JPS61162704A - Apparatus for measuring dimension of outer diameter - Google Patents

Apparatus for measuring dimension of outer diameter

Info

Publication number
JPS61162704A
JPS61162704A JP459485A JP459485A JPS61162704A JP S61162704 A JPS61162704 A JP S61162704A JP 459485 A JP459485 A JP 459485A JP 459485 A JP459485 A JP 459485A JP S61162704 A JPS61162704 A JP S61162704A
Authority
JP
Japan
Prior art keywords
measured
outer diameter
data
line sensor
matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP459485A
Other languages
Japanese (ja)
Inventor
Ichiu Ishii
石井 一宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP459485A priority Critical patent/JPS61162704A/en
Publication of JPS61162704A publication Critical patent/JPS61162704A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/024Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of diode-array scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the outer diameter of conveyed matter with high accuracy, by measuring the outer diameter of the matter to be measured on the basis of plural time series measuring data during a period when the matter to be measured is measured by each line sensor. CONSTITUTION:The outer diameter data of the matter 11 to be measured moving on a conveyor 9 are at first measured at plural places in a time series manner with respect to a certain direction by a first line sensor 13. Next, the outer diameter data in the direction having a definite angle to the above- mentioned direction are similarly measured at plural places by a second line sensor 15. These plural data are processed by a computer 18 and the shape based on the first line sensor 13 is further compared with that based on the second line sensor 15 and other data are corrected on the basis of max. value data receiving no effect of a speed and correcting operation is performed so as to allow both shapes to coincide with each other.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は機械工作部品等の円形製品の外径寸法を高精度
に測定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an apparatus for measuring the outer diameter dimension of a circular product such as a machined part with high precision.

〈従来技術〉 第4図、第5図によシ従来の測定装置の一例を説明する
。第4図社全体概念図であり、lは光源、2は光源よシ
の光線を平行光線Fに変換するレンズ、Dは光線Fの幅
、3は光線Fの幅内に位置する被測定円形物体、tはこ
の物体の外径、4は光線Fをイメージセンナ5内のライ
ン状の半導体の受光素子51に集光するレンズ、52は
受光素子の2位置出力金属列変換する並列直列変換回路
、6は直列変換信号elの増幅器、7社演算処理回路、
8は表示回路、ecは制御信号、e、は電荷をシフトし
て直列変換するための同期パルスである。
<Prior Art> An example of a conventional measuring device will be explained with reference to FIGS. 4 and 5. Figure 4 is an overall conceptual diagram of the company, where l is a light source, 2 is a lens that converts the light rays from the light source into parallel rays F, D is the width of ray F, and 3 is a circle to be measured located within the width of ray F. An object, t is the outer diameter of this object, 4 is a lens that focuses the light beam F onto a line-shaped semiconductor light receiving element 51 in the image sensor 5, and 52 is a parallel-to-serial conversion circuit that converts the two-position output metal array of the light receiving element. , 6 is an amplifier for serial conversion signal el, 7 company arithmetic processing circuit,
8 is a display circuit, ec is a control signal, and e is a synchronization pulse for shifting charges and serially converting them.

このような構成において、受光素子列の長さを光線Fの
幅りと対応させておき、外径tK相当する部分は影の部
分で無信号、光の当る部分は信号として2位置変換すれ
ば、無信号部分のシフトパルス数に受光素子の1間隔当
りの長さを乗じて外径tを測定することができる。
In such a configuration, the length of the light-receiving element array is made to correspond to the width of the light beam F, and the part corresponding to the outer diameter tK is a shadow part and has no signal, and the part that is hit by light is a signal part and is converted into two positions. The outer diameter t can be measured by multiplying the number of shift pulses in the no-signal portion by the length per interval of the light-receiving elements.

この測定方式では線材等の外径を連続的に測定するのK
は適しているか、原理的九一点測定であるから、径が方
向にあまり依存しない場合、あるいは測定個所が指定さ
れている場合は良いが、各種方向く外径を測定しようと
すると、測定状態で被測定物体を回転させる必賛がある
。線材のように円筒状に長いものであれば回転させるこ
とは容易でめるが、円盤状のもは高精度で回転させるこ
とは難かしい。
This measurement method continuously measures the outer diameter of wire rods, etc.
Is it suitable? Since it is a 91-point measurement in principle, it is fine if the diameter does not depend much on the direction or if the measurement location is specified, but if you try to measure the outer diameter in various directions, the measurement condition It is essential to rotate the object to be measured. It is easy to rotate long cylindrical objects such as wire rods, but it is difficult to rotate disc-shaped objects with high precision.

そこで第5図はコンベア上を移動する円板状の物体の外
径を測定する場合の概念図であり、9゜10は同一平面
で同一人方向く被測定物体11を一定速度移動させる直
列配列され九コンベア手段で、コンベア9よりコンベア
IOK引継がれる個Fjll’lJ]隔dのスリットが
形成され、このスリットの下部側に幅りの光源12が配
置されている。13は第4図におけるレンズ4とイメー
ジセンサ5を一体くしたラインセンサカメラで、一定時
間間隔毎にスリットを通過する物体の外径をサンプル測
定する◎物体がスリットを通過する期間をn区間に分割
し、各々の区間での測定値をtl、 t2. L3・・
・tn  を得、これらデータをコンピュータ等により
データ処理し工外径が誤差範囲に入っているか否かを判
定する。
Therefore, Fig. 5 is a conceptual diagram when measuring the outer diameter of a disc-shaped object moving on a conveyor, and 9°10 is a series arrangement in which the measured object 11 is moved at a constant speed on the same plane and in the direction of the same person. In the conveyor means, a slit with a distance of d is formed, and a light source 12 having a width is disposed at the lower side of the slit. 13 is a line sensor camera that integrates the lens 4 and image sensor 5 shown in Fig. 4, and measures the outer diameter of an object passing through the slit at regular time intervals.◎The period during which the object passes through the slit is defined as n intervals. The measured values in each section are divided into tl, t2. L3...
・tn is obtained, these data are processed by a computer, etc., and it is determined whether the machining outside diameter is within the error range.

って速度が一定に保持されている)Kよって左右され、
高精度の測定には極めて正確な速度制御か必要となり、
通常のコンベア手段では電源変動や機械系のガタの影響
等で実現か困難である@〈発明の解決しようとする問題
点〉 本発明の目的は、コンベア手段の移動速度が高精度に制
御されていない場合においても、運搬される物体の外径
を高精度に測定可能な装置を提供することにある。
(the speed is held constant) depends on K,
High precision measurements require extremely accurate speed control.
This is difficult to achieve with ordinary conveyor means due to the effects of power fluctuations and backlash in the mechanical system. An object of the present invention is to provide a device that can measure the outer diameter of an object being transported with high precision even when the object is not available.

く問題を解決するための手段〉 本発明の構成上の特徴は、コンベア手段により移動運搬
される被測定物体がスリ、状光源よりの光を遮ぎる長さ
を半導体イメージセンサによる検出する方式のラインセ
ンサの一刺を、上記被測定物体の移動方向く互い九一定
角度をもって配置し、各ラインセンナが上記被測定物体
を測定する期間における複数の時系列的測定データに基
づき上記被測定物体の外径を測定すること[6る・く作
用〉 コンベア上を移動する被測定物体は、まず第1のライン
センサによりめる方向についての外径データが時系列的
に複数個所測定される。次忙第2のラインセンサにより
上記方向と一定の角度を持った方向の外径データが同様
に複数個所測定され□ る。これら複数のデータを処理し、第1のラインセンサ
に基づく形状と第26ラインセ/す忙基づく形状とが比
較され、速度の影響を受けない最大値データを基準にし
て他のデータを補正し、繭形状が一致するように補正演
算される。    。
Means for Solving Problems> The structural feature of the present invention is that a semiconductor image sensor is used to detect the length of an object to be measured that is moved and conveyed by a conveyor means and blocks light from a pickpocket-shaped light source. The line sensors are arranged at a constant angle to each other in the direction of movement of the object to be measured, and the object to be measured is measured based on a plurality of time-series measurement data during the period in which each line sensor measures the object to be measured. Measuring the outer diameter of the object to be measured moving on the conveyor, first, outer diameter data in the direction of measurement is measured at a plurality of locations in time series using the first line sensor. A busy second line sensor similarly measures outer diameter data at a plurality of locations in a direction having a certain angle with the above direction. These multiple data are processed, the shape based on the first line sensor and the shape based on the 26th line sensor are compared, and other data are corrected based on the maximum value data that is not affected by speed, Correction calculations are performed so that the cocoon shapes match. .

〈実施例〉 第1図は全体構成を示し、スリット状光源12とライン
センサ13で第1方向の一1是(を系列測定)が実行さ
れる。光源12はコンベア9の方向AK対して45°の
角度忙設置されそいる。スリット状の光源14とライン
センサ15で第2方向の測定(L系列測定)が実行され
る。光源14ed 12よシは下流側に位置し、12と
は906の角度を形成して配置されている。
<Example> FIG. 1 shows the overall configuration, in which a slit-shaped light source 12 and a line sensor 13 perform serial measurements in the first direction. The light source 12 is about to be installed at an angle of 45° with respect to the direction AK of the conveyor 9. Measurement in the second direction (L series measurement) is performed using the slit-shaped light source 14 and the line sensor 15. The light source 14ed 12 is located on the downstream side and is arranged to form an angle of 906 with 12.

16.17は夫々ラインセンサ13,15の制御及び測
定信号ejl el、を発信するコントローラ、18a
信号eze 1!II、を受けて演算処理するコンビ、
−タ、19は処理結果を表示するインターフェイス、e
oは他の装置への測定出力発信を示す。
16. 17 is a controller 18a that sends control and measurement signals ejl el for the line sensors 13 and 15, respectively;
Signal eze 1! II, a combination that receives and performs arithmetic processing,
- data, 19 is an interface for displaying processing results, e
o indicates transmission of measurement output to other devices.

第2図はt系列、L系列の測定概念図であシ。Figure 2 is a conceptual diagram of t-series and L-series measurements.

9G’の角度をもって配置されたスリット光源12゜1
4上を被測定物体11がA方向に移動する様子を示す。
Slit light source 12°1 arranged at an angle of 9G'
4 shows how the object to be measured 11 moves in the A direction.

光源12とラインセンナ13によるt系列は11が光源
12上を通過する期間n個サンプル測定され、   −
そのデータ41.t2・・・Lnは信号etとして=ン
ピュータ18に送られ一時記憶されると共に形状が演算
される。光源14とラインセンサ15よりなるL系列は
11が光源14上を通過する期間mil!サンプル測定
され、そのデータLl、L2.・・・Lmは信号eLと
してフンピユー夕18に送られ一時記憶されると共に形
状が演算されろ。尚サンプル時間は極めて短時間であり
、この時間中はフンペアの速度は一定とみなす。
The t-series by the light source 12 and the line sensor 13 is measured for n samples during the period when 11 passes over the light source 12, -
The data 41. t2...Ln is sent to the computer 18 as a signal et, where it is temporarily stored and the shape is calculated. The L series consisting of the light source 14 and the line sensor 15 has a period of mil! during which the line sensor 11 passes over the light source 14. Samples are measured and their data Ll, L2 . . . . Lm is sent as a signal eL to the computer 18, where it is temporarily stored and the shape is calculated. Note that the sample time is extremely short, and the speed of the humpair is assumed to be constant during this time.

第3図はこのように測定され、記憶される物体1’lの
外径データと測定個所の対応を示した図でらシ、マトリ
ックス状に複数の外径データが得られ。
FIG. 3 is a diagram showing the correspondence between the outer diameter data of the object 1'1 measured and stored in this way and the measured locations.A plurality of outer diameter data are obtained in a matrix.

各系列においてこれらデータで形状が演算される。In each series, the shape is calculated using these data.

コンピュータ18で唸、このようにして得られた形状デ
ータを処理する。即ち上記を系列、L系列データによる
形状を重ね合わせる。このときLmaxとLr11ax
とはコンベアの速度に関係しない真値として利用できる
のでtmax VCよりL系列形状の最大値を補正し、
Lmix ’よりt系列形状の最大値を補正すると共に
1これら補正値に基づいて他のデータを相互補正して両
系列の形状が一致するようにするO このように補正された形状を被測定物体の形状と認識し
、インターフェイス19のCRTK表示させ、又は出力
信号C8とじて外部装置fK発信する。
The computer 18 processes the shape data thus obtained. That is, the above is superimposed on the shape based on the series and L series data. At this time, Lmax and Lr11ax
can be used as a true value that is not related to the conveyor speed, so correct the maximum value of the L series shape from tmax VC,
The maximum value of the t-series shape is corrected from Lmix', and other data is mutually corrected based on these correction values so that the shapes of both series match. It is recognized as the shape of , and displayed on the CRTK of the interface 19, or transmitted to an external device fK as an output signal C8.

上記実施例ではスリット光源は互いに90°の角度をも
って配置した例を示したが、精度の低下を許容するなら
ば90°の角度でなくても同様な効果を有することがで
きる。又光源の種類については特に限定されず普通光で
もよいし、精度を上げる九めにレーザー光を使用しライ
/センサの分解能を上げてもよい。更に光線としては第
5図で示した平行光線に変更して受光する方式でもよい
In the above embodiment, the slit light sources are arranged at an angle of 90 degrees, but the same effect can be obtained even if the angle is not 90 degrees, provided that a decrease in accuracy is tolerated. Further, the type of light source is not particularly limited, and ordinary light may be used, or laser light may be used to increase the resolution of the light/sensor. Furthermore, the light beam may be changed to a parallel light beam as shown in FIG. 5 and then received.

本発明の測定原理によれは、測定可能な物体の形状は円
形のものKは限定されず、異なる方向で最大値データが
1個得られる形状であればあらゆる複雑が形状の物体の
形状を測定することが可能である。
According to the measurement principle of the present invention, the shape of an object that can be measured is not limited to a circular object, but any complex shape can be measured as long as the shape allows one maximum value data to be obtained in different directions. It is possible to do so.

く効果〉 以上説明したように、本発明によれば被測定物体を回転
させることなく、通常のコンベア手段で移動させながら
複雑な形状を高精度で測定することができるので、生産
工場I′cおける製品の検査工程を自動化する場合の効
果は大でらる。
Effect> As explained above, according to the present invention, it is possible to measure a complex shape with high precision while moving the object to be measured using a normal conveyor means without rotating it. The effects of automating the product inspection process at the factory are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図はその
主要部の概念図、第3図は測定データと測定個所の対応
を示す説明図、第4図、第5図は従来装置の一例を示す
構成図である。 9・・・コンベア、 11・・・被測定物体、12.1
4・・・スリット光源、13.15・・・ラインセンサ
、 18・・・コンピュータ、19インターフエイス。
Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2 is a conceptual diagram of its main parts, Fig. 3 is an explanatory diagram showing the correspondence between measurement data and measurement points, and Figs. 4 and 5 are FIG. 1 is a configuration diagram showing an example of a conventional device. 9... Conveyor, 11... Object to be measured, 12.1
4...Slit light source, 13.15...Line sensor, 18...Computer, 19 Interface.

Claims (1)

【特許請求の範囲】[Claims] コンベア手段により移動運搬される被測定物体がスリッ
ト状光源よりの光を遮ぎる長さを半導体イメージセンサ
により検出する方式のラインセンサの一対を上記被測定
物体の移動方向に互いに一定角度をもって配置し、各ラ
インセンサが上記被測定物体を測定する期間における複
数の時系列的測定データに基づき上記被測定物体の外径
を測定することを特徴とする外径寸法測定装置
A pair of line sensors are arranged at a constant angle to each other in the direction of movement of the object to be measured, which uses a semiconductor image sensor to detect the length of the object to be measured that is moved and conveyed by a conveyor and blocks light from a slit-shaped light source. , an outer diameter dimension measuring device that measures the outer diameter of the object to be measured based on a plurality of time-series measurement data during a period in which each line sensor measures the object to be measured.
JP459485A 1985-01-14 1985-01-14 Apparatus for measuring dimension of outer diameter Pending JPS61162704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP459485A JPS61162704A (en) 1985-01-14 1985-01-14 Apparatus for measuring dimension of outer diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP459485A JPS61162704A (en) 1985-01-14 1985-01-14 Apparatus for measuring dimension of outer diameter

Publications (1)

Publication Number Publication Date
JPS61162704A true JPS61162704A (en) 1986-07-23

Family

ID=11588367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP459485A Pending JPS61162704A (en) 1985-01-14 1985-01-14 Apparatus for measuring dimension of outer diameter

Country Status (1)

Country Link
JP (1) JPS61162704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8132195B2 (en) 2004-09-13 2012-03-06 Panasonic Corporation Disk device with shape identifier
WO2018042727A1 (en) * 2016-08-31 2018-03-08 パナソニックIpマネジメント株式会社 Image pickup device, image processing system, image pickup method, and image processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8132195B2 (en) 2004-09-13 2012-03-06 Panasonic Corporation Disk device with shape identifier
WO2018042727A1 (en) * 2016-08-31 2018-03-08 パナソニックIpマネジメント株式会社 Image pickup device, image processing system, image pickup method, and image processing method

Similar Documents

Publication Publication Date Title
US3327584A (en) Fiber optic proximity probe
US3761182A (en) Measuring the diameter of a circularly shaped object and correcting measurement for slight displacements of object along either of two orthogonal optic axes
US5821423A (en) Apparatus and method for binocular measurement system
EP0111642B1 (en) Method and apparatus for measuring a displacement of one member relative to another
JPS61162704A (en) Apparatus for measuring dimension of outer diameter
US4645634A (en) Apparatus for measuring the pitch between adjacent rods in a nuclear fuel assembly
JPS63163150A (en) Printed circuit board inspecting device
US4814624A (en) Method and apparatus for measuring the position of an object boundary
US4077723A (en) Method of measuring thickness
JPS61246605A (en) Measuring method for size of object
JPS63171304A (en) Measuring apparatus for dimension
EP0271230B1 (en) Apparatus for pre-processing sensor data
SU945648A1 (en) Method of measuring transparent pipe geometrical dimensions
JPS623609A (en) Range finder
RU2052771C1 (en) Apparatus for testing articles
SU765651A1 (en) Method of checking linear dimensions of periodic microstructures
JPH0411415Y2 (en)
GB2159621A (en) Fast response gauging system
JPS61246606A (en) Measuring method for size of object
JPS5925442B2 (en) Dimension measurement method and device
JPH04196455A (en) Tester of lead bend in electronic component
JPS6333603A (en) Optical position detector
JPS6312903A (en) Detector for tip position of lead
GB2236847A (en) Incremental position transducer
Davis et al. An On-Line Flatness Meter for Continuously Produced Strip Materials