JPS6116452B2 - - Google Patents

Info

Publication number
JPS6116452B2
JPS6116452B2 JP51081000A JP8100076A JPS6116452B2 JP S6116452 B2 JPS6116452 B2 JP S6116452B2 JP 51081000 A JP51081000 A JP 51081000A JP 8100076 A JP8100076 A JP 8100076A JP S6116452 B2 JPS6116452 B2 JP S6116452B2
Authority
JP
Japan
Prior art keywords
ray
scanning
slit
rays
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51081000A
Other languages
Japanese (ja)
Other versions
JPS537190A (en
Inventor
Takashi Uemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8100076A priority Critical patent/JPS537190A/en
Publication of JPS537190A publication Critical patent/JPS537190A/en
Publication of JPS6116452B2 publication Critical patent/JPS6116452B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【発明の詳細な説明】 本発明はX線装置に係り、特に細いX線ビーム
で被写体を走査する形式の走査型X線装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray apparatus, and particularly to a scanning X-ray apparatus that scans an object with a thin X-ray beam.

第1図は従来の走査型X線装置の一例である。
走査型X線装置に用いられる走査型X線管11
は、電子流をターゲツト面上を走査させることに
より飛走するX線源12を得るものである。走査
型X線管にはX線をターゲツト表面から取り出す
もの、裏面から取り出すもの等の種類があるが、
本発明に関してはいかなる形式の走査型X線管で
も良い。X線源より発生したX線は四方八方へ放
出されるが、細孔20を有するX線遮蔽体13に
より細いX線ビーム14のみが取り出され有効に
利用される。このX線ビームは被写体15を通過
し、被写体に応じた吸収を受けX線受光体16に
入射する。X線検出器にはシンチレータを用い
る。シンチレータにてX線の一部は光に変換さ
れ、光電増倍管17で電気信号に変えられ増幅さ
れてインターフエイス18を介して電算機19に
データとして入れられ分析される。
FIG. 1 shows an example of a conventional scanning type X-ray apparatus.
Scanning X-ray tube 11 used in a scanning X-ray device
In this method, a flying X-ray source 12 is obtained by scanning a target surface with an electron stream. There are several types of scanning X-ray tubes, such as those that extract X-rays from the surface of the target and those that extract them from the back.
Any type of scanning x-ray tube may be used in connection with the present invention. X-rays generated by the X-ray source are emitted in all directions, but only a thin X-ray beam 14 is extracted by the X-ray shield 13 having pores 20 and used effectively. This X-ray beam passes through the subject 15, undergoes absorption depending on the subject, and enters the X-ray photoreceptor 16. A scintillator is used for the X-ray detector. A part of the X-rays is converted into light by the scintillator, converted into an electrical signal by the photomultiplier tube 17, amplified, and input as data to the computer 19 via the interface 18 for analysis.

このように従来の走査型X線装置は、X線源を
面状ターゲツトによつて飛走して得ることによ
り、被写体をX線ビームで走査し、電算機で処理
して被写体の情報を得るもので、電算機処理によ
り、被写体の情報を整理して分析できること、被
写体の受けるX線量が少ないことが特徴である。
しかしながら、被写体が大きくなると全面を走査
するのに時間がかかり、例えば、心臓のX線撮影
などのように動きの速い被写体の分析ができない
欠点があつた。例えばX線検出器として、蛍光の
残光時間が短いのが特徴のシンチレータを用いて
も、高感度のものは10〜100mμsecの残光時間を
有しており、光電増倍管の時定数や、データを計
算機で計算するための一時記録装置の時定数など
を加算すると1つの点の処理に要する時間を1μ
sec以下とする事は容易ではない。一方精度の高
い分析には点の数が多いほど良く、400Line×
500点の分析を行なうとすると20万点の処理を行
なわねばならず200msec以下の分析が困難であ
る。さらに、走査型X線装置は発生X線の極めて
わずかな部分しか利用しないため、効率が悪い。
In this way, conventional scanning X-ray equipment uses an X-ray source that flies through a planar target to scan the subject with an X-ray beam, which is then processed by a computer to obtain information about the subject. It is characterized by being able to organize and analyze information about the subject using computer processing, and by reducing the amount of X-rays that the subject receives.
However, when the object is large, it takes time to scan the entire surface, and this method has the disadvantage that fast-moving objects such as cardiac X-ray photography cannot be analyzed. For example, even if a scintillator, which is characterized by a short fluorescence afterglow time, is used as an X-ray detector, a highly sensitive one has an afterglow time of 10 to 100 mμsec, and the time constant of a photomultiplier tube , if you add the time constant of the temporary recording device for calculating data with a computer, the time required to process one point is 1μ
It is not easy to keep it below sec. On the other hand, for highly accurate analysis, the larger the number of points, the better; 400Line×
If 500 points are to be analyzed, 200,000 points must be processed, making it difficult to analyze in less than 200 msec. Furthermore, scanning X-ray devices utilize only a very small portion of the generated X-rays and are therefore inefficient.

本発明は上記の諸点を考えてなされたもので、
高いエネルギー効率をもつて、高速度の分析を行
なうことのできる走査型X線装置を与えるもので
ある。
The present invention was made in consideration of the above points, and
The object of the present invention is to provide a scanning X-ray device that can perform high-speed analysis with high energy efficiency.

以下、本発明の実施例を図面を参照して説明す
る。なお、同一部分は同一記号であらわす。
Embodiments of the present invention will be described below with reference to the drawings. Note that the same parts are represented by the same symbols.

第2図は本発明を適用した一例である。本実施
例では、X線管101は陰極102と、電子流偏
向装置103と、帯状陽極ターゲツト104とを
有しており、外部信号に基づいて電子流を陽極タ
ーゲツト上で水平走査させ、直線的に飛走するX
線源105を得る。X線源から発生したX線は、
X線遮蔽体106にX線源の飛走方向に垂直とな
る方向で開けられたスリツト107から扇状に取
り出され、被写体108を通過し層状X線検出器
109に入射する。被写体108を経たX線ビー
ムを受けるこのX線検出器109は、陽極ターゲ
ツト上の電子流の走査方向すなわちX線の飛走方
向と平行な方向に長い多数のX線感知素子、例え
ば薄いシンチレータ板110が、上記X線遮蔽体
のスリツト107の長手方向に沿う方向にわたつ
て層状に密接して積層配列されている。層状X線
検出器はX線源の飛走方向に平行となるよう配設
された例えば400枚のシンチレータ板110と
各々のシンチレータ板の光を均一に効率よく対応
した光電増倍管111に送り込む光パイプ群11
2とから成る。各々のシンチレータ板の間は互い
にX線及び光シールドがされている。シンチレー
タ及び光電増倍管を通ることによつてX線の強弱
は電気信号に変えられインターフエイス113を
通じて計算器114にデータとして入れられ分析
される。
FIG. 2 is an example to which the present invention is applied. In this embodiment, the X-ray tube 101 has a cathode 102, an electron flow deflection device 103, and a band-shaped anode target 104, and the electron flow is horizontally scanned over the anode target based on an external signal, and is linearly scanned. X flies to
A radiation source 105 is obtained. The X-rays generated from the X-ray source are
The radiation is taken out in a fan shape through a slit 107 made in the X-ray shield 106 in a direction perpendicular to the direction of flight of the X-ray source, passes through the object 108 and enters the layered X-ray detector 109 . This X-ray detector 109, which receives the X-ray beam that has passed through the object 108, has a large number of X-ray sensing elements, such as thin scintillator plates, which are long in the direction parallel to the scanning direction of the electron flow on the anode target, that is, the flight direction of the X-rays. 110 are closely stacked in a layered manner along the longitudinal direction of the slit 107 of the X-ray shield. The layered X-ray detector has, for example, 400 scintillator plates 110 arranged parallel to the flight direction of the X-ray source, and the light from each scintillator plate is sent uniformly and efficiently to the corresponding photomultiplier tube 111. Light pipe group 11
It consists of 2. The space between each scintillator plate is mutually X-ray and light shielded. By passing through a scintillator and a photomultiplier tube, the intensity of the X-rays is converted into an electrical signal, which is input as data to a calculator 114 through an interface 113 and analyzed.

本実施例に於いては、X線源が左右に一回飛走
するだけで撮影を終了できるので極めて短時間で
被写体の分析ができることになる。そして、X線
遮蔽体のスリツトの長手方向に沿う方向の分解能
は各シンチレータ板すなわち各X線感知素子が画
素を形成するのでその厚さを薄くして配列密度を
高めることにより十分な分解能が得られる。また
X線源の飛走方向に沿う方向の画素は、電子流走
査の一方の端から他方の端までの走査時間を時分
割して得ることができる。こうしてX線像に対応
する電気信号を演算処理することにより二次元的
な画像を再構成できる。とくにX線感知素子の積
層方向の画素数をこの素子の配列密度に比例して
多くでき、しかもそれらに対しては時分割しなく
ても信号処理が可能であり、装置を比較的簡略に
できる。検出器を従来のものと同一の材料を用い
て400層となるように作成すると、速度は最大400
倍とすることが可能である。一方、X線管の側か
らみると細い線状X線ビームを利用する従来の方
法に比らべ、扇状のX線ビームを利用するので効
率が極めて高くなるだけでなく、帯状の陽極ター
ゲツトであるため冷却が容易となり、従来よりも
高負荷で用いることができる。
In this embodiment, since the X-ray source can complete the imaging by just one flight from side to side, the subject can be analyzed in an extremely short time. Since each scintillator plate, that is, each X-ray sensing element forms a pixel, sufficient resolution in the longitudinal direction of the slit of the X-ray shield can be achieved by reducing the thickness and increasing the arrangement density. It will be done. Further, pixels in the direction along the flight direction of the X-ray source can be obtained by time-division of the scanning time from one end to the other end of electron flow scanning. In this way, a two-dimensional image can be reconstructed by processing the electrical signals corresponding to the X-ray image. In particular, the number of pixels in the stacking direction of the X-ray sensing element can be increased in proportion to the arrangement density of the elements, and signal processing can be performed on them without time-sharing, making the device relatively simple. . If the detector is made with 400 layers using the same material as the conventional one, the speed will be up to 400
It is possible to double the amount. On the other hand, when viewed from the X-ray tube side, compared to the conventional method that uses a thin linear X-ray beam, the efficiency is not only extremely high because it uses a fan-shaped This makes cooling easier and allows it to be used under higher loads than before.

なお、X線検出器としては一枚の蛍光膜を用い
光パイプなどを用いて各領域で発生する光を分離
し取り出してもよい。
Note that a single fluorescent film may be used as the X-ray detector, and a light pipe or the like may be used to separate and extract the light generated in each region.

第3図は本発明に用いるX線透過用透孔を有す
るX線遮蔽体の別の実施例である。本実施例の遮
蔽体106は長方形の小さなスリツト107をほ
ぼ直線上に多数並べたもので、全体として1つの
スリツトと同様の働きをする。こうすることによ
り1つの長大なスリツトを用いるのに比して遮蔽
体のたわみ、変形等によりスリツトの幅が変わる
ことが容易に防止できる。なお、これらの小さな
スリツトが一直線上に並んでいなくても多小の位
置のずれの影響はインターフエイスでの電気的な
処理などにより修正できる。
FIG. 3 shows another embodiment of an X-ray shield having an X-ray transmission hole used in the present invention. The shielding body 106 of this embodiment is made up of a large number of small rectangular slits 107 arranged almost in a straight line, and the shielding body 106 as a whole has the same function as one slit. By doing so, it is possible to easily prevent the width of the slit from changing due to deflection, deformation, etc. of the shield, compared to using one long slit. Note that even if these small slits are not aligned in a straight line, the effects of slight positional deviations can be corrected by electrical processing at the interface.

また、前記遮蔽体の変形をさらに少なくするた
め、遮蔽体をアクリル板の様なX線を透過しやす
い物質で補強しても良い。
Furthermore, in order to further reduce the deformation of the shield, the shield may be reinforced with a material that easily transmits X-rays, such as an acrylic plate.

以上述べた様に、本発明によれば従来の走査型
X線装置に比らべ高能率、高速度で分析を行なう
ことのできる走査型X線装置を得ることができ
る。
As described above, according to the present invention, it is possible to obtain a scanning X-ray device that can perform analysis with higher efficiency and higher speed than conventional scanning X-ray devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の走査型X線装置の説明図、第2
図は本発明の走査型X線装置の一実施例の説明
図、第3図は本発明の走査型X線装置に用いられ
るX線透過用透孔の他の実施例の説明図である。 101……走査型X線管装置、110……X線
検出器、106……X線遮蔽体、107……X線
透過用透孔。
Figure 1 is an explanatory diagram of a conventional scanning X-ray device, Figure 2
The figure is an explanatory diagram of one embodiment of the scanning X-ray device of the present invention, and FIG. 3 is an explanatory diagram of another embodiment of the X-ray transmission hole used in the scanning X-ray device of the present invention. 101...Scanning X-ray tube device, 110...X-ray detector, 106...X-ray shield, 107...X-ray transmission hole.

Claims (1)

【特許請求の範囲】 1 一方向に長いターゲツト上に電子流を直線的
に走査させる偏向装置をもつ走査型X線管と、 このX線管から出て被写体を経たX線ビームを
受け電気信号に変換するX線検出器と、 上記X線管と被写体との間に設けられ、X線透
過用の細い孔をもつX線遮蔽体とを具備する走査
型X線装置において、 上記X線遮蔽体は、直線状に設けられたスリツ
ト状の細孔を有するとともに該孔の長手方向が上
記電子流の走査方向に対して直交する方向に形成
されてなり、 上記X線検出器は、上記電子流の走査方向と平
行な方向に長い複数のX線感知素子が上記X線透
過用の孔の長手方向に沿う方向にわたつて層状に
密接して積層配列されてなることを特徴とする走
査型X線装置。
[Scope of Claims] 1. A scanning X-ray tube with a deflection device that linearly scans an electron stream over a long target in one direction; an X-ray detector that converts into The body has slit-like pores provided in a straight line, and the longitudinal direction of the pores is formed in a direction perpendicular to the scanning direction of the electron flow, and the X-ray detector A scanning type characterized in that a plurality of X-ray sensing elements, which are long in a direction parallel to the scanning direction of the flow, are laminated and arranged closely in a layered manner in a direction along the longitudinal direction of the X-ray transmission hole. X-ray equipment.
JP8100076A 1976-07-09 1976-07-09 Scanning type x-ray apparatus Granted JPS537190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8100076A JPS537190A (en) 1976-07-09 1976-07-09 Scanning type x-ray apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8100076A JPS537190A (en) 1976-07-09 1976-07-09 Scanning type x-ray apparatus

Publications (2)

Publication Number Publication Date
JPS537190A JPS537190A (en) 1978-01-23
JPS6116452B2 true JPS6116452B2 (en) 1986-04-30

Family

ID=13734213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8100076A Granted JPS537190A (en) 1976-07-09 1976-07-09 Scanning type x-ray apparatus

Country Status (1)

Country Link
JP (1) JPS537190A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3104052A1 (en) * 1981-02-06 1982-08-19 Philips Patentverwaltung Gmbh, 2000 Hamburg "X-RAY EXAMINATION ARRANGEMENT WITH HIGH LOCAL RESOLUTION"
JPS59196677A (en) * 1983-04-22 1984-11-08 Toshiba Corp X-ray image pickup device
US4718076A (en) * 1983-04-22 1988-01-05 Kabushiki Kaisha Toshiba X-ray imaging apparatus
JPS59230540A (en) * 1983-06-13 1984-12-25 キヤノン株式会社 X-ray digital solid photographing apparatus
DE3327031A1 (en) * 1983-07-27 1985-02-07 Philips Patentverwaltung Gmbh, 2000 Hamburg ROENTGENGERAET
JP2002282098A (en) * 2001-03-22 2002-10-02 Okamura Corp Small refrigerating showcase

Also Published As

Publication number Publication date
JPS537190A (en) 1978-01-23

Similar Documents

Publication Publication Date Title
US4521688A (en) Three-dimensional and tomographic imaging device for x-ray and gamma-ray emitting objects
US3432660A (en) Gamma-ray camera for imaging radioisotope distribution in a transverse section of a rotating subject
US5828067A (en) Imaging method and apparatus
US10401308B2 (en) Dual-energy detection apparatus, system and method
US4454422A (en) Radiation detector assembly for generating a two-dimensional image
US5118934A (en) Fiber fed x-ray/gamma ray imaging apparatus
US6365900B1 (en) Sensing head and collimator for gamma-camera
EP2489060B1 (en) A radiographic imaging device and a detector for a radiographic imaging device
JPS6116452B2 (en)
McCready et al. Clinical tests on a prototype semiconductor gamma-camera
US4197460A (en) Multi-angle nuclear imaging apparatus and method
Halmshaw A review of digital radiological methods
Mortimer et al. The gamma-ray pinhole camera with image amplifier
US4072289A (en) Axial tomography
Donnard et al. High Spatial Resolution in $\beta $-Imaging With a PIM Device
EP0191322B1 (en) Arrangement for producing x-ray images using computer radiography
JP2009074817A (en) Semiconductor detector module, and radiation detection device or nuclear medicine diagnosis device using the semiconductor detector module
US3405233A (en) Isotope scanner which creates x-ray and gamma radiation images simultaneously
US4166957A (en) Apparatus and method for producing a sectional view of a body
Keller et al. Modulation transfer and scintillation limitations in gamma-ray imaging
Sakamoto et al. Development of a high-resolution scintillator-based area detector for neutrons
JPS6410220B2 (en)
Sayre et al. Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility
Czarski et al. Charge cluster identification for multidimensional GEM detector structures
US11137506B2 (en) Positron tomography device using micropattern detector