・油圧シリンダ系からなる調圧弁制御部と調
圧弁とKよって構成される調圧弁制御系、 CIIは調
圧弁ストローク2.αυは風洞伝達特性、α2は貯気槽
圧力PT、αjは集合洞圧力Po、1)41は貯気槽圧
力変換器、αSは集合洞圧力変換器、 neは貯気槽圧
力変換器出力、anは集合洞圧力変換器出力、α梯は貯
気槽圧力変換器出力用A / D変換器、α9は集合洞
圧力変換器出力用A / D変換器、■は集合洞圧力制
御系ディジタルコントローラである。
In Fig. 4, (1) is the pressure setting device, (2) is the set pressure, (3) is the error pressure, (4) is the proportional integral controller, (5) is the
) is the proportional integral control gain constant setter, (6) is the pressure regulating valve control signal VC, (71 is the D/A converter for the pressure regulating valve control signal, (9) is the pressure regulating valve stroke detector, servo amplifier and servo valve. A pressure regulating valve control system consisting of a pressure regulating valve control section consisting of a hydraulic cylinder system, a pressure regulating valve, and K, CII is the pressure regulating valve stroke 2, αυ is the wind tunnel transmission characteristic, α2 is the storage tank pressure PT, and αj is the collecting tunnel pressure Po. , 1) 41 is the storage tank pressure transducer, αS is the collecting sinus pressure transducer, ne is the storage tank pressure transducer output, an is the collecting sinus pressure transducer output, α ladder is for the storage tank pressure transducer output A/D converter α9 is an A/D converter for outputting the collecting sinus pressure transducer, ■ is a collecting sinus pressure control system digital controller.

従来の装置は、集合洞圧力POα3を集合洞圧力変換器
αり及び集合洞圧力変換器用A / D変換器a!lに
よってディジタルの電気信号に変え、圧力設定器(1)
出力である設定圧力(2)との差をとって誤差圧力(3
)を得、比例積分制御器(4)に入力する。比例積分制
御器(4)では誤差圧力(3)に比例積分動作を行なっ
て調圧弁制御信号(6)を得、上記D / A変換器(
7)でアナログ電圧量に変換して調圧弁制御系(9)に
入力する。調圧弁制御系(9)は調圧弁ストロークα1
を上記調圧弁制御信号用D / A変換器(7)出力に
一致するように可変し集合洞圧力PQ 1)3をあらか
じめ設定された規定値に保つようにする。
The conventional device converts the collecting sinus pressure POα3 into a collecting sinus pressure transducer α and an A/D converter for the collecting sinus pressure transducer a! Convert it into a digital electrical signal using the pressure setting device (1)
The error pressure (3) is calculated by taking the difference from the set pressure (2) which is the output.
) is obtained and input to the proportional-integral controller (4). The proportional-integral controller (4) performs a proportional-integral operation on the error pressure (3) to obtain a pressure regulating valve control signal (6), which is then output to the D/A converter (
7) converts it into an analog voltage amount and inputs it to the pressure regulating valve control system (9). The pressure regulating valve control system (9) has a pressure regulating valve stroke α1
is varied to match the output of the pressure regulating valve control signal D/A converter (7) to maintain the collective sinus pressure PQ1)3 at a preset specified value.

この場合貯気槽圧力PT α2の減少に伴なって圧力制
御ループのループゲインが低下するため、貯気槽圧力F
T+12の減少とともに比例積分制御器(4)のゲイン
定数を自動的に上げる様に行う。
In this case, the loop gain of the pressure control loop decreases as the reservoir pressure PT α2 decreases, so the reservoir pressure F
The gain constant of the proportional-integral controller (4) is automatically increased as T+12 decreases.

ここで、第5図に従来の圧力制御系の概略ゲインブロッ
ク図を示す。第5図において、調圧弁制御系(9)及び
集合洞圧力変換器α9の帯域幅は圧力制御系の帯域幅に
比べて充分床いため、調圧弁制御系(9)及び集合洞圧
力変換器αSの伝達特性をゲイン1で近似している。
Here, FIG. 5 shows a schematic gain block diagram of a conventional pressure control system. In FIG. 5, since the bandwidth of the pressure regulating valve control system (9) and the collecting sinus pressure transducer α9 is sufficiently low compared to the bandwidth of the pressure controlling system, the pressure regulating valve control system (9) and the collecting sinus pressure transducer αS The transfer characteristic of is approximated by a gain of 1.

第5図より、目標値である設定圧力Foe (21に対
する制御量である集合洞圧力po(13の伝達特性及び
集合洞圧力外乱FD に対する前記集合洞圧力p□ α
jの伝達特性を導出すると次式となる。
From FIG. 5, the set pressure Foe which is the target value (the collecting sinus pressure po which is the control amount for 21 (13) and the collecting sinus pressure p□ α with respect to the transmission characteristic of 13 and the collecting sinus pressure disturbance FD
The transfer characteristic of j is derived from the following equation.

前記(1)式より、従来の装置では比例積分制御器を用
いているため設定圧力Fosf2)−集合洞圧力PQ 
(1:lの伝達特性に零点が現れていることがよくわか
る。
From the above equation (1), since the conventional device uses a proportional-integral controller, the set pressure Fosf2) - collecting sinus pressure PQ
(It is clearly seen that a zero point appears in the 1:l transfer characteristic.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、従来の装置では制御器として比例・積分制御
器を用いているため、上記した様に圧力制御装置に零点
を用意して、いいかえると急峻で大きい操作量を制御対
象に加え制御量を速く引きあげることによって速応化を
はかることになり。
By the way, since conventional devices use a proportional/integral controller as a controller, a zero point is prepared in the pressure control device as described above, and in other words, a steep and large manipulated variable is added to the control target, and the controlled amount is quickly increased. By raising the number, we will be able to respond more quickly.

通常集合洞圧力応答特性の仕様として与えられることと
なるオーバシュート量を小さくおさえて速応化をはかろ
うとする様な場合については、外乱の影響を抑制する効
果がやや劣化するという設計上の要改善点があった。
In cases where the overshoot amount, which is normally given as a specification for the pressure response characteristics of a collective cave, is to be kept small to achieve a faster response, the design requirement is that the effect of suppressing the influence of disturbances will be slightly degraded. There were points for improvement.

この発明は2以上の点を鑑みて行なわれたもので、その
目的とするところは制御器として比例・積分制御器を使
用した場合と同等の集合洞圧力応答性能を与え、集合洞
圧力外乱の過渡応答特性については集合洞圧力外乱の影
響を抑制する効果が前記比例積分制御器より良好となる
様な制御器をもった圧力制御装置を提供することである
This invention was made in consideration of two or more points, and its purpose is to provide collecting sinus pressure response performance equivalent to that when using a proportional/integral controller as a controller, and to reduce collecting sinus pressure disturbance. Regarding transient response characteristics, it is an object of the present invention to provide a pressure control device having a controller that is more effective in suppressing the influence of pressure disturbances in a collective sinus than the proportional-integral controller.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る吹出式風洞の圧力制御装置は。 A pressure control device for a blowout type wind tunnel according to the present invention is as follows.

制御器として、集合洞圧力変換器出力にフィードバック
補償のための比例動作を行い、又設定圧力Fogと集合
洞圧力変換器出力の差である制御偏差に積力動作を行っ
て調圧弁制御信号を出力する積分比例制御器を用いる様
にしたものである。
As a controller, it performs a proportional operation for feedback compensation on the output of the collective sinus pressure transducer, and performs an integral action on the control deviation, which is the difference between the set pressure Fog and the output of the collective sinus pressure transducer, to generate a pressure regulating valve control signal. This uses an integral proportional controller that outputs output.

〔作用〕[Effect]

この発明においては、制御器として積分比例制御器を用
いるため、制御対象の極をフィードバック補償で移動さ
せることKより速応化をはかり。
In this invention, since an integral proportional controller is used as the controller, faster response is achieved by moving the pole of the controlled object by feedback compensation.

又外乱の影響を抑制する効果を向上させることができる
Furthermore, the effect of suppressing the influence of disturbance can be improved.

〔発明の実施例〕[Embodiments of the invention]

第1図は、この発明の一実施例を示す概略構成ブロック
図である。
FIG. 1 is a schematic block diagram showing an embodiment of the present invention.

図において、(1)〜■は従来の装置と同じであり。In the figure, (1) to (2) are the same as the conventional device.

Qυは積分比例制御器、(22は積分比例制御ゲイン定
数設定器である。
Qυ is an integral proportional controller (22 is an integral proportional control gain constant setter).

ここで、第2図にこの発明の圧力制御系の概略ゲインブ
ロック図を示す。第2図においては、第5図の場合と同
様、調圧弁制御系(9)及び集合洞圧力変換器αりの伝
達特性をゲイン1で近似している。
Here, FIG. 2 shows a schematic gain block diagram of the pressure control system of the present invention. In FIG. 2, as in the case of FIG. 5, the transfer characteristics of the pressure regulating valve control system (9) and the collecting sinus pressure transducer α are approximated by a gain of 1.

この発明においては、第2図を見るとわかる様に制御器
の構成を、集合洞圧力変換器出力αηのフィードバック
補償を行うための比例ゲインの部分と、設定圧力PO8
(21と集合洞圧力変換器出力αηの差である制御偏差
に積分動作を行う積分器よりなる積分比例制御器とする
ものである。
In this invention, as can be seen from FIG. 2, the configuration of the controller is divided into a proportional gain part for feedback compensation of the output αη of the collective sinus pressure transducer, and a set pressure PO8.
(21) and a collective sinus pressure transducer output αη, which is an integral proportional controller comprising an integrator that performs an integral operation on the control deviation that is the difference between the output αη and the output αη of the collective sinus pressure transducer.

又、第1図において積分比例制御器canに入力してい
る貯気槽圧力変換器出力αe傷信号、貯気槽圧力PT 
α2の減少に伴うマイナールーズのループゲイン低下の
補償計算を行うためである。
In addition, in Fig. 1, the air storage tank pressure transducer output αe flaw signal, which is input to the integral proportional controller can, and the air storage tank pressure PT
This is to perform compensation calculation for the decrease in the loop gain of minor looseness due to the decrease in α2.

第2図より、目標値である設定圧力PO8(21に対す
る制御量である集合洞圧力PorI3の伝達特性及び集
合洞圧力外乱PD に対する前記集合洞圧力p□ Q3
の伝達特性を導出すると次式となる。
From FIG. 2, the transfer characteristics of the collecting sinus pressure PorI3, which is the control amount for the set pressure PO8 (21), which is the target value, and the collecting sinus pressure p□ Q3 with respect to the collecting sinus pressure disturbance PD.
The transfer characteristic of is derived as follows.

前記(3)式より、この発明による装置では、積分比例
制御器f21)を用いているため、設定圧力pos f
21−集合洞圧力P003の伝達特性に零点は現れてこ
ないことがわかる。
From the above equation (3), since the apparatus according to the present invention uses the integral proportional controller f21), the set pressure pos f
21-It can be seen that no zero point appears in the transmission characteristic of the collecting sinus pressure P003.

ここで、集合洞圧力伝達特性のゲイン定数G。Here, the gain constant G of the collective sinus pressure transmission characteristic.

時定数τの値を、1例として、以下 G=15.9 f = 1.61 sec の値に設定し、それぞれ比例積分制御器(4)と積分比
例制御器な1)で集合洞圧力応答特性のオーバシュート
量が10%、整定時間(0,5%整定)が3秒となる様
にチューニングした時のゲイン定数を求めると以下の値
になる。
As an example, the value of the time constant τ is set to the value G = 15.9 f = 1.61 sec below, and the proportional-integral controller (4) and the integral-proportional controller 1) are used to calculate the collective sinus pressure response. The gain constant when tuned so that the characteristic overshoot amount is 10% and the settling time (0.5% settling) is 3 seconds is as follows.

比例積分制御器の場合               
 1)に工=0.47 Kp=0.295 に工=0.91 Kp=0.295 よって、比例積分制御器(4)と積分比例制御器Q1)
の前記のゲイン定数をそれぞれ(2)式、(4)式に代
入して折線近似のボード線図を描くと第4図となる。
For proportional-integral controllers
1) = 0.47 Kp = 0.295 = 0.91 Kp = 0.295 Therefore, proportional-integral controller (4) and integral-proportional controller Q1)
FIG. 4 is obtained by substituting the aforementioned gain constants into equations (2) and (4), respectively, and drawing a Bode diagram approximated by a broken line.

第4図より、この発明による装置で使用する積分比例制
御器Qυの方が従来の装置で使用している比例積分制御
器(4)より集合洞圧力外乱FD の抑制効果がすぐれ
ていることがわかる。
From FIG. 4, it can be seen that the integral proportional controller Qυ used in the device according to the present invention has a better suppressing effect on the collecting cavity pressure disturbance FD than the proportional integral controller (4) used in the conventional device. Recognize.

なお、第4図は集合洞圧力伝達特性のゲイン定数と時定
数の値をある特定の定数に設定した場合の例で使るが、
積分比例制御器C!υの集合洞圧力外乱PDの抑制効果
は前記の設定値以外の場合についても同様である。
Note that Figure 4 is used as an example where the values of the gain constant and time constant of the collective sinus pressure transmission characteristics are set to certain constants.
Integral proportional controller C! The effect of suppressing the collective sinus pressure disturbance PD of υ is the same for cases other than the above set value.

〔発明の効果〕〔Effect of the invention〕

従ってこの発明によると、比例積分制御器を使用する従
来の装置に比べて集合洞圧力外乱の抑制、効果をよくす
ることができる。
Therefore, according to the present invention, it is possible to improve the suppression and effect of collecting sinus pressure disturbances compared to the conventional device using a proportional-integral controller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す概略構成ブロック図
、第2図はこの発明による圧力制御系の概略ゲインブロ
ック線図、第3図は従来の装置とこの発明による装置の
集合洞外乱特性の折線近似ボード線図、第4図は従来の
圧力制御系の概略構成ブロック図、第5図は従来の圧力
制御系の概略ゲインブロック線図であり2図中(1)は
圧力設定器。 (2)は設定圧力、(3)は誤差圧力、(4)は比例積
分制御器、(5)は比例積分制御ゲイン定数設定器、(
6)は調圧弁制御信号、(7)は調圧弁制御信号用D 
/ A変換器、(9)は調圧弁制御系、αqは調圧弁ス
トローク2゜卸は風洞伝達特性、(12は貯気槽圧力、
 u3は集合洞圧力、14は貯気槽圧力変換器、 aS
は集合洞圧力変換器、(1eは貯気槽圧力変換器出力、
 anは集合洞圧力変換器出力、Oaは貯気槽圧力変換
器出力用A/D変換器、α9は集合洞圧力変換器出力用
A/D変換器、■は集合洞圧力制御系ディジタルコント
ローラ、(2υは積分比例制御器、nは積分比例制御ゲ
イン定数設定器である。 なお2図中同一あるいは相半部分には同一符号を付して
示しである。
Fig. 1 is a schematic configuration block diagram showing an embodiment of the present invention, Fig. 2 is a schematic gain block diagram of a pressure control system according to the present invention, and Fig. 3 is a collecting sinus disturbance of a conventional device and a device according to the present invention. A broken line approximation Bode diagram of the characteristics, Figure 4 is a schematic block diagram of the conventional pressure control system, Figure 5 is a schematic gain block diagram of the conventional pressure control system, and (1) in Figure 2 is the pressure setting device. . (2) is set pressure, (3) is error pressure, (4) is proportional integral controller, (5) is proportional integral control gain constant setter, (
6) is the pressure regulating valve control signal, (7) is the pressure regulating valve control signal D
/ A converter, (9) is the pressure regulating valve control system, αq is the pressure regulating valve stroke 2°, wind tunnel transmission characteristics, (12 is the air storage tank pressure,
u3 is collecting cavern pressure, 14 is storage tank pressure transducer, aS
is the collecting tunnel pressure transducer, (1e is the storage tank pressure transducer output,
an is the collecting cave pressure converter output, Oa is the A/D converter for the storage tank pressure converter output, α9 is the collecting cave pressure converter output A/D converter, ■ is the collecting cave pressure control system digital controller, (2υ is an integral proportional controller, and n is an integral proportional control gain constant setter. In Figure 2, the same or half-phase portions are indicated with the same reference numerals.

Claims (2)

【特許請求の範囲】[Claims] (1)吹出式風洞の集合洞圧力を定圧制御する圧力制御
装置において、貯気槽から集合洞に流れる風量を制御す
る調圧弁と、貯気槽及び集合洞の圧力を検出する圧力変
換器と、前記集合洞圧力変換器出力にフィードバック補
償のための比例動作を行ない、又設定圧力と前記集合洞
圧力変換器出力の差である制御偏差に積分動作を行つて
調圧弁制御信号を出力する積分比例制御器と、前記積分
比例制御器のゲイン定数を設定するためのゲイン定数設
定器と、各マツハ数毎に設定圧力値を計算して設定する
圧力設定器と、前記調圧弁制御信号を入力としそれに応
じて前記調圧弁の開閉を行う調圧弁制御部とによつて構
成したことを特徴とする吹出式風洞の圧力制御装置。
(1) A pressure control device that controls the pressure in a collective tunnel of a blow-out type wind tunnel at a constant pressure, which includes a pressure regulating valve that controls the amount of air flowing from the air storage tank to the collective tunnel, and a pressure transducer that detects the pressure in the air storage tank and the collective tunnel. , an integral that performs a proportional operation for feedback compensation on the output of the collecting sinus pressure transducer, and performs an integral action on the control deviation, which is the difference between the set pressure and the output of the collecting sinus pressure transducer, to output a pressure regulating valve control signal. A proportional controller, a gain constant setting device for setting the gain constant of the integral proportional controller, a pressure setting device for calculating and setting a set pressure value for each Matsuha number, and inputting the pressure regulating valve control signal. and a pressure regulating valve control section that opens and closes the pressure regulating valve accordingly.
(2)前記積分比例制御器と、前記ゲイン定数設定器と
前記圧力設定器とを1台のディジタル計算器を使用して
構成することを特徴とする特許請求の範囲第(1)項記
載の吹出式風洞の圧力制御装置。
(2) The integral proportional controller, the gain constant setter, and the pressure setter are configured using one digital calculator. Blowout type wind tunnel pressure control device.
JP727585A 1985-01-18 1985-01-18 Pressure controller for blow-off type wind tunnel Pending JPS61166612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP727585A JPS61166612A (en) 1985-01-18 1985-01-18 Pressure controller for blow-off type wind tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP727585A JPS61166612A (en) 1985-01-18 1985-01-18 Pressure controller for blow-off type wind tunnel

Publications (1)

Publication Number Publication Date
JPS61166612A true JPS61166612A (en) 1986-07-28

Family

ID=11661473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP727585A Pending JPS61166612A (en) 1985-01-18 1985-01-18 Pressure controller for blow-off type wind tunnel

Country Status (1)

Country Link
JP (1) JPS61166612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967474A (en) * 2022-07-26 2022-08-30 中国空气动力研究与发展中心高速空气动力研究所 General wind tunnel flow field control method based on neural network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967474A (en) * 2022-07-26 2022-08-30 中国空气动力研究与发展中心高速空气动力研究所 General wind tunnel flow field control method based on neural network
CN114967474B (en) * 2022-07-26 2022-11-04 中国空气动力研究与发展中心高速空气动力研究所 General wind tunnel flow field control method based on neural network

Similar Documents

Publication Publication Date Title
JPH0738128B2 (en) Control device
JPS646481B2 (en)
JPH06274205A (en) Gain adaptive control device
JPS61166612A (en) Pressure controller for blow-off type wind tunnel
JPS5812443B2 (en) Turbine Seigiyosouchi
US3520318A (en) Controller with asymmetrical feedback time constant
JP2663386B2 (en) Variable structure PI controller
JPH0640050B2 (en) Ventilation control method for blow-out wind tunnel
US4243922A (en) Aircraft control system
JPS6039845B2 (en) Nuclear turbine pressure control device
JPH0450602B2 (en)
JPS6030403A (en) Turbine control device
JPH0565890B2 (en)
KR20110094946A (en) Anti-windup pid controller
JP2744182B2 (en) DC interconnection frequency controller
JPS61138304A (en) Pressure controller of blow-off type wind channel
JPS60218106A (en) Control device
SU881653A1 (en) Cascade system for regulating production process
JPH05127701A (en) Controller
JPS6225878B2 (en)
JPS6337241B2 (en)
JPH10159705A (en) Water level regulating device for water tank in run-off-river hydraulic power plant
JPS6162102A (en) Control arithmetic unit
JPS6149514B2 (en)
JPH0215302A (en) Control device for process apparatus