JPS61163663A - Transistor element - Google Patents

Transistor element

Info

Publication number
JPS61163663A
JPS61163663A JP60003603A JP360385A JPS61163663A JP S61163663 A JPS61163663 A JP S61163663A JP 60003603 A JP60003603 A JP 60003603A JP 360385 A JP360385 A JP 360385A JP S61163663 A JPS61163663 A JP S61163663A
Authority
JP
Japan
Prior art keywords
electron transfer
transfer protein
membrane
protein
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60003603A
Other languages
Japanese (ja)
Other versions
JPH0691241B2 (en
Inventor
Satoru Isoda
悟 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60003603A priority Critical patent/JPH0691241B2/en
Priority to US06/815,068 priority patent/US4613541A/en
Priority to DE19863600564 priority patent/DE3600564A1/en
Publication of JPS61163663A publication Critical patent/JPS61163663A/en
Publication of JPH0691241B2 publication Critical patent/JPH0691241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/701Organic molecular electronic devices

Abstract

PURPOSE:To obtain a transistor element by utilizing redox potential difference by depositing, bonding and joining second and third electron transport proteins having different redox potential to each other onto a first electron transport protein. CONSTITUTION:A solution of flavodoxin 18 is dropped onto the surface of water to form a monomolecular film, and a glass plate 16 on which a parallel electrode 17 is shaped is sunk and the film 18 is attached and joined. A parallel electrode 20 is shaped at a right angle to the electrode 17 at a low temperature, and a monomolecular film 19 of cytochrome C formed through the same method is annexed and joined. Likewise, a flavoxin monomolecular film 21 is attached onto the film 19 and a parallel electrode 22 at a right angle to the electrode 20. When lipid or a fatty acid is mixed previously to an electron transport protein solution dropped onto the surface of water, protein molecules are supported, and orientation is aligned. When the electrodes 17, 20, 22 are chemically decorated previously by 4, 4'-piperidine, etc., electrons are transferred excellently between protein films. When voltage V1, V2 is applied to the element according to a predetermined method, redox potential changes in the same manner as a PNP junction, thus acquiring a transistor at a molecular level.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、トランジスタ特性又はスイッチング特性を
持つトランジスタ素子に関するもので、これを利用した
集積回路分野に係わり、生体材料を構成材料として用い
ることにより、トランジスタ素子サイズを生体分子レベ
ルの超微細な大きさく数十〜数百A)に近づけるように
して、高密度・高速化を図るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a transistor element having transistor characteristics or switching characteristics, and relates to the field of integrated circuits using the transistor element, and is related to the field of integrated circuits that utilize this transistor element. , the transistor element size is brought closer to the ultra-fine size (several tens to hundreds of amperes) at the level of biomolecules, thereby achieving high density and high speed.

〔従来の技術〕[Conventional technology]

従来、集積回路に用いられているトランジスタ素子とし
ては、第5図に示す電界効果型トランジスタ(FET)
があった。図において、(1)はn形シリコン基板、(
2)はチャンネル領域、(3)はP+層、(4)はsi
o鵞膿、(5)はソース電極、(6)はゲート電極、(
7)はドレイン電極である。この従来のFETをトラン
ジスタ動作又はスイッチング動作として作用させるには
、ゲート電極により印加するゲー)[圧の制御により行
う。即ち、ゲート電圧によってソース電極(5)とドレ
イン電極(7)間の表面層における電流キャリア数が変
化し電流が制御される。
Conventionally, as a transistor element used in an integrated circuit, a field effect transistor (FET) shown in Fig. 5 is used.
was there. In the figure, (1) is an n-type silicon substrate, (
2) is the channel region, (3) is the P+ layer, (4) is the si
(5) is the source electrode, (6) is the gate electrode, (
7) is a drain electrode. In order to operate this conventional FET as a transistor operation or a switching operation, it is performed by controlling the voltage applied by the gate electrode. That is, the number of current carriers in the surface layer between the source electrode (5) and the drain electrode (7) changes depending on the gate voltage, and the current is controlled.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のFETは以上のように構成されているため、微細
加工が可能であり、現在では256にピッ)LSIが実
用されている。素子のメモリ容量と演算速度を上昇させ
るには、素子そのものの超微細化が不可欠であるが、一
方で81を用いる素子では0.2μm程度の超微細パタ
ーンで電子の平均自由行程と素子スケールとがほぼ等し
くなり、素子の独立性が保たれなくなるという限界を抱
えている。このように、発展を続けているシリコンテク
ノロジーも、何れは壁に突きあたることが予想されるた
めに、0.2μmの壁を越見る新しい原理に基づくVL
SIが求められている。
Since the conventional FET is configured as described above, microfabrication is possible, and currently 256-inch LSIs are in practical use. In order to increase the memory capacity and calculation speed of devices, it is essential to make the devices themselves ultra-fine. On the other hand, in devices using 81, ultra-fine patterns of about 0.2 μm are used to improve the mean free path of electrons and the device scale. The problem is that the elements become almost equal, and the independence of the elements cannot be maintained. In this way, silicon technology, which continues to develop, is expected to eventually hit a wall, so VL based on a new principle that goes beyond the 0.2 μm wall
SI is required.

この発明は、上記のような従来の集積回路におけるトラ
ンジスタ素子の微細化の限界を除去す・るためになされ
たもので、生体材料を構成材料として用いることにより
、トランジスタ素子サイズを生体分子レベルの超微細な
大きさに近づけるようにして、高密度・高速化を図ろう
とするものである。
This invention was made to eliminate the limitations of miniaturization of transistor elements in conventional integrated circuits as described above, and by using biomaterials as constituent materials, the size of transistor elements can be reduced to the level of biomolecules. The aim is to achieve high density and high speed by approaching ultra-fine size.

〔問題点を解決するための手段〕[Means for solving problems]

この発明のトランジスタ素子は、電子伝達蛋白質で作成
された第1電子伝達蛋白質膜、上記電子伝達蛋白質のレ
ドックス電位と異なるレドックス電位を有する電子伝達
蛋白質で作成され、第1電子伝達蛋白質膜に累積して接
着接合された第2電子伝達蛋白質膜、第2電子伝達蛋白
質膜を作成する電子伝達蛋白質のレドックス電位と異な
るレドックス電位を有する電子伝達蛋白質で作成され第
2電子伝達蛋白質膜に累積して接着接合された第3電子
伝達蛋白質膜、第1電子伝達蛋白質膜に接続される電極
、第2電子伝達蛋白質膜に電気的影響を与える電極、及
び第3電子伝達蛋白質膜に接続される電極を備え、各電
子伝達蛋白質のレドックス電位の違いを利用してトラン
ジスタ特性及ヒスイツチング特性のいずれかを発生させ
るようにしたものである。
The transistor element of the present invention includes a first electron transfer protein film made of an electron transfer protein, an electron transfer protein made of an electron transfer protein having a redox potential different from the redox potential of the electron transfer protein, and an electron transfer protein film that accumulates on the first electron transfer protein film. The second electron transfer protein membrane is adhesively bonded to the second electron transfer protein membrane, and the second electron transfer protein membrane is made of an electron transfer protein having a redox potential different from the redox potential of the electron transfer protein that creates the second electron transfer protein membrane, and is cumulatively adhered to the second electron transfer protein membrane. comprising a joined third electron transfer protein membrane, an electrode connected to the first electron transfer protein membrane, an electrode that electrically affects the second electron transfer protein membrane, and an electrode connected to the third electron transfer protein membrane. , the difference in redox potential of each electron transfer protein is used to generate either transistor characteristics or hisswitching characteristics.

〔作用〕[Effect]

この発明は、レドックス電位の異なる少なくとも2種類
の電子伝達蛋白質を構成材料として用いるので、トラン
ジスタ素子サイズを生体分子レベルの超微細な大きさに
近づけることが可能となり、高密度・高速化が図られる
Since this invention uses at least two types of electron transfer proteins with different redox potentials as constituent materials, it is possible to bring the transistor element size closer to the ultra-fine size at the biomolecule level, resulting in higher density and higher speed. .

〔実施例〕〔Example〕

以下、この発明の原理及び作用を図について説明する・
微生物の生体膜及び高等生物のミトコンドリアの内膜中
には、それぞれ機能は異なるが1Ht、有機酸、 NA
D(P)H(Nicotineamide Adeni
neDinucleotide (Phosphate
 ) )などの還元性の化学物質から電子を引き抜く酵
素蛋白質と共に、その電子を生体膜の定められた方向に
運ぶ電子伝達能を有する蛋白質(電子伝達蛋白質と称す
)が複数種類存在している。これらの電子伝達蛋白質は
、生体膜中に、一定の配向性をもって埋め込まれ、分子
間で電子伝達が起こるように特異的な分子間配置をとっ
ている。このように電子伝達蛋白質は、生体膜中で精巧
な配置をもって連鎖状に並んでいるため、電子を蛋白質
連鎖に沿って流すことが可能で、電子の動きを分子レベ
ルで制御することができる。第5図に電子伝達蛋白質の
連鎖(電子伝達系)の1例としてミトコンドリアの内膜
の電子伝達系を模式的に示す。図において、(8)はミ
トコンドリアの内膜、(9)は電子伝達蛋白質(NAD
H−Q還元酵素)、顛は電子伝達蛋白質(コハク酸脱水
素酵素)1(ロ)は電子伝達蛋白質(チトクロームb)
、(2)は電子伝達蛋白質(チトクロームct)、Q3
は電子伝達蛋白質(チトクロームC)、Q4は電子伝達
蛋白質(チトクロームa)、(至)は電子伝達蛋白質(
チトクロームa3)である。又、図中矢印は電子の流れ
る方向を示すものであり、人口側の(L)はNADH%
岡はコハク酸でありそれぞれ還元性の有機物である。又
、出口側(ロ)では電子は最終的に酸素に渡され、水を
生ずる。
The principle and operation of this invention will be explained below with reference to the figures.
The biological membranes of microorganisms and the inner membranes of mitochondria of higher organisms contain 1Ht, organic acids, and NA, although their functions differ.
D(P)H (Nicotineamide Adeni
neDinucleotide (Phosphate)
In addition to enzyme proteins that extract electrons from reducing chemicals such as ), there are several types of proteins (referred to as electron transfer proteins) that have the ability to transfer electrons to biological membranes in a defined direction. These electron transfer proteins are embedded in biological membranes with a certain orientation and have a specific intermolecular arrangement so that electron transfer occurs between molecules. In this way, electron transport proteins are arrayed in a chain in a sophisticated arrangement in biological membranes, making it possible for electrons to flow along protein chains and controlling the movement of electrons at the molecular level. FIG. 5 schematically shows an electron transport chain in the inner membrane of a mitochondria as an example of a chain of electron transport proteins (electron transport chain). In the figure, (8) is the inner membrane of the mitochondria, and (9) is the electron transport protein (NAD).
HQ reductase), second is electron transfer protein (succinate dehydrogenase) 1 (b) is electron transfer protein (cytochrome b)
, (2) is electron transfer protein (cytochrome ct), Q3
is electron transfer protein (cytochrome C), Q4 is electron transfer protein (cytochrome a), (to) is electron transfer protein (
It is cytochrome a3). Also, the arrows in the figure indicate the direction of electron flow, and (L) on the population side is NADH%.
Oka is succinic acid, which is a reducing organic substance. Furthermore, on the exit side (b), the electrons are finally transferred to oxygen, producing water.

第5図に示した電子伝達蛋白質は電子伝達時に酸化還元
(レドックス)反応を伴い、各電子伝達蛋白質のレドッ
クス電位の負方向の準位から正方向の準位へと電子を流
すことができる。
The electron transfer proteins shown in FIG. 5 involve an oxidation-reduction (redox) reaction during electron transfer, and electrons can flow from a level in the negative direction of the redox potential of each electron transfer protein to a level in the positive direction.

一方、最近の知見によれば、生体内(in vibo)
で存在している電子伝達蛋白質複合体以外においても生
体外(in vitro )で電子伝達を起こすことが
可能な相互に特異的な構造配置をもつ電子伝達複合体を
形成することが可能であることが示されている。
On the other hand, according to recent findings, in vivo
It is possible to form electron transfer complexes with mutually specific structural arrangements that are capable of causing electron transfer in vitro, in addition to the electron transfer protein complexes that exist in the human body. It is shown.

そこで本発明者は、適当なレドックス電位をもつ電子伝
達蛋白質を2種類(A及びB)用い、A−B−Aと8層
累積させることにより、それらのレドックス電位の違い
を利用してトランジスタ特性又はスイッチング特性を生
ずる接合を形成できることに着目してこの発明を創作し
た。
Therefore, the present inventor used two types of electron transport proteins (A and B) with appropriate redox potentials, and by stacking them in 8 layers A-B-A, we utilized the difference in their redox potentials to improve transistor properties. The present invention was created by focusing on the fact that it is possible to form a junction that produces switching characteristics.

第4図にA−B−A型電子伝達蛋白質複合体の模式図と
そのレドックス電位を示す。このA−B−A型電子伝達
蛋白質複合体のレドックス電位はn型半導体とn型半導
体との組合せによるp−n−p接合と類似の性質を示し
、トランジスタ特性又はスイッチング特性をもつことが
期待できる。
FIG. 4 shows a schematic diagram of an A-B-A type electron transfer protein complex and its redox potential. The redox potential of this A-B-A type electron transfer protein complex exhibits properties similar to a p-n-p junction formed by a combination of two n-type semiconductors, and is expected to have transistor or switching characteristics. can.

又、電子伝達蛋白質として3種類(A、B及びC)用い
1AB−Cと8層累積させても上記と同様の効果が期待
できる。
Furthermore, the same effect as above can be expected even if three types (A, B, and C) of electron transfer proteins are used and 1AB-C is stacked in 8 layers.

この発明の実施例を図をもとに説明する。第1図はこの
発明の一実施例のトランジスタ素子を組込んだ装置を示
す模式的断面構成図で、(2)はガラス製基板、(Lη
はAg * Au * Alなどの金属製電極で、基板
α・上に複数条が平行に形成されている。(ト)は電子
伝達蛋白質であるフラボドキシンで作成された第1電子
伝達蛋白質膜で、複数条の電極αη上に形成されている
。曽は複数条の平行電極Qηと直角方向に形成された複
数条の平行電極で、第1電子伝達蛋白質膜(至)上に形
成されている。01は電子伝達蛋白質であるチトクロー
ムCで作成された第2電子伝達蛋白質膜で、第1電子伝
達蛋白質膜(至)に累積して接着接合され、電極(4)
に接合されている。
Embodiments of the invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional configuration diagram showing a device incorporating a transistor element according to an embodiment of the present invention, (2) is a glass substrate, (Lη
is a metal electrode such as Ag*Au*Al, and a plurality of strips are formed in parallel on the substrate α. (G) is a first electron transfer protein membrane made of flavodoxin, which is an electron transfer protein, and is formed on the plurality of electrodes αη. A plurality of parallel electrodes formed perpendicularly to the plurality of parallel electrodes Qη is formed on the first electron transfer protein membrane. 01 is a second electron transfer protein membrane made of cytochrome C, which is an electron transfer protein, which is cumulatively adhesively bonded to the first electron transfer protein membrane (to) and is attached to the electrode (4).
is joined to.

(2)は電子伝達蛋白質であるフラボドキシンで作成さ
れた第3電子伝達蛋白質膜で、第2電子伝達蛋白質膜o
嗜に累積して接着接合されている。(2)は複数条の平
行電極(ホ)と直角方向に形成され1こ複数条の平行電
極で、第3電子伝達蛋白質膜(2)1筈こ形成されてい
る。第2図は、形成したトランジスタ素子を組込んだ装
置を分解して示す分解斜視図である。
(2) is a third electron transfer protein membrane made of flavodoxin, an electron transfer protein;
They are cumulatively adhesively bonded. (2) is formed in a direction perpendicular to the plurality of parallel electrodes (E), and one or more parallel electrodes are formed in the third electron transfer protein membrane (2). FIG. 2 is an exploded perspective view showing an exploded device incorporating the formed transistor element.

電子伝達蛋白質としてチトクロームCとフラボドキシン
を用いて単分子膜及びそれらの累積膜の作成法としては
著明なLangmuir −Blodgett法がある
0詳細は・(イ)Iwing Langmuir ;電
気学会雑誌、第56巻、 204〜218頁、昭和10
年4月、(ol K、 Blodgett: Jour
nal of American Chemical 
8ociety + Vol 57 *P 10G7 
、1985 年、H杉M夫’) 、固体物fM −Mo
l 17゜P 744〜752 、1982 執に)J
ournal of Co11oid andInte
rface 8cience * Vol 68 + 
P 471〜477 + 1979年などに記載されて
いる。−例を説明すると、水層の水面に7ラボドキシン
溶液を滴下し、水面にフラボドキシンの単分子、嘆を形
成する。フラボドキシン膜を形成した水槽にtFMaη
を形成した基板α0を垂直に挿入し浸して行くと、電極
αηを有する基板α・に7ラボドキシン嘆が付着し、接
合し、第1電子伝達蛋白質膜これを取り出す。なお、基
板Q0を水槽に挿入し浸していたが、逆に水面下から垂
直に引上げるようにしても基板αe上fこフラボドキシ
ン膜が付着し、接合される。基板α・の第1電子伝達蛋
白質膜(至)上に金属薄膜をイオンビーム法、分子線法
、蒸着法などを利用して電子伝達蛋白質が破壊されない
ほどの低温で作成し電極翰を得る。
The Langmuir-Blodgett method is a prominent method for producing monolayers and their cumulative films using cytochrome C and flavodoxin as electron transport proteins. For details: (a) Iwing Langmuir; Journal of the Institute of Electrical Engineers of Japan, Vol. 56 , pp. 204-218, Showa 10
April, (ol K, Blodgett: Jour
nal of American Chemical
8ociety + Vol 57 *P 10G7
, 1985, H Sugi M'), solid object fM -Mo
l 17゜P 744-752, 1982) J
Our own of Co11oid and Inte
rface 8science * Vol 68 +
P 471-477 + 1979, etc. - To explain an example, a flavodoxin solution is dropped onto the water surface of an aqueous layer, and a single molecule of flavodoxin is formed on the water surface. Add tFMaη to the aquarium in which a flavodoxin film has been formed.
When the substrate α0 formed with the electrode α0 is vertically inserted and immersed, 7-Labadoxin adheres and bonds to the substrate α· having the electrode αη, and the first electron transfer protein film is taken out. Note that although the substrate Q0 was inserted into a water tank and immersed, the flavodoxin film would adhere to and bond to the substrate αe even if the substrate Q0 was pulled up vertically from below the water surface. A metal thin film is formed on the first electron transfer protein film of the substrate α using an ion beam method, a molecular beam method, a vapor deposition method, etc. at a low temperature that does not destroy the electron transfer protein to obtain an electrode.

続いて、水槽の水面にチトクロームC溶液を滴下し、水
面にチトクロームCの単分子膜を形成する。
Subsequently, a cytochrome C solution is dropped onto the water surface of the aquarium to form a monomolecular film of cytochrome C on the water surface.

先に第1電子伝達蛋白質膜(至)と電極(1)が作成さ
れた基板a・を、チトクロームCの膜を有する水槽に垂
直に挿入し浸して行くと、第1電子伝達蛋白質膜(至)
上にチトクロームC膜が付着し接合し、電極曽に接合し
た第2電子伝達蛋白質膜01が作成される。これを取り
出す。同様にして、基板α1の第2電子伝達蛋白質膜Q
嗜上にフラボドキシン膜を付着し接合し、第3電子伝達
蛋白質膜(財)を作成し、さらにこの上に電極(イ)を
作成する。
When the substrate a, on which the first electron transfer protein film (1) and the electrode (1) have been formed, is vertically inserted into a water tank having a cytochrome C film and immersed, the first electron transfer protein film (1) is formed. )
A cytochrome C membrane is attached and bonded thereon, thereby creating a second electron transfer protein membrane 01 bonded to the electrode. Take this out. Similarly, the second electron transport protein film Q of the substrate α1
A flavodoxin membrane is attached and bonded to the upper surface to form a third electron transfer protein membrane (material), and an electrode (a) is further formed on this.

なお1電子伝達蛋白質膜は、単分子膜であってもよいが
1別の電子伝達蛋白質膜を重ねたものでもよい。但し、
重ねた電子伝達蛋白質膜を形成する両電子伝達蛋白質間
のレドックス電位差は、例えば第1電子伝達蛋白質膜の
ときは、第1電子伝達蛋白質膜の電子伝達蛋白質と、第
2電子伝達蛋白質膜の電子伝達蛋白質とのレドックス電
位差より小さいものが選定されている。各種の電子伝達
蛋白質のレドックス電位は高野常広著;蛋白質核酸酵素
127 、 P 1548 、1982年に記載されて
おり、チトクロームCとフラボドキシンのレドックス電
位差は約665mVである。又水面に滴下する電子伝達
蛋白質溶液に予め脂質及び脂肪酸のいずれかを混合し、
混合溶液を水面に滴下し、水置換を形成し、これを基板
に付着接合させると、電子伝達蛋白質膜の配向が整えら
れ、上記脂質又は脂肪酸は蛋白質分子の支えとなる。
Note that one electron transfer protein membrane may be a monomolecular membrane, but it may also be one in which another electron transfer protein membrane is stacked. however,
For example, in the case of the first electron transfer protein membrane, the redox potential difference between the two electron transfer proteins forming the stacked electron transfer protein membrane is the difference between the electron transfer protein in the first electron transfer protein membrane and the electron transfer protein in the second electron transfer protein membrane. One is selected that has a redox potential difference smaller than that of the transmission protein. The redox potential of various electron transfer proteins is described in Tsunehiro Takano, Protein Nucleic Acid Enzyme 127, P 1548, 1982, and the redox potential difference between cytochrome C and flavodoxin is about 665 mV. In addition, either lipid or fatty acid is mixed in advance with the electron transfer protein solution that is dropped onto the water surface.
When the mixed solution is dropped onto the water surface to form water displacement and adhered to the substrate, the orientation of the electron transport protein membrane is adjusted, and the lipids or fatty acids support the protein molecules.

又、ム製電極と電子伝達蛋白質間の電子の授受を良好に
するためには、Au電極を4,4′−ビビリジN (b
ipyridgl )、2,2′−ビピリジルなどで化
学修飾しておくとよい。
In addition, in order to improve the transfer of electrons between the aluminum electrode and the electron transfer protein, the Au electrode is made of 4,4'-biviridiN (b
It is preferable to chemically modify it with 2,2'-bipyridyl, etc.

第1図において、電極αηと四間に第1電子伝達蛋白質
膜が介在しているが、第1電子伝達蛋白質膜だけであれ
ば、誘電体として作用するので、両電*a′hと(1)
間の絶縁は保たれる。第1.第2及び第3電子伝達蛋白
質膜が、配向を整えて累積し接着接合すると電極αηと
(イ)間の電子の授受が可能となる。第2電子伝達蛋白
質膜に対して電極(1)は絶縁的であるが、電圧的影響
を与えることができ、電圧を印加する働きをする。従っ
て電極勾は従来のFETのゲート電極に相当し、電極α
ηに)はソース電極、ドレインtWに相当する。
In Fig. 1, the first electron transfer protein film is interposed between the electrodes αη and 4, but if only the first electron transfer protein film was present, it would act as a dielectric, so both the electric currents *a′h and ( 1)
The insulation between them is maintained. 1st. When the second and third electron transfer protein films are aligned, accumulated, and adhesively bonded, it becomes possible to transfer electrons between the electrodes αη and (A). Although the electrode (1) is insulating with respect to the second electron transfer protein membrane, it can exert a voltage influence and functions to apply a voltage. Therefore, the electrode slope corresponds to the gate electrode of a conventional FET, and the electrode α
η) corresponds to the source electrode and drain tW.

第3図(イ)はこの発明のトランジスタ素子の電圧印加
状態を示す模式図で、(ロ)はこのときの各電子伝達蛋
白質膜のレドックス電位状態を示す図である。電@o7
)と勾との間に電極Qη側を正として、電圧v1を印加
し、電極(1)と(2)との間に電極(1)側を正とし
て電圧vtを印加すると、レドックス電圧状態は第3図
(ロ)の実線のように変化する。破線は電圧印加前の状
態を示しており、voはチトクロームCとフラボドキシ
ンのレドックス電位の差であす約1265mVである。
FIG. 3(A) is a schematic diagram showing the voltage application state of the transistor element of the present invention, and FIG. 3(B) is a diagram showing the redox potential state of each electron transfer protein membrane at this time. Den@o7
) and the gradient, applying a voltage v1 with the electrode Qη side being positive, and applying a voltage vt between electrodes (1) and (2) with the electrode (1) side being positive, the redox voltage state is It changes as shown by the solid line in Figure 3 (b). The broken line shows the state before voltage application, and vo is the difference in redox potential between cytochrome C and flavodoxin, which is about 1265 mV.

上記構成及び電圧印加によるレドックス電位の変化は、
従来の半導体トランジスタ(p−n−p接合タイプ)と
同様と考えられ、上記構成によりトランジスタ特性が分
子レベルの素子として実現される。
Changes in redox potential due to the above configuration and voltage application are as follows:
It is considered to be similar to a conventional semiconductor transistor (p-n-p junction type), and the above structure realizes transistor characteristics as a molecular-level element.

なお電子伝達蛋白質への電子の供給に酵素を利用するよ
うにしてもよい。
Note that an enzyme may be used to supply electrons to the electron transfer protein.

又電子伝達蛋白質としては、非ヘム−鉄・硫黄蛋白質、
チトクロームC系蛋白質、チトクロームb系蛋白質、フ
ラボドキシン、プラストシアニン、チオレドキシンなど
があり、これらから選別される第1電子伝達蛋口質、第
2電子伝達蛋白質及び第3電子伝達蛋白質の組合せは、
分子間に対する配向と、電極が形成された基板に対する
配向が電子伝達に対してv4適するものが選定される。
Electron transport proteins include non-heme iron and sulfur proteins,
There are cytochrome C-based proteins, cytochrome B-based proteins, flavodoxin, plastocyanin, thioredoxin, etc., and the combination of the first electron transfer protein, second electron transfer protein, and third electron transfer protein selected from these is:
The orientation between molecules and the orientation with respect to the substrate on which the electrodes are formed are selected to be V4 suitable for electron transfer.

又上述したトランジスタ素子は2種類の蛋白質の累積膜
として説明したが、8種類以上の蛋白質の累積膜として
作成してもよい。
Furthermore, although the transistor element described above has been described as a cumulative film of two types of proteins, it may be formed as a cumulative film of eight or more types of proteins.

又異種電子伝達蛋白質間相互作用の特異性を利用して、
電子伝達蛋白質分子単位で、累積膜に垂直な方向に電子
を流し、上記累積膜に水平方行の隣接する電子伝達蛋白
質分子間では電子の授受が起らないように、同種電子伝
達蛋白質膜内及び異種電子伝達蛋白質膿間で電子伝達蛋
白質を所定の分子配置をとるようにLangmuir 
−Blodgett 法fzどで配向させることが望ま
しい。
In addition, by utilizing the specificity of the interaction between different electron transfer proteins,
Electrons flow in the direction perpendicular to the cumulative film in units of electron transport protein molecules. and Langmuir so that the electron transfer protein takes a predetermined molecular arrangement between different types of electron transfer proteins.
- It is desirable to orient by Blodgett method fz or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明のトランジスタ素子は電
子伝達蛋白質で作成された第1電子伝達蛋白質膜、上記
電子伝達蛋白質のレドックス電位と異なるレドックス電
位を有する電子伝達蛋白質で作成され、第1電子伝達蛋
白質膜に累積して接着接合された第2電子伝達蛋白質膜
、第2電子伝達蛋白質膜を作成する電子伝達蛋白質のレ
ドックス電位と異なるレドックス電位を有する電子伝達
蛋白質で作成され第2電子伝達蛋白質膜に累積して接着
接合された第3電子伝達蛋白質膜、第1電子伝達蛋白質
膜に接続される電極、第2[子伝達蛋白質膜に電気的影
響を与える電極、及び第3を子伝達蛋白質膜に接続され
る電極を備え、各電子伝達蛋白質のレドックス電位の違
いを利用してトランジスタ特性及びスイッチング特性の
いずれかを発生させるようにしたので、トランジスタ素
子サイズを生体分子レベルの超微細な大きさに近づける
ようにして、高密度・高速化が可能となる。
As explained above, the transistor element of the present invention includes a first electron transfer protein film made of an electron transfer protein, an electron transfer protein film made of an electron transfer protein having a redox potential different from that of the electron transfer protein, and a first electron transfer protein film made of an electron transfer protein having a redox potential different from that of the electron transfer protein. a second electron transfer protein membrane cumulatively adhesively bonded to the protein membrane; a second electron transfer protein membrane made of an electron transfer protein having a redox potential different from the redox potential of the electron transfer protein forming the second electron transfer protein membrane; a third electron transfer protein membrane cumulatively bonded to the electron transfer protein membrane, an electrode connected to the first electron transfer protein membrane, a second electrode that electrically influences the child transfer protein membrane, and a third electrode connected to the child transfer protein membrane. By using the difference in the redox potential of each electron transfer protein to generate either the transistor characteristics or the switching characteristics, the transistor element size can be reduced to ultra-fine size at the biomolecule level. By bringing it closer to , it becomes possible to achieve higher density and higher speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例のトランジスタ素子が組
込まれた装置を示す模式的断面構成図、第2図は、この
発明の一実施例のトランジスタ素子が組込まれた装置の
分解斜視図、第3図(イ)は、この発明のトランジスタ
素子の電圧印加状態を示す模式図で、第3図(ロ)はこ
のときの各電子伝達蛋白賞嘆のレドックス電位状態を示
す図、第4図は電子伝達蛋白質複合体の模式図とそのレ
ドックスを位を示す図、第5図はミトコンドリアの内膜
の電子伝達系を示す模式図、第5図は従来の電界効果型
トランジスタ素子を示す断面図である。 図において、OF3は基板、aη(ホ)(2)は電極、
(至)0101)はそれぞれ第1.第2.第3電子伝達
蛋白質膜である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a schematic cross-sectional configuration diagram showing a device incorporating a transistor element according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view of a device incorporating a transistor element according to an embodiment of the present invention. , FIG. 3(a) is a schematic diagram showing the voltage application state of the transistor element of the present invention, FIG. 3(b) is a diagram showing the redox potential state of each electron transfer protein at this time, and FIG. The figure is a schematic diagram of an electron transport protein complex and its redox position. Figure 5 is a schematic diagram of the electron transport chain in the inner membrane of mitochondria. Figure 5 is a cross section of a conventional field effect transistor element. It is a diagram. In the figure, OF3 is the substrate, aη(E)(2) is the electrode,
(to) 0101) are respectively the 1st. Second. This is the third electron transport protein membrane. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 (1)電子伝達蛋白質で作成された第1電子伝達蛋白質
膜、上記電子伝達蛋白質のレドックス電位と異なるレド
ックス電位を有する電子伝達蛋白質で作成され、第1電
子伝達蛋白質膜に累積して接着接合された第2電子伝達
蛋白質膜、第2電子伝達蛋白質膜を作成する電子伝達蛋
白質のレドックス電位と異なるレドックス電位を有する
電子伝達蛋白質で作成され第2電子伝達蛋白質膜に累積
して接着接合された第3電子伝達蛋白質膜、第1電子伝
達蛋白質膜に接続される電極、第2電子伝達蛋白質膜に
電気的影響を与える電極、及び第3電子伝達蛋白質膜に
接続される電極を備え、各電子伝達蛋白質のレドックス
電位の違いを利用してトランジスタ特性及びスイッチン
グ特性のいずれかを発生させるようにしたトランジスタ
素子。 (2)電子伝達蛋白質は、非ヘム−鉄・硫黄蛋白質、チ
トクロームc系蛋白質、チトクロームb系蛋白質、フラ
ボドキシン、プラストシアニン、及びチオレドキシンの
うちから選定される特許請求の範囲第1項記載のトラン
ジスタ素子。 (3)電子伝達蛋白質膜は単分子膜である特許請求の範
囲第1項記載のトランジスタ素子。 (4)電子伝達蛋白質への電子の供給に酵素を利用する
ようにした特許請求の範囲第1項記載のトランジスタ素
子。 (5)電子伝達蛋白質膜には、金属電極を設けたことを
特徴とする特許請求の範囲第1項記載のトランジスタ素
子。 (6)電子伝達蛋白質膜に設けた電極は、金属電極であ
り、かつ金属電極を有機分子で化学修飾した化学修飾電
極を用いるようにした特許請求の範囲第5項記載のトラ
ンジスタ素子。 (7)異種電子伝達蛋白質間相互作用の特異性を利用し
て、電子伝達蛋白質分子単位で、累積膜に垂直な方向に
電子を流し、上記累積膜に水平方向の隣接する電子伝達
蛋白質分子間では電子の授受が起らないように、同種電
子伝達蛋白質膜内及び異種電子伝達蛋白質膜間で電子伝
達蛋白質を所定の分子配置をとるように配向させること
を特徴とする特許請求の範囲第1項記載のトランジスタ
素子。(8)電子伝達蛋白質の配向用支持体として、脂
質及び脂肪酸のいずれかを用いた特許請求の範囲第1項
記載のトランジスタ素子。 (9)第1電子伝達蛋白質膜に接続される電極と、第2
電子伝達蛋白質膜に接続される電極とは互に直角に配置
するようにした特許請求の範囲第1項記載のトランジス
タ素子。 (10)第1及び第2電子伝達蛋白質膜に接続される電
極は、それぞれ複数の平行な線状電極群である特許請求
の範囲第9項記載のトランジスタ素子。(11)第2電
子伝達蛋白質膜に接続される電極と、第3電子伝達蛋白
質膜に接続される電極とは互に直角に配置するようにし
た特許請求の範囲第1項記載のトランジスタ素子。 (12)第2及び第3電子伝達蛋白質膜に接続される電
極は、それぞれ複数の平行な線状電極群である特許請求
の範囲第11項記載のトランジスタ素子。
[Scope of Claims] (1) A first electron transfer protein membrane made of an electron transfer protein; a first electron transfer protein membrane made of an electron transfer protein having a redox potential different from that of the electron transfer protein; The second electron transfer protein membrane is cumulatively adhered to the second electron transfer protein membrane. a third electron transfer protein membrane adhesively bonded to the membrane, an electrode connected to the first electron transfer protein membrane, an electrode that electrically influences the second electron transfer protein membrane, and an electrode connected to the third electron transfer protein membrane. 1. A transistor element which generates either transistor characteristics or switching characteristics by utilizing the difference in redox potential of each electron transfer protein. (2) The transistor element according to claim 1, wherein the electron transfer protein is selected from non-heme-iron-sulfur protein, cytochrome c protein, cytochrome b protein, flavodoxin, plastocyanin, and thioredoxin. . (3) The transistor element according to claim 1, wherein the electron transport protein film is a monomolecular film. (4) The transistor device according to claim 1, wherein an enzyme is used to supply electrons to the electron transfer protein. (5) The transistor element according to claim 1, wherein the electron transfer protein film is provided with a metal electrode. (6) The transistor element according to claim 5, wherein the electrode provided on the electron transfer protein membrane is a metal electrode, and a chemically modified electrode is used in which the metal electrode is chemically modified with an organic molecule. (7) Utilizing the specificity of the interaction between different types of electron transfer proteins, electrons flow in the direction perpendicular to the cumulative membrane in each electron transfer protein molecule, and between adjacent electron transfer protein molecules in the horizontal direction to the cumulative membrane. Claim 1 is characterized in that the electron transfer protein is oriented in a predetermined molecular arrangement within the homogeneous electron transfer protein membrane and between the different electron transfer protein membranes so that no transfer of electrons occurs. Transistor element described in section. (8) The transistor element according to claim 1, wherein either a lipid or a fatty acid is used as the support for orientation of the electron transfer protein. (9) an electrode connected to the first electron transfer protein membrane;
The transistor element according to claim 1, wherein the electrodes connected to the electron transfer protein membrane are arranged at right angles to each other. (10) The transistor device according to claim 9, wherein the electrodes connected to the first and second electron transport protein membranes are each a group of a plurality of parallel linear electrodes. (11) The transistor element according to claim 1, wherein the electrode connected to the second electron transfer protein membrane and the electrode connected to the third electron transfer protein membrane are arranged at right angles to each other. (12) The transistor device according to claim 11, wherein the electrodes connected to the second and third electron transport protein membranes are each a group of a plurality of parallel linear electrodes.
JP60003603A 1985-01-12 1985-01-12 Transistor element Expired - Fee Related JPH0691241B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60003603A JPH0691241B2 (en) 1985-01-12 1985-01-12 Transistor element
US06/815,068 US4613541A (en) 1985-01-12 1985-12-31 Electronic device using electron transport proteins
DE19863600564 DE3600564A1 (en) 1985-01-12 1986-01-10 ELECTRONIC DEVICE WITH ELECTRONIC TRANSPORTING PROTEINS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60003603A JPH0691241B2 (en) 1985-01-12 1985-01-12 Transistor element

Publications (2)

Publication Number Publication Date
JPS61163663A true JPS61163663A (en) 1986-07-24
JPH0691241B2 JPH0691241B2 (en) 1994-11-14

Family

ID=11562062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60003603A Expired - Fee Related JPH0691241B2 (en) 1985-01-12 1985-01-12 Transistor element

Country Status (1)

Country Link
JP (1) JPH0691241B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310564A (en) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp Switching element
JPS63237562A (en) * 1987-03-26 1988-10-04 Mitsubishi Electric Corp Switching element
JP2014053620A (en) * 2013-09-30 2014-03-20 Sony Corp Molecular device, single molecule optical switch element, functional element, molecular wire and electronic apparatus
US8993513B2 (en) 2007-07-13 2015-03-31 Sony Corporation Molecular device, single-molecular optical switching device, functional device, molecular wire, and electronic apparatus using functional device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310564A (en) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp Switching element
JPS63237562A (en) * 1987-03-26 1988-10-04 Mitsubishi Electric Corp Switching element
US8993513B2 (en) 2007-07-13 2015-03-31 Sony Corporation Molecular device, single-molecular optical switching device, functional device, molecular wire, and electronic apparatus using functional device
JP2014053620A (en) * 2013-09-30 2014-03-20 Sony Corp Molecular device, single molecule optical switch element, functional element, molecular wire and electronic apparatus

Also Published As

Publication number Publication date
JPH0691241B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
Kovtyukhova et al. Nanowires as building blocks for self‐assembling logic and memory circuits
Sandhyarani Surface modification methods for electrochemical biosensors
Swalen et al. Molecular monolayers and films. A panel report for the Materials Sciences Division of the Department of Energy
US20060154489A1 (en) Semiconductor base structure for molecular electronics and molecular electronic-based biosensor devices and a method for producing such a semiconductor base structure
JPS63238166A (en) Organic electronic element material
Noy et al. Bionanoelectronics with 1D materials
US4613541A (en) Electronic device using electron transport proteins
Zhao et al. Charged metal nanoparticles for chemoelectronic circuits
Wang et al. UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis
JPS61163663A (en) Transistor element
US6989290B2 (en) Electrical contacts for molecular electronic transistors
Rim et al. Silicon nanowire biologically sensitive field effect transistors: Electrical characteristics and applications
Karthäuser et al. Integration of individual functionalized gold nanoparticles into nanoelectrode configurations: Recent advances
JPS6310563A (en) Switching element
JPH0748567B2 (en) Photoresponsive switch element
JPH0810774B2 (en) Transistor element
JPS6310564A (en) Switching element
Hirata et al. Development of a vitamin-protein sensor based on carbon nanotube hybrid materials
Yamanoi et al. Modification of Electrode Interfaces with Nanosized Materials for Electronic Applications
JPH0770764B2 (en) Switch element
JPH073873B2 (en) Diode element
JPH0770763B2 (en) Rectifier
JP2806963B2 (en) Optical switch element
Piro Electrolyte-gated FET Biosensors
Simon Micro-and nanotechnologies: dullish electrons and smart molecules

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees