JPS61164177A - Slow electron measuring instrument - Google Patents

Slow electron measuring instrument

Info

Publication number
JPS61164177A
JPS61164177A JP60005471A JP547185A JPS61164177A JP S61164177 A JPS61164177 A JP S61164177A JP 60005471 A JP60005471 A JP 60005471A JP 547185 A JP547185 A JP 547185A JP S61164177 A JPS61164177 A JP S61164177A
Authority
JP
Japan
Prior art keywords
anode
heating
temperature
electrons
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60005471A
Other languages
Japanese (ja)
Other versions
JPH058790B2 (en
Inventor
Masayuki Uda
応之 宇田
Tsunenori Shirohashi
白橋 典範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
RIKEN Institute of Physical and Chemical Research
Original Assignee
Riken Keiki KK
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK, RIKEN Institute of Physical and Chemical Research filed Critical Riken Keiki KK
Priority to JP60005471A priority Critical patent/JPS61164177A/en
Priority to US06/819,226 priority patent/US4740730A/en
Publication of JPS61164177A publication Critical patent/JPS61164177A/en
Publication of JPH058790B2 publication Critical patent/JPH058790B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To correct easily the measurement error arising from the fluctuation of atm. conditions by heating an anode and controlling the heating temp. in accordance with the output from either of a temp.- or pressure sensor. CONSTITUTION:A high voltage is impressed from a high-voltage power source 5 to the anode 4 and prescribed electric power is supplied from a heating power source 20 by which the anode 4 is heated to about 100 deg.C. Slow electrons are released from the surface of a sample 7 in this stage and are attracted past the 2nd and 1st lattice electrodes 8 and 6 to the anode 4. The electrons are accelerated by the strong electric field of the anode 4 to induce gaseous discharge. The potential of the voltage impressed to the anode 4 is decreased by the gaseous amplification effect, by which the electron pulses are generated. The electron pulses are fed via an amplifier 13 to the 1st and 2nd pulse generators 14 and 15. The electron pulses generated to the anode 4 are simultaneously fed via the amplifier 13 to a counter means 16 as well. The counted 16 output signal is calculated 17 and subjected to the correction for count drop- out during the stoppage of the discharge and thereafter the count result is displayed 18.

Description

【発明の詳細な説明】 産−上の1  ! この発明は、大気中における気体放電を利用して低速電
子をW+6定する装置に関する。
[Detailed Description of the Invention] Production-Top 1! The present invention relates to a device that uses gas discharge in the atmosphere to stabilize low-velocity electrons at W+6.

良釆立且遣 従来、低速電子測定装置としては、例えば特開昭55−
158168号公報に記載されているようなものが知ら
れている。このものは、大気に連通ずる空間が内部に形
成された陰極となるケースと、ケース内に収納され高電
圧が印加5れた陽極と、を備えたものである。
Conventionally, as a low-speed electronic measuring device, for example,
The one described in Japanese Patent No. 158168 is known. This device includes a case that serves as a cathode and has a space inside that communicates with the atmosphere, and an anode that is housed within the case and to which a high voltage is applied.

ここで、前述のような低速電子測定装置にあっては、気
体放電が大気中で行なわれるため、大気条件の影響を受
け、例えば、湿度が上昇すると第3図に示すように計数
率が−E昇するという問題点がある。これは、水蒸気の
陽極付着によりパックグラウンドノイズとなる気体放電
が生じる為と推論される。また、気温、圧力が変化する
と、これに伴なって第4.5図にそれぞれ示すように、
測定結果に誤差が生じてくるという問題点がある。従来
、湿度の上昇に対しては特公昭58−6158号公報に
記載されているように陽極を加熱する事によりパックグ
ラウンドノイズとなる気体放電を防止する方法が知られ
ている。一方、気温、圧力の変化に対しては、測定時の
気温、圧力を計測しておいて、測定結果を測定後に計算
により補正することも考えられるが、このような補正は
多大の労力および時間が必要になるという問題点がある
In the case of a low-speed electronic measuring device such as the one described above, since gas discharge is performed in the atmosphere, it is affected by atmospheric conditions, and for example, when humidity increases, the counting rate decreases as shown in Figure 3. There is a problem with E elevation. It is inferred that this is because the adhesion of water vapor to the anode causes gas discharge that becomes background noise. Also, as the temperature and pressure change, as shown in Figure 4.5,
There is a problem that errors occur in the measurement results. Conventionally, as described in Japanese Patent Publication No. Sho 58-6158, a method for preventing gas discharge resulting in background noise by heating an anode has been known to deal with an increase in humidity. On the other hand, in response to changes in temperature and pressure, it is possible to measure the temperature and pressure at the time of measurement and correct the measurement results by calculation after measurement, but such correction requires a lot of effort and time. The problem is that it requires

一日が ・ しようと る、I 点 この発明は、気温、圧力等の変動による測定誤差を補正
するために多大の労力および時間が必要になるという従
来の問題点を解決するものである。
This invention solves the conventional problem of requiring a great deal of effort and time to correct measurement errors due to fluctuations in temperature, pressure, etc.

、I 占  ・(るための手− このような問題点は、大気に連通ずる空間が内部に形成
された陰極となるケースと、ケース内に収納され高電圧
が印加された陽極と、を備えた低速電子fllll定装
置において、前記陽極を加熱するとともに、大気の温度
、圧力を測定する温度センサーまたは圧力センサーの少
なくともいずれが一方の出力に基すいて、この加熱温度
を制御する加熱手段を設けることにより解決することが
できる。
, I (Hands on how to do this) These problems are caused by a case that is a cathode with a space inside that communicates with the atmosphere, and an anode that is housed inside the case and has a high voltage applied to it. In the low-speed electronic flllll heating device, heating means is provided for heating the anode and controlling the heating temperature based on the output of at least one of a temperature sensor and a pressure sensor that measure the temperature and pressure of the atmosphere. This can be solved by

忙」 まず、ケースと陽極との間の空間を低速電子が通過する
と、陽極近傍において気体放電が発生し、この気体放電
が検知きれる。このようにして低速電子が測定されるの
であるが、この測定時、ケースの空間は大気に連通して
いるので、この空間は大気の影響を直接受ける。このた
め、大気条件、即ち湿度、気温、圧力等が変動すると、
これに追従して気体放電の発生率が変動し、この結果、
測定結果に誤差が発生すると考えられる。しかしながら
、この発明のおいては、加熱手段によって陽極を加熱す
るとともに、この加熱温度を温度または圧力センサーの
少なくともいずれか一方の出力に基すいて制御するよう
にしているので、陽極周囲の温度を気体放電の発生率が
常に−・定植になるよう自由に制御することができ、こ
れにより、大気条件の変動を補正することができる。こ
のように、単に陽極の加熱温度を制御してやれば補正が
できるので、補正を極めて容易にかつ節1iに行なうこ
とができる。
First, when low-speed electrons pass through the space between the case and the anode, a gas discharge occurs near the anode, and this gas discharge can be detected. Slow electrons are measured in this way, and since the space of the case is in communication with the atmosphere during this measurement, this space is directly affected by the atmosphere. Therefore, when atmospheric conditions, such as humidity, temperature, pressure, etc., change,
Following this, the rate of occurrence of gas discharge fluctuates, and as a result,
This is likely to cause an error in the measurement results. However, in this invention, the anode is heated by the heating means and the heating temperature is controlled based on the output of at least one of the temperature and pressure sensors, so the temperature around the anode can be controlled. The rate of occurrence of gas discharge can be freely controlled so as to always be constant, thereby making it possible to compensate for fluctuations in atmospheric conditions. In this way, the correction can be made simply by controlling the heating temperature of the anode, so the correction can be made very easily and in a timely manner.

1為1 以下、この発明の一実施例を図面に基づいて説明する。1 for 1 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、 1は内部に開口 2を介して大気に
連通ずる空間3が形成されたケースであり、このケース
 lはアースされて陰極となる。
In FIG. 1, 1 is a case in which a space 3 is formed which communicates with the atmosphere through an opening 2, and this case 1 is grounded and serves as a cathode.

ケース 1内には右端リング状の陽極4が設けられ、こ
の陽極4の一端は、例えば常温常圧下において後述する
低速電子の測定を行なうのに最適な3.4 KVの高圧
電源5に接続されている。また、ケース 1内には、例
えば100vの電圧が印加された格子電極としての第1
格子電極6が設置され、この第1格子電極6とケースl
の下部に設けられた試料7との間には、例えば80Vの
電圧が印加された第2格子電極8が設置されている。前
記試料7はその表面から低速電子、即ち気体中の通過に
際して一次電離を起さない数十eV以下の低いエネルギ
ーを持つ電子のことをいい、例えば光電子、熱電子およ
びエキン電子のような電子、を放出する。そして、この
低速電子は空間3を通過する際、陽極4近傍で気体放電
を引き起す。13は陽極4に接続された増幅器であり、
この増幅器13と第1格子電極6との間には第1パルス
発生器14が設けられている。この第1パルス発生器1
4は、気体放電が発生したとき、即ち、陽極4に電子パ
ルスが発生したとき、第1格子電極6に矩形波パルスを
送り、第1格子電極6の電圧を増加させる。また、前記
増幅器13と第2格子電極8との間には第2パルス発生
器15が設けられ、この第2パルス発生器15は陽極4
に電子パルスが発生したとき、矩形波パルスを第2格子
電極8に供給し、第2格子電極8の電圧を低下させる。
A ring-shaped anode 4 is provided at the right end of the case 1, and one end of the anode 4 is connected to a 3.4 KV high-voltage power source 5, which is optimal for measuring slow electrons, which will be described later, at room temperature and pressure, for example. ing. In addition, in case 1, a first grid electrode to which a voltage of 100V is applied, for example, is provided.
A grid electrode 6 is installed, and this first grid electrode 6 and the case l
A second grid electrode 8 to which a voltage of, for example, 80 V is applied is installed between the sample 7 and the sample 7 provided at the bottom of the grid electrode 8 . The sample 7 has low-velocity electrons, that is, electrons with low energy of several tens of eV or less that do not cause primary ionization when passing through the gas, such as photoelectrons, thermionic electrons, and Echin electrons. emit. When these low-speed electrons pass through the space 3, they cause a gas discharge near the anode 4. 13 is an amplifier connected to the anode 4;
A first pulse generator 14 is provided between this amplifier 13 and the first grid electrode 6. This first pulse generator 1
4 sends a rectangular wave pulse to the first grid electrode 6 to increase the voltage of the first grid electrode 6 when a gas discharge occurs, that is, when an electron pulse is generated at the anode 4. Further, a second pulse generator 15 is provided between the amplifier 13 and the second grid electrode 8, and this second pulse generator 15 is connected to the anode 4.
When an electron pulse is generated, a square wave pulse is supplied to the second grid electrode 8 to reduce the voltage of the second grid electrode 8.

16は増幅器13に接続された計数手段であり、この計
数手段16は陽極4に発生する電子パルスを計数する。
16 is a counting means connected to the amplifier 13, and this counting means 16 counts the electron pulses generated at the anode 4.

この計数手段16からの出力信号は、演算手段17に送
られ放電停止時の数え落しの補正が行なわれた後、例え
ば、CRT、プリンター等の表示手段18に送られ、こ
の表示手段18において前記測定された低速電子数が表
示される。前記陽極4には供給電力を調節できる加熱手
段としての交流の加熱電源20が接続されている。この
結果、陽極4はこの加熱電源20から供給された電力の
ジュール熱によって、例えば100°C程度に加熱され
、この加熱温度は加熱電源20からの電力を増減するこ
とにより制御される。
The output signal from the counting means 16 is sent to the calculation means 17, and after correction for the omission of counting when the discharge is stopped, it is sent to the display means 18, such as a CRT or a printer, and the display means 18 displays the above-mentioned information. The measured number of slow electrons is displayed. An AC heating power source 20 is connected to the anode 4 as a heating means that can adjust the power supplied. As a result, the anode 4 is heated to, for example, about 100° C. by the Joule heat of the electric power supplied from the heating power source 20, and this heating temperature is controlled by increasing or decreasing the electric power from the heating power source 20.

21は大気の温度を測定する温度センサーであり、23
は大気の圧力を測定する圧力センサーである。
21 is a temperature sensor that measures the temperature of the atmosphere;
is a pressure sensor that measures atmospheric pressure.

この温度センサー21および圧力センサー23からの出
力は加熱電力制御回路22を介して加熱電源20に送ら
れ、加熱電源20からの供給電力を変化させる。
Outputs from the temperature sensor 21 and pressure sensor 23 are sent to the heating power source 20 via the heating power control circuit 22, and the power supplied from the heating power source 20 is changed.

次に、この発明の−・実施例の作用について説明する。Next, the operation of the embodiment of the present invention will be explained.

まず、高圧電源5から陽極4に第2図(a)に示すよう
に、例えば3.4 KVの高電圧を印加するとともに、
加熱電源20から所定の電力を供給通電する。これによ
り、陽極4は例えば+00°C程度に加熱される。この
とき、試料7の表面からは低速電子が放出される。この
試料7から放出された電子は、第2格子電極8および第
1格子電極6を通過し、陽極4に引き寄せられる。そし
て、電子が陽極4近傍に到達すると、陽極4近傍の強い
電界により電子が加速され気体放電を引き起こす。この
気体増幅作用により、陽極4に印加されている電圧は第
2図(a)に示すように、電位が低下し、電子パルスが
発生する。この陽極4に発生した電子パルスは増幅器1
3を介して第1パルス発生器14および第2パルス発生
器15に送られる。第1パルス発生器14は電圧が30
0vで時間幅がTeの矩形波パルスを発生して第1格子
電極6に送り、第2図(b)に示すように第1格子電極
6の電圧を100 Vから400VにTe時間だけ増加
させる。この結果、陽極4と第1格子電極6との間の電
位差が300V低下し、これによって、気体増幅作用に
より発生した光や陽イオンによる二次電子は放電電圧に
達することができず、気体放電が消滅する。一方、第2
パルス発生器15は時間幅がTeで電圧が−110Vの
矩形波パルスを第2格子電極8に送り、第2図(c)に
示すように第2格子電極8の電圧を80Vから一30V
に低下させる。この結果、前記気体増幅作用によって発
生した陽イオンがこの第2格子電極8に捕捉されて中和
される。そして、Te時間だけ経過すると、第1.第2
格子電極8、8の電圧は元の電圧にそれぞれ回復し、低
速電子測定装置は再び電子を検出できる状態となる。前
記陽極4に発生した電子パルスは同時に増幅器13を介
して計数手段16にも送られ、この計数手段16は前記
電子パルス数を計数した後、出力信号を演算手段17に
送る。この演算手段17は放電停止時における数え落し
の補正を行なった後、計数結果、例えば計数率を表示手
段18に送り計数結果を表示させる。
First, as shown in FIG. 2(a), a high voltage of, for example, 3.4 KV is applied from the high voltage power supply 5 to the anode 4, and
A predetermined power is supplied from the heating power source 20 and energized. Thereby, the anode 4 is heated to, for example, about +00°C. At this time, low-velocity electrons are emitted from the surface of the sample 7. Electrons emitted from the sample 7 pass through the second grid electrode 8 and the first grid electrode 6 and are attracted to the anode 4. When the electrons reach the vicinity of the anode 4, the electrons are accelerated by a strong electric field near the anode 4, causing a gas discharge. Due to this gas amplification effect, the potential of the voltage applied to the anode 4 decreases as shown in FIG. 2(a), and an electron pulse is generated. The electron pulse generated at the anode 4 is transmitted to the amplifier 1
3 to a first pulse generator 14 and a second pulse generator 15. The first pulse generator 14 has a voltage of 30
Generate a rectangular wave pulse with time width Te at 0 V and send it to the first grid electrode 6, and increase the voltage of the first grid electrode 6 from 100 V to 400 V by Te time as shown in FIG. 2(b). . As a result, the potential difference between the anode 4 and the first grid electrode 6 decreases by 300V, and as a result, secondary electrons due to light and cations generated by the gas amplification effect cannot reach the discharge voltage, and the gas discharge disappears. On the other hand, the second
The pulse generator 15 sends a rectangular wave pulse with a time width Te and a voltage of -110V to the second grid electrode 8, and increases the voltage of the second grid electrode 8 from 80V to -130V as shown in FIG. 2(c).
decrease to. As a result, the positive ions generated by the gas amplification effect are captured by the second grid electrode 8 and neutralized. Then, when the time Te has elapsed, the first . Second
The voltages of the grid electrodes 8, 8 are each restored to their original voltages, and the low-speed electronic measuring device is in a state where it can detect electrons again. The electron pulses generated at the anode 4 are simultaneously sent to the counting means 16 via the amplifier 13, and after counting the number of electron pulses, the counting means 16 sends an output signal to the calculation means 17. The calculation means 17 corrects for omissions when discharging is stopped, and then sends the counting result, for example, the counting rate, to the display means 18 for displaying the counting result.

このようにして放出電子数が測定されるが、この測定時
の湿度、気温、圧力等は場所、時間等が異なることによ
り変動する。例えば、気温が常温より高くあるいは圧力
が常圧より低い場合には、大気の分子間距離が大きくな
り、これによって電子あるいは陰イオンが通過し易くな
る。このため、電子あるいは陰イオンが気体分子により
散乱される確率が減り気体放電が起こり易くなる。この
ような事態を防止するため、この実施例においては、測
定雰囲気(大気)の温度および圧力を温度センサー21
および圧力センサー23によって検知し、これら両セン
サー21.23からの信号を加熱電力制御回路22を介
して加熱電源20に送り、加熱電源20から陽極4に供
給される電力を、気温の常温からの上昇分あるいは圧力
の常圧からの低下分に対応する値だけ低下させる。これ
により、陽極4の温度が低下するとともに陽極4周囲の
大気の温度も低下し、空気の分子間距離が小さくなる。
The number of emitted electrons is measured in this way, but the humidity, temperature, pressure, etc. during this measurement vary depending on the location, time, etc. For example, when the temperature is higher than normal temperature or the pressure is lower than normal pressure, the distance between molecules in the atmosphere becomes large, making it easier for electrons or anions to pass through. Therefore, the probability that electrons or anions will be scattered by gas molecules decreases, making gas discharge more likely to occur. In order to prevent such a situation, in this embodiment, the temperature and pressure of the measurement atmosphere (atmosphere) are measured by the temperature sensor 21.
The signals from these two sensors 21 and 23 are sent to the heating power source 20 via the heating power control circuit 22, and the power supplied from the heating power source 20 to the anode 4 is adjusted from normal temperature to normal temperature. The pressure is decreased by a value corresponding to the increase or the decrease in pressure from normal pressure. As a result, the temperature of the anode 4 decreases, and the temperature of the atmosphere around the anode 4 also decreases, and the distance between air molecules becomes smaller.

この結果、気体放電の発生率が一定に維持され、環境条
件の変動が補正される。また、陽極4は、例えば100
℃に加熱されているので、大気の湿度が高くなっても陽
極4の周囲の相対湿度は常に低く、第3図に示すように
、水蒸気によるバックグラウンドノイズとなる気体放電
の小さい領域で使用することができる。また、陽極4を
高温に保つことにより気体放電の動作電圧を低下させる
こともできる。
As a result, the rate of occurrence of gas discharge is maintained constant and variations in environmental conditions are compensated for. In addition, the anode 4 has, for example, 100
℃, the relative humidity around the anode 4 is always low even if the atmospheric humidity is high, and as shown in Figure 3, it is used in areas where there is little gas discharge that causes background noise due to water vapor. be able to. Further, by keeping the anode 4 at a high temperature, the operating voltage of the gas discharge can be lowered.

なお、前述の実施例においては、加熱電源20として交
流電源を使用したが、この発明においては直流電源を使
用してもよい。また、この発明においては、陽極4をヒ
ータによって間接的に加熱し、このヒータの温度を制御
することにより陽極4の温度を変化させるようにしても
よい。また、前述の実施例においては、温度、圧力セン
サー21、23によって大気の温度、圧力双方゛を測定
し、この測定結果に川ずいて陽極4の温度を制御するよ
うにしたが、この発明においては、温度センサー21ま
たは圧力センサー23のいずれか一方の測定結果にス(
すいて陽極の湿度を制御するようにしてもよい。
In addition, in the above-mentioned embodiment, an AC power source was used as the heating power source 20, but a DC power source may be used in the present invention. Further, in the present invention, the temperature of the anode 4 may be changed by indirectly heating the anode 4 with a heater and controlling the temperature of this heater. Furthermore, in the above embodiment, both the temperature and pressure of the atmosphere were measured by the temperature and pressure sensors 21 and 23, and the temperature of the anode 4 was controlled based on the measurement results. is based on the measurement result of either the temperature sensor 21 or the pressure sensor 23.
Alternatively, the humidity of the anode may be controlled.

完iの」1果 以−1−説明したように、この発明によれば、大気条件
の変動に基< N11l定誤差の補正を極めて容易にか
つ簡tpiに行なうことができる。
As described above, according to the present invention, it is possible to extremely easily and simply correct the <N11l constant error based on fluctuations in atmospheric conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す一部が回路で示ごれ
た断面図、第2図は低速電子測定装置の電圧変化を示す
グラフ、第3図は湿度が変化したときの計数率の変動を
示すグラフ、第4図は温度が変化したときの計数率の変
動を示すグラフ、第5図は圧力が変化したときの4数率
の変動を示すグラフである。 ■・・・ケース      3・・・空間4・・・陽極
       5・・・高圧電源6・・・格子電極  
  ?・・・試ネ120・・・加熱電源
Fig. 1 is a sectional view showing a part of the circuit as an embodiment of the present invention, Fig. 2 is a graph showing voltage changes of a low-speed electronic measuring device, and Fig. 3 is a count when humidity changes. FIG. 4 is a graph showing changes in the count rate as the temperature changes, and FIG. 5 is a graph showing changes in the count rate as the pressure changes. ■...Case 3...Space 4...Anode 5...High voltage power supply 6...Grid electrode
? ...Test 120...Heating power supply

Claims (1)

【特許請求の範囲】[Claims] 大気に連通する空間が内部に形成された陰極となるケー
スと、ケース内に収納され高電圧が印加された陽極と、
を備えた低速電子測定装置において、前記陽極を加熱す
るとともに、大気の温度、圧力を測定する温度センサー
または圧力センサーの少なくともいずれか一方の出力に
基ずいて、この加熱温度を制御する加熱手段を設けたこ
とを特徴とする低速電子測定装置。
A case that serves as a cathode has a space inside that communicates with the atmosphere, and an anode that is housed within the case and has a high voltage applied to it.
A low-speed electronic measuring device equipped with a heating means that heats the anode and controls the heating temperature based on the output of at least one of a temperature sensor and a pressure sensor that measure the temperature and pressure of the atmosphere. A low-speed electronic measuring device characterized by:
JP60005471A 1985-01-16 1985-01-16 Slow electron measuring instrument Granted JPS61164177A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60005471A JPS61164177A (en) 1985-01-16 1985-01-16 Slow electron measuring instrument
US06/819,226 US4740730A (en) 1985-01-16 1986-01-15 Apparatus for detecting low-speed electrons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005471A JPS61164177A (en) 1985-01-16 1985-01-16 Slow electron measuring instrument

Publications (2)

Publication Number Publication Date
JPS61164177A true JPS61164177A (en) 1986-07-24
JPH058790B2 JPH058790B2 (en) 1993-02-03

Family

ID=11612155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005471A Granted JPS61164177A (en) 1985-01-16 1985-01-16 Slow electron measuring instrument

Country Status (1)

Country Link
JP (1) JPS61164177A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823368A (en) * 1987-06-30 1989-04-18 Rikagaku Kenkyujyo Open counter for low energy electron detection with suppressed background noise
JP2007263804A (en) * 2006-03-29 2007-10-11 Toshiba Corp Radiation measuring device and method
JP2020071112A (en) * 2018-10-31 2020-05-07 株式会社日立製作所 Radiation monitor and method for measuring radiation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823368A (en) * 1987-06-30 1989-04-18 Rikagaku Kenkyujyo Open counter for low energy electron detection with suppressed background noise
JP2007263804A (en) * 2006-03-29 2007-10-11 Toshiba Corp Radiation measuring device and method
JP2020071112A (en) * 2018-10-31 2020-05-07 株式会社日立製作所 Radiation monitor and method for measuring radiation
WO2020090236A1 (en) * 2018-10-31 2020-05-07 株式会社日立製作所 Radiation monitor and radiation measurement method

Also Published As

Publication number Publication date
JPH058790B2 (en) 1993-02-03

Similar Documents

Publication Publication Date Title
JP4206598B2 (en) Mass spectrometer
JPS61164177A (en) Slow electron measuring instrument
JP2007042516A (en) X ray generation device
JPH06176725A (en) Ion source
US4740730A (en) Apparatus for detecting low-speed electrons
JP4932532B2 (en) Method for detecting partial pressure of specific gas and quadrupole mass spectrometer
JP2000357487A (en) Mass-spectrometric device
JP6772391B2 (en) Ionization vacuum gauge and control device
US7800376B2 (en) Method and device for measuring ultrahigh vacuum
JPH10213509A (en) Pressure measuring device
WO2019117172A1 (en) X-ray tube and x-ray generation device
Ballantine Fluctuation noise due to collision ionization in electronic amplifier tubes
JP3300775B2 (en) Field emission vacuum gauge with constant current operation
Kannenstine Formation and life of metastable helium
US5012194A (en) Method testing electron discharge tubes
CN113508644A (en) X-ray generating apparatus, and diagnostic apparatus and diagnostic method for the same
JPH075266A (en) Proportional counter capable of correcting measurement error due to fluctuation of voltage between electrodes
US6377231B2 (en) Image-casting control method for image display device and image display device
JPH065287B2 (en) Low speed electronic measuring device
JPH11250854A (en) Analyzing method and device for incident ion on substrate in etching plasma
JPH0616103B2 (en) Low speed electronic measuring device
JPH0193038A (en) Ion gun
JP3890343B2 (en) Electron source manufacturing apparatus and electron source manufacturing method
US8174198B2 (en) Image display apparatus and method for driving the same
KR910001508B1 (en) Measuring method of electron emission for cathode ray tube

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term