JPS61163659A - Manufacture of mis diode - Google Patents

Manufacture of mis diode

Info

Publication number
JPS61163659A
JPS61163659A JP60003601A JP360185A JPS61163659A JP S61163659 A JPS61163659 A JP S61163659A JP 60003601 A JP60003601 A JP 60003601A JP 360185 A JP360185 A JP 360185A JP S61163659 A JPS61163659 A JP S61163659A
Authority
JP
Japan
Prior art keywords
layer
electrode
type
electron
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60003601A
Other languages
Japanese (ja)
Inventor
Makoto Tsunoda
誠 角田
Satoshi Yanagiura
聡 柳浦
Shohei Eto
江藤 昌平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60003601A priority Critical patent/JPS61163659A/en
Publication of JPS61163659A publication Critical patent/JPS61163659A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier

Abstract

PURPOSE:To obtain a MIS diode by forming an insulating organic compound having at least one of an electron acceptable or electron donative group onto a pi-conjugation group high molecular layer formed through an electrolytic polymerization method. CONSTITUTION:Au 14 on a glass plate is used as an electrode, a pi-conjugation group high molecular monomer such as a copolymer of pyrrole and N-substituted pyrrole and a supporting electrolyte are dissolved into acetonitrile to manufacture a reaction solution, a section between the Au electrode 14 and a Pt electrode is conducted, and a pi-conjugation group high molecular layer 12 is deposited onto the electrode 14 through electrolytic polymerization. The layer 12 is washed sufficiently by acetonitrile, and dried in N2. Anions are added to the deposition layer 12 on a reaction, and the layer 12 is changed into a P-type. The P-type is de-doped, and cations are added and the layer 12 is converted into an N-type. A compound having an electron acceptable group such as tetracyanoquinodimethane or a compound having an electron donative group such as aniline is applied or evaporated in response to the conduction type of the layer 12, and In is selected in the P-type and Au in the N-type, and an electrode 10 is attached. According to the constitution, a stable MIS diode having high performance is acquired.

Description

【発明の詳細な説明】 この発明は、有機系材料を用いた新規なMISダイオー
ドの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for manufacturing MIS diodes using organic materials.

〔従来の技術〕[Conventional technology]

第S図は一般的なMISダイオードの断面図であり、図
において、lit 、 +61はリード線、(21は電
極となる金属層、(3)は絶縁層、(4)は半導体層、
+51電極となる導電層であり、金員−絶縁物−半導体
(M工8)の順く構成されたもので、従来より第6図に
示す81−810−金属構造のもの、即ちMO8ダイオ
ードが実用化されている。
Figure S is a cross-sectional view of a general MIS diode, and in the figure, lit, +61 is a lead wire, (21 is a metal layer that becomes an electrode, (3) is an insulating layer, (4) is a semiconductor layer,
It is a conductive layer that becomes the +51 electrode, and is composed of metal, insulator, and semiconductor (M-8) in this order. Conventionally, the 81-810-metal structure shown in Fig. 6, that is, the MO8 diode, is It has been put into practical use.

図において、f71r181 ONi% 181はSi
層である。
In the figure, f71r181 ONi% 181 is Si
It is a layer.

以前より810.−81構造に帰因する劣化が起ると言
われていたが、現在ではこの問題の解明が進み、理想に
近いMOBQ造が作られるようKなり、実用性も高まっ
てきている。これ等の製法としては、81の気相成長の
方法に酸素、又t−te素を含むCO4,HIOなどの
ガスを導入しBi 上に810.を成長させる方法、お
よびB1Baと0.を反応させてstow、を製膜する
方法などがあるー有機NIBダイオードも最近作られる
ようになったが、これ等は有機半導体の上に絶縁性の有
機高分子を来着法、およびプラズマ重合法などにより2
O−10of程度の層を堆積し、その上に金属電極をつ
けたものである。また、無機半導体の上に上記の方法で
有機高分子を堆積させ7’tMISダイオードも知られ
ている。
810 from before. It was said that deterioration occurred due to the -81 structure, but now this problem has been solved, MOBQ structures close to the ideal have been created, and their practicality is increasing. The manufacturing method for these is to introduce gas such as CO4, HIO, etc. containing oxygen or t-te element into the vapor phase growth method of 810. and how to grow B1Ba and 0. Organic NIB diodes have also recently been produced, but these methods involve depositing an insulating organic polymer onto an organic semiconductor, and plasma heavy deposition. 2 due to legality etc.
A layer of approximately O-10of is deposited, and a metal electrode is attached on top of it. Furthermore, a 7'tMIS diode is also known in which an organic polymer is deposited on an inorganic semiconductor using the above method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の蒸着法、プラズマ重合法による絶縁性有
機高分子層の超薄膜の堆積は、ピンホールが出来易い、
層の構造に再現性が無い。
However, the deposition of ultra-thin insulating organic polymer layers using conventional vapor deposition methods and plasma polymerization methods is prone to pinholes.
Layer structure is not reproducible.

層厚のコントロールが困難である、装置が高価格である
、操作が惟しくコストが高いなどの欠点を持ち、M工S
ダイオードの絶縁性有機高分子層を堆積さ−せるには不
適当な方法であった。
M-S
This method was unsuitable for depositing insulating organic polymer layers for diodes.

この発明は上記のような問題点を解消するためになされ
たもので、容易に、高性能でかつ性能の安定し7?−M
ISダイオードの製造方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it can easily achieve high performance and stable performance. -M
The purpose of this invention is to obtain a method for manufacturing an IS diode.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るMISダイオードの製造方法は、電極と
なる導電層、電解重合法により形成されたπ−共役系高
分子からなる半導体層、電子受容性基および電子供与性
基の少なくとも一方を有する絶縁性有機化合物層、並び
に電極となる金属層を積層するものである。
The method for manufacturing an MIS diode according to the present invention includes a conductive layer serving as an electrode, a semiconductor layer made of a π-conjugated polymer formed by electrolytic polymerization, and an insulating layer having at least one of an electron-accepting group and an electron-donating group. This method consists of stacking a chemical organic compound layer and a metal layer that becomes an electrode.

〔作用〕[Effect]

この発明は、後述するように、S層のπ−共役系高分子
中のドーパントがIi%の電子受容性基あるいは電子供
与性基と接掴することにより相互作用して仏教すること
を利用したものである。これにより、S層と1層の界面
に多数存在してい次キャリアのトラップレベルが均一化
され、ブた1屑中にドーパントが侵入することにより、
一種の電荷移動型錯体を部分的に形成し、見かけのトン
ネル長さが実際の絶縁層の厚さよりも短いものとなる傾
向が出現する・従って例えばこの発明の方法で製造され
たMISダイオードでは、1層の厚さが前記した従来の
方法で製造され+M工Sダイオードの2O−1007F
よりも厚りもの、例えばtoo〜8000A’となり、
ピンホールレスの膜を容易に作ることができる。
This invention utilizes the fact that the dopant in the π-conjugated polymer of the S layer interacts with the electron-accepting group or electron-donating group of Ii%, as will be described later. It is something. As a result, the trap level of the secondary carriers present in large numbers at the interface between the S layer and the first layer is made uniform, and the dopant penetrates into the dust of the first layer.
A kind of charge transfer type complex is partially formed, and the apparent tunnel length tends to be shorter than the actual thickness of the insulating layer. Therefore, for example, in the MIS diode manufactured by the method of the present invention, The thickness of one layer is 2O-1007F of the +M S diode manufactured by the conventional method described above.
Thicker than, for example, too~8000A',
Pinhole-free membranes can be easily created.

〔実施例〕〔Example〕

この発明に係わ4る電極となる導電層に用いる導電材料
としては、一般的に電極に用いる、例えば金および白金
等の金属およびカーボン等があり、単独および各種基板
と共に用いる@この発明に係6る半導体層に用いる1[
解重合法により形成されるπ−共役系高分子としては例
えばピロールとN−fi置換ピロール共重合体、ビロー
ルのホモポリマー、N−置換ピロールのホモポリマー、
ポリチェニレン、ポリアニリン、ポリ7ラン、ポリアズ
レン、ポリビニルヒリジン、およびポリチオフェン、な
どの内少なくとも一種が好ましく用いられる。
The conductive material used for the conductive layer that becomes the electrode according to the present invention includes metals such as gold and platinum, carbon, etc., which are generally used for electrodes, and can be used alone or with various substrates@according to the present invention. 1[
Examples of π-conjugated polymers formed by the depolymerization method include pyrrole and N-fi substituted pyrrole copolymers, virol homopolymers, N-substituted pyrrole homopolymers,
At least one of polythenylene, polyaniline, poly7rane, polyazulene, polyvinylhyridine, polythiophene, and the like is preferably used.

例えば上記π−共役系高分子の半導体層を電極となる導
電層に設けるには、上記π−共役系などの対極との間に
電流を通じて電解重合法により作用電極上に所望のπ−
共役系高分子層を析出させ、析出したπ−共役系高分子
層をよく洗滌した後、窒素雰囲気中で乾燥するという方
法を用いる・この場合、析出したπ−共役系高分子層は
反応時に支持電解質のアニオンがドーピングされp型半
導体となる。一方、このp型半導体を脱V−プし、さら
にカチオンをドープすることにより、n型半導体とする
ことができる。ここで、有機溶媒としては、支持電解質
および上記モノマーを溶解させるものならよく、例、t
 ハフセトニトリル、ニトロメンセ゛ン、ニトロメタン
、N、N−ジメチルホルムアミド(DMP )、ジメチ
ルスルホキシド(DM80)、ジクロロメタン、5テト
ラヒドロフラン、エチルアルコールおよびメチルアルコ
ール等の極性溶媒が単独又は8種以上の混合溶液として
用いられる。支持電解質としては酸化電位および還元電
位が高く、電解重合にそれ1青が酸化又は還元反応を受
けず、かつ溶媒中に溶解させることによって溶液に電導
性を付与することのできる物質であり、例えば、過塩素
酸テトラアルキルアンモニクム塩、テトラアルキルアン
モニウム、テトラフルオロポレート塩、テトラアルキル
アンモニウム、ヘキサフルオロホスフェート塩、テ)ラ
アルキルアンモニクム、パラトルエンスルホネート塩お
よび水酸化ナトリウム等が用いられるが、勿論2種以上
を併用しても構わない。
For example, in order to provide a semiconductor layer of the above-mentioned π-conjugated polymer on a conductive layer serving as an electrode, a desired π-
A method is used in which a conjugated polymer layer is deposited, the deposited π-conjugated polymer layer is thoroughly washed, and then dried in a nitrogen atmosphere.In this case, the deposited π-conjugated polymer layer is removed during the reaction. The supporting electrolyte is doped with anions to become a p-type semiconductor. On the other hand, by de-V-doping this p-type semiconductor and further doping it with cations, it can be made into an n-type semiconductor. Here, the organic solvent may be any organic solvent as long as it can dissolve the supporting electrolyte and the above monomer, for example, t
Polar solvents such as hafcetonitrile, nitromethane, nitromethane, N,N-dimethylformamide (DMP), dimethyl sulfoxide (DM80), dichloromethane, 5-tetrahydrofuran, ethyl alcohol, and methyl alcohol are used alone or in a mixed solution of eight or more. The supporting electrolyte is a substance that has a high oxidation potential and reduction potential, does not undergo oxidation or reduction reactions during electrolytic polymerization, and can impart conductivity to a solution by dissolving it in a solvent. For example, , tetraalkylammonicum perchlorate salt, tetraalkylammonium, tetrafluoroporate salt, tetraalkylammonium, hexafluorophosphate salt, tetraalkylammonicum, paratoluenesulfonate salt, sodium hydroxide, etc. are used, but, of course, Two or more types may be used in combination.

この発明に係わる電子受容性基および電子供与性基の少
なくとも一方を有する絶縁性有機化合物は、単体では絶
縁性であるが電荷移動錯体を形成すると半導性になるも
のである。
The insulating organic compound having at least one of an electron-accepting group and an electron-donating group according to the present invention is insulating when alone, but becomes semiconducting when a charge transfer complex is formed.

かかる電子受容性基を有する化合物としては、;のJえ
ばテトラシアノキノジメタン(TCNQ、)、テトラシ
アノエタンrTON]!り、p−クロラニlし、p−ブ
ロマニル、p−1オダニル、p−70ラニル、ジシアノ
ジクロロキノン、ジシアノシフ。
Examples of compounds having such an electron-accepting group include tetracyanoquinodimethane (TCNQ), tetracyanoethane rTON]! p-chloranil, p-bromanyl, p-1 odanyl, p-70ranyl, dicyanodichloroquinone, dicyanosif.

ロモキノン、トリニトロベンセ゛ン、ピレン、アントラ
セン、ペンアントラセン、ベンズアクリジンなどの化合
物や、これらの誘導体、あるいは分子末端にこれらの基
を有する化合物が挙げられる。
Examples include compounds such as lomoquinone, trinitrobenzene, pyrene, anthracene, penanthracene, and benzacridine, derivatives thereof, and compounds having these groups at the molecular terminals.

また電子供与性基を有する化合物として汀、アニリン、
ジメチルアニリン、ジアミノベンセ°ン、N 、 N’
−置換ジアミノベンゼンなどやこれらの誘導体の芳香族
アミン類、モノ、ジ、トリ、テトラ置換アンモニクム塩
類、訃よびこれらの化合物にO18,813yi、子を
含有した化合物、あるいは分子末端にこれらの基を有す
る化合物が挙げられる。なお、こねら化合物の詳細につ
hては、例えば’ Organic 8emicon 
−4ucting polymers“J、 I!i、
Kal;On著などに示されている。
In addition, as compounds having an electron-donating group, sulfur, aniline,
Dimethylaniline, diaminobenzene, N, N'
- Aromatic amines such as substituted diaminobenzenes and their derivatives, mono-, di-, tri-, and tetra-substituted ammonicum salts, and compounds containing O18,813yi and children in these compounds, or having these groups at the end of the molecule Examples include compounds. In addition, for details of the compound, see, for example, 'Organic 8emicon
-4ucting polymers “J, I!i,
It is shown in books such as those written by Kal;On.

また、−分子内に電子受容性基と電子供与性基の両方を
有する化合物、例えば分子内電荷移動型と呼ばれるよう
な化合物や両者を混合したものも場合に゛よっては好ま
しく用いられる。
In some cases, compounds having both an electron-accepting group and an electron-donating group in the molecule, such as a compound called an intramolecular charge transfer type, or a mixture of both may be preferably used.

なお、前記π−共役系高分子にアクセプターがF−プさ
れているCp型半導体)場合には、絶縁性有機化合物が
電子供与・性基を何し、ドナーがドープされている。(
n型半導体)場合には、電子受容性基を有していること
が必要である。また、これら絶縁性有機化合物層げ、溶
媒キャスト法等の通常の塗布法、真空蒸着法、プラズマ
重合法あるいは電解重合法などにより形成される。
In the case of a Cp type semiconductor in which an acceptor is F-doped in the π-conjugated polymer, an insulating organic compound acts as an electron donating group and is doped with a donor. (
n-type semiconductor), it is necessary to have an electron-accepting group. Further, it can be formed by layering these insulating organic compounds, by a conventional coating method such as a solvent casting method, by a vacuum evaporation method, by a plasma polymerization method, by an electrolytic polymerization method, or the like.

この発明に保わる電極となる金属層の金属としては、半
導体層がp型の場合は、例えばインジクム(In)、ガ
リウム(G a )、インジクムーガリクム合金、アル
ミニクム(ムt ) 、fl (Ag)、スズ(8n)
およびゲルマニウム(Ge )などの仕事関数の小さい
金属が、n型の場合には、例えば金(Au)、白金(p
t)および鋼(Cu)などの仕事関数の大きい金属が用
いられ、蒸着、スパッタリング、CVD成長およびメッ
キなどの方法で被着させる。
When the semiconductor layer is p-type, the metal of the metal layer serving as the electrode according to the present invention includes, for example, indicum (In), gallium (G a ), indicum-moo-gallium alloy, aluminum (Mt ), and fl. (Ag), tin (8n)
When the metal with a small work function such as germanium (Ge) is n-type, for example, gold (Au), platinum (p
High work function metals such as t) and steel (Cu) are used and are deposited by methods such as evaporation, sputtering, CVD growth and plating.

以下、仁の発明の実施例について具体的に説明するが、
この発明は、これらに限定されるものではない。
Examples of Jin's invention will be described in detail below.
This invention is not limited to these.

実施例1 3、 l cIIX ? 5111のガラス基板上に真
′4!蒸着法によって厚さ1o00jf’のクロム層を
設け、更にこの上に金(Au)層をgooofの厚さに
真空蒸着法によって設けたもの全作用電極とした(有効
作用電極面積は9 cm x 8.5 am )。
Example 1 3, lcIIX? True '4 on the 5111 glass substrate! A chromium layer with a thickness of 1000jf' was formed by vapor deposition, and on top of this a gold (Au) layer was formed to a thickness of gooof by vacuum evaporation to form the entire working electrode (the effective working electrode area was 9 cm x 8 cm). .5 am).

toomzのアセトニトリル中にN−メチルピロール(
0−8g ) 、テトラエチルアンモニクムパークロレ
イトCo、’Ig)t−溶解させた液を反応溶液とした
N-methylpyrrole (
0-8g), tetraethylammonicum perchlorate Co,'Ig)t-The dissolved solution was used as a reaction solution.

対極として白金(pt)電極を、参照電極としてacz
c飽和カロメル電極)を使用し、反応溶液中に作用電極
と共に浸し、窒素ガス雰囲気下で作用電極il!#J極
として対極との間に一定電流(0,15mA)?:90
分間流し、作用゛電極上にπ−共役系高分子層約+oo
ofの厚さに析出させ、アセトニトリルで洗浄後、窒素
ガス雰囲気下で乾燥し、π−共役系高分子試料(I)を
得た。
A platinum (pt) electrode was used as a counter electrode, and an acz electrode was used as a reference electrode.
Using a saturated calomel electrode), immerse it together with the working electrode in the reaction solution, and place the working electrode il! under a nitrogen gas atmosphere! # Constant current (0.15mA) between the J electrode and the opposite electrode? :90
π-conjugated polymer layer on the working electrode for about +oo minutes.
After washing with acetonitrile and drying in a nitrogen gas atmosphere, a π-conjugated polymer sample (I) was obtained.

次に、π−共役系高分子試料(I)の上に、絶縁性有機
化合物としてポリビニルカルバゾールを*Otlの厚さ
に真空加熱蒸着法により設けた。
Next, polyvinylcarbazole was provided as an insulating organic compound on the π-conjugated polymer sample (I) to a thickness of *Otl by vacuum heating evaporation.

この際の蒸着条件は、圧力1. OX 10  Tor
r%加熱温度6so℃、ポリp−7エ=tzyl 、 
3 、4−オキサジアゾニルの仕込み量0.1g、π−
共役系扁分子試料(I)と加熱源との距離1ocg  
である。このようにしてπ−共役系高分子試料(11)
を得る。
The vapor deposition conditions at this time were pressure 1. OX10 Tor
r% heating temperature 6so℃, polyp-7e=tzyl,
3, Amount of 4-oxadiazonyl charged: 0.1 g, π-
Distance between conjugated thin molecule sample (I) and heating source: 1 ocg
It is. In this way, the π-conjugated polymer sample (11)
get.

さらに、π−共役系高分子試料(II)の上に真空蒸着
法によりインジウム(In)層を約aooo 7Pの厚
さで設けること罠より得られたMIDダイオードIM工
Sダイオ−F試料(I)とする。
Furthermore, an indium (In) layer was formed on the π-conjugated polymer sample (II) by vacuum evaporation to a thickness of approximately 7P. ).

実施例B 実施例1で得られたπ−共役系高分子試料(I)を用い
て、この上に、加熱温度280℃とした以外は実施例1
と同様の方法で、メロシアニン系色素NK−11045
(日本感光色素社製) t’ 1000jの厚さに設け
、さらに実施例1こ同様にIn層を設けることによって
MI8ダイオード試料([[)を得た。
Example B Example 1 was applied except that the π-conjugated polymer sample (I) obtained in Example 1 was used and the heating temperature was 280°C.
In the same manner as above, merocyanine dye NK-11045
(manufactured by Nippon Kanko Shiki Co., Ltd.) A MI8 diode sample ([[) was obtained by providing a thickness of t' 1000j and further providing an In layer in the same manner as in Example 1.

実施例8 実施例1と同様の方法でπ−共役系高分子層を約400
 ojPの厚さに析出させた後、作用tt!iiと対極
を短絡し1go分間ホールドした後、洗浄、乾燥し、8
0℃で8時間空気中で加熱処理を行つ次。しかる後にこ
の試料をトリエチルアミン蒸気中に30分間さらし、π
−共役系高分子試料(n)を得た。
Example 8 Approximately 400 π-conjugated polymer layers were formed in the same manner as in Example 1.
After depositing to the thickness of ojP, the action tt! After short-circuiting ii and the counter electrode and holding for 1 minute, wash and dry.
Next, perform heat treatment in air for 8 hours at 0 °C. The sample was then exposed to triethylamine vapor for 30 minutes and π
- A conjugated polymer sample (n) was obtained.

次に、π−共役系高分子試料(n)の上に、絶縁性有機
化合物として、テトラシアノキノジメタン(TONQ)
  溶液を厚さ100G7’になるようにスピナーで塗
布し、実施例1と同様にIn層を設けることによってM
工8ダイオード試料(2))を得た。
Next, tetracyanoquinodimethane (TONQ) was added as an insulating organic compound on the π-conjugated polymer sample (n).
M
A diode sample (2)) was obtained.

比較例1 実施例1で得られたπ−共役系高分子試料(夏)ノ上に
工n/mヲ約aooo7Pの厚さで設けることによって
得られた有機ショットキーダイオードを比較試料(I)
とする。
Comparative Example 1 Comparative sample (I) was an organic Schottky diode obtained by disposing an organic Schottky diode with a thickness of about 7 P in n/m on the π-conjugated polymer sample (Summer) obtained in Example 1.
shall be.

比較例2 実施例1で得られたπ−共役系高分子試料(1)の上に
ポリエチレン(pIlり層を真空加熱蒸着法を用いて1
GOA’の厚さになる様に設けた。この際の蒸着条件は
、圧力1. OX 10  TOrr、加熱温度250
℃、Pil+の仕込み量0.05g、π−共役系高分子
試料(Ilと加熱源との距離7aである。この様罠して
得られた試料をπ−共役系高分子試料(マ)とする。
Comparative Example 2 A polyethylene (pIl layer) was deposited on the π-conjugated polymer sample (1) obtained in Example 1 using a vacuum heating evaporation method.
It was provided so as to have the thickness of GOA'. The vapor deposition conditions at this time were pressure 1. OX 10 Torr, heating temperature 250
°C, the amount of Pil+ charged is 0.05 g, the π-conjugated polymer sample (distance between Il and the heating source is 7a), and the sample obtained by trapping in this way is called the π-conjugated polymer sample (Ma). do.

さらに、π−共役系高分子試料(マ)の上KIn層を約
5ooo7′の厚さで設けることによって得られたMI
Bダイオードを比較試料(IN)とする。
Furthermore, the MI obtained by providing a KIn layer on the π-conjugated polymer sample (Ma) with a thickness of about 5007'
The B diode is used as a comparison sample (IN).

第1図にM工Sダイオード試料(1)な−し試料(叫の
、第3図に比較試料(夏)の、第3図に比較試料(rl
)の断面図を示す。
Figure 1 shows the M-S diode sample (1) without sample (sold out), Figure 3 shows the comparative sample (summer), and Figure 3 shows the comparative sample (rl
) is shown.

図において(9)、(IIFiリード線、(101#:
を工n電極、(11)は絶縁性有機化合物層、 (12
1はボllN−メチルビロール膜、(I4はAu電極、
(IFAはガラス基板、鐸けpFX蒸着膜である。
In the figure (9), (IIFi lead wire, (101#:
(11) is an insulating organic compound layer, (12
1 is a bollN-methylvirol film, (I4 is an Au electrode,
(IFA is a glass substrate and a pFX deposited film.

変化を示すI−マ特性図である妙 図中、(財)、四は比較試料(1)および比較試料(I
m)の特性、彌〜(至)は各々MIEIダイオード試料
(夏)〜試料(Ill)の特性である。なお、正電圧側
か順方向、負電圧側が逆方向である。これによると、こ
の発明の実施例により得られたV工Sダイオードは、良
好な整流特性が観測され、しかもP!、線層の層厚が厚
いにもかかわらず順方向で大きな電流が得られ、製造時
の層厚制御により所望の特性のM工Sダイオードを得る
ことができることが解る。
The I-ma characteristic diagram showing the changes in Myozuchu (Taiwan), 4 shows the comparative sample (1) and the comparative sample (I
The characteristics of m) and 匌 (to) are the characteristics of the MIEI diode sample (summer) to sample (Ill), respectively. Note that the positive voltage side is the forward direction, and the negative voltage side is the reverse direction. According to this, the V-type S diode obtained according to the embodiment of the present invention was observed to have good rectification characteristics, and moreover, P! It can be seen that a large current can be obtained in the forward direction despite the thick line layer, and that an M-S diode with desired characteristics can be obtained by controlling the layer thickness during manufacturing.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、電極となる導電層、
電解本合法により形成されたπ−共役系高分子からなる
半導体層、電子受容性基および電子供与性基の少なくと
も一方を有する絶縁性有機化合物層、並びに電極となる
金属層を積層するので、容易に、高性能でかつ性能の安
定したMISダイオードの製造方法を得ることができる
As described above, according to the present invention, a conductive layer serving as an electrode,
A semiconductor layer made of a π-conjugated polymer formed by an electrolytic method, an insulating organic compound layer having at least one of an electron-accepting group and an electron-donating group, and a metal layer serving as an electrode can be laminated easily. Furthermore, a method for manufacturing an MIS diode with high performance and stable performance can be obtained.

、なお、絶縁性有機化合物層t−蒸発法でtb成すれば
、層厚制御も容易であり、例えば光センサや光電変換素
子など種々の部品の製造に有用である。
Note that if the insulating organic compound layer tb is formed by the t-evaporation method, the layer thickness can be easily controlled, and it is useful for manufacturing various parts such as optical sensors and photoelectric conversion elements, for example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による方法で製造されたM
工Sダイオードを示す断面図、第8図は一般的な有機シ
ョットキーダイオードを示す断面図、第8図は従来の一
般的な有機M工Sダイオードを示す断面図、第4図はこ
の発明の一実施例によるMISダイオード、一般的な有
機ショットキーグイオーF、および従来の一般的な有機
M工Sダイオードを比較するための電流(I)−電圧(
マ)特性図、第5図は一般的なM工8ダイオードを示す
断面図、第6図は従来のMOSダイオードを示す断面図
である。 図において、(1)、(6)、(9:、Q31はリード
線、(21は電極となる金属層、(3;は絶縁層、(4
1は半導体層、+51 Fi電極となる導電i’Rs 
(71[8101層、(8)はS1層、flol ri
In層、(II) [絶縁性有機化合物層、+12)は
ポリN−メチルピロール膜、04はAu電極、−はガラ
ス基板、(21はPE蒸着膜、(財)、(至)は−それ
ぞれ比較試料(I)および(■)の特性、四〜f21は
それぞれこの発明の一実施例により得られたWEBダイ
オード試料(I)〜−)の特性である。 なお、各図中同一符号は1i51−また#−を相当部分
?示すものとする。
FIG. 1 shows an M manufactured by a method according to an embodiment of the present invention.
8 is a cross-sectional view showing a general organic Schottky diode. FIG. 8 is a cross-sectional view showing a conventional general organic M-S diode. FIG. Current (I) - Voltage (
Fig. 5 is a sectional view showing a general M8 diode, and Fig. 6 is a sectional view showing a conventional MOS diode. In the figure, (1), (6), (9:, Q31 is a lead wire, (21 is a metal layer that becomes an electrode, (3; is an insulating layer, (4;
1 is a semiconductor layer, +51 is a conductive i'Rs that becomes a Fi electrode.
(71 [8101 layer, (8) is S1 layer, flol ri
In layer, (II) [Insulating organic compound layer, +12] is polyN-methylpyrrole film, 04 is Au electrode, - is glass substrate, (21 is PE vapor deposited film, (goods), (to) - respectively The characteristics of comparative samples (I) and (■), and 4 to f21 are the characteristics of WEB diode samples (I) to -) obtained in accordance with an embodiment of the present invention, respectively. In addition, the same symbols in each figure are 1i51- and #- are the corresponding parts? shall be indicated.

Claims (2)

【特許請求の範囲】[Claims] (1)電極となる導電層、半導体層、絶縁性有機化合物
層、および電極となる金属層を積層するMISダイオー
ドの製造方法において、上記半導体層が電解重合法によ
り形成されたπ−共役系高分子からなり、上記絶縁性有
機化合物が電子受容性基および電子供与性基の少なくと
も一方を有することを特徴とするMISダイオードの製
造方法。
(1) In a method for manufacturing an MIS diode in which a conductive layer, a semiconductor layer, an insulating organic compound layer, and a metal layer as an electrode are laminated, the semiconductor layer is a π-conjugated polymer formed by electrolytic polymerization. A method for manufacturing an MIS diode, characterized in that the insulating organic compound has at least one of an electron-accepting group and an electron-donating group.
(2)π−共役系高分子が、ポリピロール、ポリ−N−
置換ピロール、ピロールとN−置換ピロールの共重合体
、ポリチエニレン、ポリアニリン、ポリフラン、ポリア
ズレン、ポリビニルピリジンおよびポリチオフェンの内
の少くとも一種である特許請求の範囲第1項記載のMI
Sダイオードの製造方法。
(2) The π-conjugated polymer is polypyrrole, poly-N-
MI according to claim 1, which is at least one of substituted pyrrole, copolymer of pyrrole and N-substituted pyrrole, polythienylene, polyaniline, polyfuran, polyazulene, polyvinylpyridine, and polythiophene.
Method of manufacturing S diode.
JP60003601A 1985-01-12 1985-01-12 Manufacture of mis diode Pending JPS61163659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60003601A JPS61163659A (en) 1985-01-12 1985-01-12 Manufacture of mis diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60003601A JPS61163659A (en) 1985-01-12 1985-01-12 Manufacture of mis diode

Publications (1)

Publication Number Publication Date
JPS61163659A true JPS61163659A (en) 1986-07-24

Family

ID=11562004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60003601A Pending JPS61163659A (en) 1985-01-12 1985-01-12 Manufacture of mis diode

Country Status (1)

Country Link
JP (1) JPS61163659A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294856A (en) * 1988-05-20 1989-11-28 Nippon Telegr & Teleph Corp <Ntt> Manufacture of organic functional film and itself
EP0449226A1 (en) * 1990-03-27 1991-10-02 Seiko Epson Corporation Non-linear resistor switching element, active matrix liquid crystal panel using the same, and method for manufacturing the non-linear resistor switching element
US5140398A (en) * 1986-12-24 1992-08-18 Canon Kabushiki Kaisha Switching device
US5175114A (en) * 1989-01-13 1992-12-29 Seiko Epson Corporation Method for production of a bidirectional nonlinear resistor, active matrix liquid crystal panel using bidirectional nonlinear resistor
US5294560A (en) * 1989-01-13 1994-03-15 Seiko Epson Corporation Bidirectional nonlinear resistor, active matrix liquid crystal panel using bidirectional nonlinear resistor, and method for production thereof
US5485294A (en) * 1987-12-18 1996-01-16 Seiko Epson Corporation Process for producing MIM elements by electrolytic polymerization
FR2821575A1 (en) * 2001-03-02 2002-09-06 Commissariat Energie Atomique METHOD FOR LOCALIZED ORGANIC GRAFTING WITHOUT MASK ON CONDUCTIVE OR SEMICONDUCTOR PROPERTIES OF COMPOSITE SURFACES

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140398A (en) * 1986-12-24 1992-08-18 Canon Kabushiki Kaisha Switching device
US5485294A (en) * 1987-12-18 1996-01-16 Seiko Epson Corporation Process for producing MIM elements by electrolytic polymerization
JPH01294856A (en) * 1988-05-20 1989-11-28 Nippon Telegr & Teleph Corp <Ntt> Manufacture of organic functional film and itself
US5175114A (en) * 1989-01-13 1992-12-29 Seiko Epson Corporation Method for production of a bidirectional nonlinear resistor, active matrix liquid crystal panel using bidirectional nonlinear resistor
US5294560A (en) * 1989-01-13 1994-03-15 Seiko Epson Corporation Bidirectional nonlinear resistor, active matrix liquid crystal panel using bidirectional nonlinear resistor, and method for production thereof
EP0449226A1 (en) * 1990-03-27 1991-10-02 Seiko Epson Corporation Non-linear resistor switching element, active matrix liquid crystal panel using the same, and method for manufacturing the non-linear resistor switching element
FR2821575A1 (en) * 2001-03-02 2002-09-06 Commissariat Energie Atomique METHOD FOR LOCALIZED ORGANIC GRAFTING WITHOUT MASK ON CONDUCTIVE OR SEMICONDUCTOR PROPERTIES OF COMPOSITE SURFACES
WO2002070148A1 (en) * 2001-03-02 2002-09-12 Commissariat A L'energie Atomique Method for mask-free localised organic grafting on conductive or semiconductive portions of composite surfaces
JP2004524149A (en) * 2001-03-02 2004-08-12 コミツサリア タ レネルジー アトミーク Method for mask-free local grafting of organics onto conductive or semiconductive parts of composite surfaces
AU2002241072B2 (en) * 2001-03-02 2007-02-01 Commissariat A L'energie Atomique Method for mask-free localised organic grafting on conductive or semiconductive portions of composite surfaces
KR101017493B1 (en) 2001-03-02 2011-02-25 꼼미사리아 아 레네르지 아또미끄 에 오 에네르지 알떼르나띠브스 Method for mask-free localised organic grafting on conductive or semiconductive portions of composite surfaces
JP4667715B2 (en) * 2001-03-02 2011-04-13 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for locally grafting organic matter mask-free onto conductive or semiconductive portions of a composite surface
US8394460B2 (en) 2001-03-02 2013-03-12 Commissariat A L'energie Atomique Method for mask-free localized organic grafting on conductive or semiconductive portions of composite surfaces

Similar Documents

Publication Publication Date Title
Li et al. Covalently interlinked organic LED transport layers via spin‐coating/siloxane condensation
Smestad et al. A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices
Katz et al. Naphthalenetetracarboxylic diimide-based n-channel transistor semiconductors: structural variation and thiol-enhanced gold contacts
Leriche et al. Molecular engineering of the internal charge transfer in thiophene− triphenylamine hybrid π-conjugated systems
US5107308A (en) Field-effect transistor
JPH0555568A (en) Thin organic film transistor
JPH05508745A (en) thin layer field effect transistor
Ma et al. Organic thin film transistors based on stable amorphous ladder tetraazapentacenes semiconductors
CN1855572B (en) Ambipolar organic thin-film field-effect transistor and making method
Hirata et al. Interface engineering for solid-state dye-sensitised nanocrystalline solar cells: the use of an organic redox cascade
Sun et al. Phthalimide–thiophene-based conjugated organic small molecules with high electron mobility
US20220102658A1 (en) Photodetector composition
Chen et al. A novel organic n-type material: fluorinated perylene diimide
JPS61163659A (en) Manufacture of mis diode
Liu et al. Improving the performance of arylamine-based hole transporting materials in perovskite solar cells: extending π-conjugation length or increasing the number of side groups?
Igci et al. Highly Planar Benzodipyrrole‐Based Hole Transporting Materials with Passivation Effect for Efficient Perovskite Solar Cells
Wu et al. One-step synthesis of low-cost perylenediimide-based cathode interfacial materials for efficient inverted perovskite solar cells
JPH0469971A (en) Field effect transistor
JP7409215B2 (en) Photoelectric conversion elements and power generation devices
JP2008094781A (en) Tetrathiafulvalene derivative and electronic device using the same
JP7464987B2 (en) Conductive polymer material and method for producing same, photoelectric conversion element and field effect transistor
Pająk et al. New thiophene imines acting as hole transporting materials in photovoltaic devices
JP5005467B2 (en) Method for manufacturing photoelectric conversion element
JP2008527754A (en) Organic thin film transistor
JPS6314472A (en) Field-effect transistor