JPS61162351A - Manufacture of grain on lithographic printing plate - Google Patents

Manufacture of grain on lithographic printing plate

Info

Publication number
JPS61162351A
JPS61162351A JP305285A JP305285A JPS61162351A JP S61162351 A JPS61162351 A JP S61162351A JP 305285 A JP305285 A JP 305285A JP 305285 A JP305285 A JP 305285A JP S61162351 A JPS61162351 A JP S61162351A
Authority
JP
Japan
Prior art keywords
roughness
roll
unevenness
rolling
lithographic printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP305285A
Other languages
Japanese (ja)
Inventor
Hideyoshi Usui
碓井 栄喜
Kiyoharu Nakaizumi
中泉 清春
Kozo Hoshino
晃三 星野
Masahiro Kawaguchi
雅弘 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP305285A priority Critical patent/JPS61162351A/en
Publication of JPS61162351A publication Critical patent/JPS61162351A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme

Abstract

PURPOSE:To obtain a grained plate of of a lithographic printing whose uniformity of a rough surface and density of concave part are high and roughness is sufficient, by a method wherein rolling of an aluminium plate or foil is performed at a specific pressure decreasing ratio by a roll having a specific rough surface. CONSTITUTION:Rolling of an aluminium plate or foil is performed at a rolling reduction of 2-20% by a roll whose mean roughness (Ra) at the center line is made into 0.7-1.7mum and the number of crests of unevenness having depth of more than 0.6mum is made more than 500 piece/mm<2> by electric discharge machining. Under a state wherein the mean roughness (Ra) at the center line is less than 0.7mum, the number of crests of unevenness having depth of less than 0.6mum is made less than 500 piece/mm<2> and pressure decreasing ratio is less than 2% adhesion of a photosentive film and water retention characteristics at the time of printing is not sufficient, and when the mean roughness at the center line and the rolling reduction exceeds respectively 1.7mum and 20%, a small point reproducibility is deteriorated. As for the upper limit of the number of crests of the unevenness, it is desirable to make it into 20,000 piece/mm<2> and if it is more than this, it becomes that sufficient roughness and uneven density can not be obtained as a supporting member for lithographical printing.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は平版印刷版支持体の砂目製造法に関し、さらに
詳しくは、粗面の均一性が高く、かつ、四部密度が高く
、充分な粗度(Ra)を有する平版印刷版支持体の砂目
製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing grains of a lithographic printing plate support, and more specifically, the present invention relates to a method for producing grains of a planographic printing plate support, and more specifically, The present invention relates to a method for producing grains of a lithographic printing plate support having roughness (Ra).

[従来技術1 アルミニツムは平版印刷版を製造する基材として、現在
広く使用されている。
[Prior Art 1 Aluminum is currently widely used as a base material for manufacturing lithographic printing plates.

手)グ フルごニウムめ逗y!印尺l夏1+7Jし≧ニ
ウム板表面を粗面化して砂目を形成させ、感光組成物を
塗布し、これを露光・現像して印刷すべき画像部をレジ
スト層として残すことによって得らバる。
(Hand) Hello Fulgonium! The stamp length is 1+7J and the surface of the plate is roughened to form grains, a photosensitive composition is applied, and this is exposed and developed to leave the image area to be printed as a resist layer. Ru.

このアルミニウム板表面に砂目な形成する目的は二つあ
り、第一に印刷繰作中に適切な保水性を与えること、第
二にホトレジスト被覆とアルミニウム板表面との接着性
を高め充分な耐刷力を与えることである。
The purpose of forming this grain on the surface of the aluminum plate is twofold: firstly, it provides appropriate water retention during printing operations, and secondly, it increases the adhesion between the photoresist coating and the surface of the aluminum plate to provide sufficient durability. It is to give printing power.

砂目立て法としては種々の方法があるか、機十戒的方法
、化学的方法に大別されている。
There are various methods for graining, and they are roughly divided into mechanical methods and chemical methods.

先ず、i7戒的方法としては、ボールグレイニング、ワ
イヤーグレイニング、ブラシグレイニング等があり、次
に、化学的方法としては、酸、アルカリ溶液中の腐蝕法
、電気化学的腐蝕法等か実用化されている。
First, there are standard methods such as ball graining, wire graining, and brush graining, and second, chemical methods include corrosion methods in acid or alkaline solutions, electrochemical corrosion methods, etc. has been made into

しかしなが呟これらの方法には次のような問題がある。However, these methods have the following problems.

即ち、機械的砂目立て法を行なう場合の問題点は、機械
や研磨材の調整に相当の熟練度を必要とすること、粗面
化されたアルミニウム板の表面にくいこんだ研磨材、ア
ルミニウム屑等を取り除く作業を要することである。
In other words, the problems with mechanical graining are that it requires considerable skill in adjusting the machine and the abrasive material, and that the abrasive material and aluminum shavings embedded in the surface of the roughened aluminum plate can be easily removed. This requires work to remove.

また、化学的砂目立て法の問題点は、浴組成、浴温度、
電解条件がかなり狭い範囲に調整する必要があり、さら
に、最も高性能の砂目が得られる電気化学的砂目立て法
を採用した場合には、その電力消費が印刷版製造原価に
占める割合が相当大きくなることである。
In addition, problems with chemical graining include bath composition, bath temperature,
The electrolytic conditions must be adjusted within a fairly narrow range, and furthermore, if electrochemical graining is used, which provides the highest quality grain, the power consumption will account for a considerable proportion of the printing plate manufacturing cost. It's about getting bigger.

このような、従来の8!械的砂目立て法および化学的砂
目立て法の問題点を解消する方法として、特開昭55−
074898号公報には、反転グレイニング面を有する
ロールにアルミニウム板を通して、深さ3.5μm以下
の孔を形成させる砂目製造法が記載されており、また、
特開昭57−500329号公報には、規定された表面
粗さを有するロールにアルミニウム板を通して規定され
た表面阻さく深さ)を形成し、次いで、陽極酸化処理す
る方法が記載されている。
This kind of conventional 8! As a method to solve the problems of mechanical graining method and chemical graining method,
Publication No. 074898 describes a grain production method in which holes with a depth of 3.5 μm or less are formed by passing an aluminum plate through a roll having an inverted graining surface, and
JP-A-57-500329 describes a method in which an aluminum plate is passed through a roll having a specified surface roughness to form a specified surface barrier depth, and then anodized.

これらの砂目立て法は、繰作が簡単で、かつ、従来の機
械的砂目立て法のように研磨材、アルミニウム屑等を取
り除く作業が不要で、さらに、処理速度も速く製造プロ
セスが大幅に合理化される可能性がある。しかしなが呟
プレスにより孔を作成する際、これらの公報に記載され
ているように孔の深さだけをコントロールしたのでは、
平版印刷版として好ましい砂目を得ることができず、未
だに実用化されてはいない。
These graining methods are easy to repeat and do not require the removal of abrasives, aluminum chips, etc. unlike conventional mechanical graining methods.Furthermore, they are fast and greatly streamline the manufacturing process. There is a possibility that However, when creating holes using the Naga-Mutsu press, it is difficult to control only the depth of the holes as described in these publications.
It has not been possible to obtain a grain suitable for a lithographic printing plate, and it has not yet been put to practical use.

本発明者は、上記に説明した砂目立て法における問題点
を解決し、単に製造プロセスを合理化するだけでなく、
平版印刷版支持体としての性能についても満足できる砂
目板を目標として、特願昭58−145401号明細書
記載の発明を完成した。即ち、支持体表面に長円状のプ
レス四部を特定密度で、かつ、その一部が重なり合って
波状模様を形成するように設けることにより、所期の目
標が達成されることを見出し、具体的なロール粗面化方
法として、ショツトブラスト法を用い、表面に長円状の
プレス四部を200個/ml112以上の密度で、かつ
、プレス凹部が一部重なり合って波状模様をなすように
形成させたアルミニウム板からなる平版印刷版用支持体
とする。
The present inventor solved the problems in the graining method explained above, and not only streamlined the manufacturing process, but also
The invention described in Japanese Patent Application No. 58-145401 was completed with the aim of producing a grained plate that was also satisfactory in terms of performance as a lithographic printing plate support. That is, it was discovered that the desired goal could be achieved by providing four oval presses at a specific density on the surface of the support, with some of them overlapping to form a wavy pattern. As a method for roughening the roll surface, shot blasting was used to form four oval presses on the surface at a density of 200 pieces/ml or more, and the press recesses partially overlapped to form a wavy pattern. The planographic printing plate support is made of an aluminum plate.

しかしなが呟シシットブラスト法では、凹部密度を高め
るためにはロールの加工に際し、ショットするグリッド
の径を小さくする必要があり、グリッド径が小さくなる
と個々のグリッドの衝撃力が小さくなり、印刷版として
充分な粗度(Ra)値が得られなくなる傾向が生じ易く
、この傾向はインペラー回転数、グリッド投入量、21
71時間の調整により軽減できるが、高密度で凹凸部を
有し、かつ、必要な粗度(Ra)を有し、さらに、粗面
に均一性を持たせるという充分な性能を得ることは容易
でなく、また、この方法では粗面に充分な性能を持たせ
ようとすると粗面の均一性に欠ける部分が生じ易く、版
の汚れ等の問題が発生し易くなる。即ち、充分な特性を
有するロールを製作するためには、多数の条件で実施し
てその中から良品を選定するので、生産性が悪く費用が
かかり、さらに、品質を向上させる必要がある。
However, in the Nagamu Shishit Blasting method, in order to increase the density of recesses, it is necessary to reduce the diameter of the grid to be shot when processing the roll, and as the grid diameter becomes smaller, the impact force of each grid becomes smaller, and the printing There is a tendency that a sufficient roughness (Ra) value cannot be obtained as a plate, and this tendency is caused by impeller rotation speed, grid input amount, 21
Although it can be reduced by adjusting for 71 hours, it is easy to obtain sufficient performance by having high density, uneven parts, the necessary roughness (Ra), and uniformity on the rough surface. Moreover, in this method, if an attempt is made to give sufficient performance to the rough surface, the rough surface tends to lack uniformity in some areas, and problems such as staining of the plate are likely to occur. That is, in order to manufacture a roll with sufficient characteristics, it is necessary to perform the process under a large number of conditions and select a good product from among them, resulting in poor productivity and high costs, and furthermore, it is necessary to improve the quality.

[発明が解決しようとする問題点1 本発明は上記に説明したように、平版印刷版支持体とし
てのアルミニウム板表面を粗面化して砂目を形成させる
種々の方法における問題点および本発明者の先願の発明
に対する知見に基いてなされたものであり、本発明者が
研究した結果、特定の粗面を有するロールにより特定の
圧下率でアルミニウム板または箔を圧延することにより
、粗面の均一性が高く、かつ、凹部密度が大きく充分な
粗度(Ra)の平版印刷版支持体の砂目が得られる製造
法を開発したのである。
[Problem to be Solved by the Invention 1] As explained above, the present invention solves problems in various methods of roughening the surface of an aluminum plate as a lithographic printing plate support to form grains, and the present inventors This invention was made based on the knowledge of the invention of the earlier application, and as a result of research by the present inventor, by rolling an aluminum plate or foil at a specific rolling reduction rate with a roll having a specific rough surface, the rough surface can be improved. They have developed a manufacturing method that allows the grain of a lithographic printing plate support to be obtained with high uniformity, high recess density, and sufficient roughness (Ra).

[問題点を解決するための手段] 本発明に係る平版印刷版支持体の砂目製造法の特徴とす
るとおろは、放電加工により、中心線平均粗さ(Ra)
を0.7〜1.7μ+nとし、深さ0.6.17111
以上の凹凸の山数が500個/mm2以上としたロール
により、アルミニウム板およびアルミニウム箔を圧下率
2〜20%で圧延を行なうことにある。
[Means for Solving the Problems] A feature of the grain manufacturing method of the lithographic printing plate support according to the present invention is that the center line average roughness (Ra) can be improved by electric discharge machining.
is 0.7 to 1.7μ+n, and the depth is 0.6.17111
The object of the present invention is to roll an aluminum plate and an aluminum foil at a rolling reduction ratio of 2 to 20% using the roll having the above-described unevenness of 500/mm<2> or more.

本発明に係る平版印刷版支持体の砂目製造法について、
以下詳細に説明する。
Regarding the grain production method of the lithographic printing plate support according to the present invention,
This will be explained in detail below.

先ず、放電加工によるロールの表面粗度(Ra)、凹凸
の深さと密度および圧延の時の圧下率とは、平版印刷版
支持体の表面に砂目を製造するために重要な要件であり
、即ち、ロール表面粗度は圧延材の表面粗度を決定する
重要な因子であるが、ロール粗度の圧延材への転写率(
単に転写率という。
First, the surface roughness (Ra) of the roll by electric discharge machining, the depth and density of unevenness, and the rolling reduction rate during rolling are important requirements for producing grain on the surface of the lithographic printing plate support. In other words, the roll surface roughness is an important factor that determines the surface roughness of the rolled material, but the transfer rate of the roll roughness to the rolled material (
It is simply called the transcription rate.

)は圧延の際の圧下率によっても規制され、従って、平
版印刷版として充分な粗度を得るため、また凹凸密度の
均一性を待たせるためには、ロール表面粗度、圧下率お
よびロールの凹凸密度の特定が必要となってくる。
) is also regulated by the rolling reduction rate during rolling. Therefore, in order to obtain sufficient roughness for a lithographic printing plate and to ensure uniformity of the unevenness density, the roll surface roughness, rolling reduction rate, and roll It becomes necessary to specify the unevenness density.

即ち、ロールにより圧延処理されたアルミニウム板は、
表面に長円状の凹部が密に並び、そして、その7リンノ
が一部重なり合って波状模様を形成しており、この際、
長円状の四部の形状、密度が平版印刷版の適性と結びつ
いており、これらの数値を一定範囲に制御することが必
要である。この制御には、複数回の圧延を行なうことに
より行なう。
That is, the aluminum plate rolled by the rolls is
Oval-shaped depressions are densely arranged on the surface, and the 7 linos partially overlap to form a wavy pattern.
The shape and density of the four oval parts are related to the suitability of the lithographic printing plate, and it is necessary to control these values within a certain range. This control is performed by performing rolling multiple times.

このような特性を満足するためには、ロールの中心線平
均粗さ(Ra )か0.7μm未満、深さ0.8μm以
上の凹凸の山数が500個/mm”未満、圧下率2%未
満においては、感光膜の密着性、印刷時の保水性が充分
でなく、また、中心線平均粗さ(Ra)1.7μm、圧
下率20%を夫々越えると、小点再現性が低下するよう
になる。
In order to satisfy these characteristics, the center line average roughness (Ra) of the roll must be less than 0.7 μm, the number of uneven peaks with a depth of 0.8 μm or more must be less than 500 pieces/mm, and the rolling reduction rate must be 2%. If it is less than 20%, the adhesion of the photosensitive film and water retention during printing will not be sufficient, and if the centerline average roughness (Ra) exceeds 1.7 μm or the reduction rate exceeds 20%, the dot reproducibility will decrease. It becomes like this.

従って、放電加工によl) O−ル中心線平均粗さ(R
a)は0.7−1.7μm、深さ0.6μm以上の凹凸
の山数が500個/nu++2以上としだロールにより
、アルミニウム板およびアルミニウム箔を圧下率2〜2
0%で圧延することか必要である。
Therefore, due to electric discharge machining, the center line average roughness (R
a) The number of irregularities of 0.7-1.7 μm and depth of 0.6 μm or more is 500/nu++2 or more, and the aluminum plate and aluminum foil are rolled at a rolling reduction rate of 2 to 2 using a shida roll.
It is necessary to roll it at 0%.

なお、ロールの深さ0.6μm以上の凹凸の山数の上限
としては20 、000個/mm2とするのがよく、こ
れ以上の個数では圧延時にアルミニウム板(?i!i)
の摩耗粉発生等によりロールの目詰りが生じるようにな
り、平版印刷版支持体として充分な粗度および凹凸密度
を得られなくなる。
It should be noted that the upper limit of the number of irregularities with a depth of 0.6 μm or more on the roll is preferably 20,000 pieces/mm2, and if the number is greater than this, the aluminum plate (?i!i) will be damaged during rolling.
The rolls become clogged due to the generation of abrasion powder, making it impossible to obtain sufficient roughness and unevenness density as a lithographic printing plate support.

また、本発明に係る平版印刷版支持体の砂目製造法にお
いて使用されるアルミニウム板またはアルミニウム箔は
、純アルミニウム板およびアルミニウム合金板でもよく
、アルミニウム合金板としては種々のものが使用でき、
例えばSl、Cu、Fe、Mn、Mg、Cr5Ti、Z
n、Pb%Ni等の1種または2種以上が含有されるい
るアルミニウム合金板を使用できる。そして、これらの
アルミニウム板(箔)、アルミニウム合金板(箔)のグ
レイニング面の形成は、上記説明したように、特定のグ
レイニング面を形成している1個または2個以上のグレ
イニングミールの開を特定の圧下量で圧下しrこ時にア
ルミニウム板等の表面に転写させることができる。
Further, the aluminum plate or aluminum foil used in the grain production method of the lithographic printing plate support according to the present invention may be a pure aluminum plate or an aluminum alloy plate, and various aluminum alloy plates can be used.
For example, Sl, Cu, Fe, Mn, Mg, Cr5Ti, Z
An aluminum alloy plate containing one or more of Pb%Ni, Pb%Ni, etc. can be used. As explained above, the graining surface of these aluminum plates (foils) and aluminum alloy plates (foils) is formed by one or more graining meals forming a specific graining surface. It is possible to transfer the opening onto the surface of an aluminum plate or the like by rolling down the opening by a specific rolling reduction amount.

[実 施 例] 本発明に係る平版印刷版支持体の砂目製造法の実施例を
説明する。
[Example] An example of a method for producing grains of a lithographic printing plate support according to the present invention will be described.

実施例1 第1表に放電加工により6種類の異なった表面形態を有
するロールを製造し、その表面状況を走査電子顕微鏡お
よび触針式表面粗さ計により、表面粗さ、表面形状およ
び凹凸の密度を調べて、結果を示しである。
Example 1 Rolls with six different surface morphologies were manufactured by electrical discharge machining as shown in Table 1, and their surface conditions were measured using a scanning electron microscope and a stylus surface roughness meter to determine the surface roughness, surface shape, and unevenness. Check the density and show the results.

なお、比較材としてグリッド粒径300μで行なったシ
ョツトブラストによる表面形態についても同様の試験を
行ない、その結果を同じく第1表に示しである。
As a comparison material, a similar test was conducted on the surface morphology by shot blasting using a grid particle size of 300 μm, and the results are also shown in Table 1.

第1表 ×1)粗さ形状のタイプa+brc+dを第1図に示す
Table 1×1) The roughness shape type a+brc+d is shown in FIG.

(、)iさFが浅くピッチPが大きい。(,) The i distance F is shallow and the pitch P is large.

(b)  尿さF、ピッチPが小さい。(b) Urine size F and pitch P are small.

(c)  深さFが深くピッチPが大きい。(c) Depth F is deep and pitch P is large.

(d)  深さF深くピッチPが大きく、突出部Hがあ
る。
(d) The depth F is deep, the pitch P is large, and there is a protrusion H.

×2)粗さピッチ、粗面形状、均−性等を判断した総合
評価。
×2) Comprehensive evaluation based on roughness pitch, rough surface shape, uniformity, etc.

×3)ショツトブラスト(比較材)。×3) Shot blast (comparison material).

この第1表から、放電加工によるロール表面の中心線平
均粗さ0.7〜1.7μmの範囲で、深さ0.6μm以
上の凹凸の山数が500個以上の場合には、ロールの総
合評価は池のものよす優れていることがわかる。
From this Table 1, if the center line average roughness of the roll surface due to electrical discharge machining is in the range of 0.7 to 1.7 μm and the number of unevenness with a depth of 0.6 μm or more is 500 or more, the roll It can be seen that the overall evaluation is far superior to Ike's.

実施例2 第2表に放電加工により中心線平均粗さ(Ra)1.1
μn+、 0.611m以上の山の数力弓ooo個/m
m2を有するグレイニングロールを使用して板厚0.2
8IIII11のアルミニウム板を異なった3種類の圧
下率で圧延して、圧延板の表面状況を走査電子顕微鏡お
よび触針式表面粗さ計により表面粗さ、表面形状および
凹凸の密度を調査し、さらに、印刷特性についての評価
を行ない、その結果を示しである。
Example 2 Table 2 shows that the center line average roughness (Ra) was 1.1 by electrical discharge machining.
μn+, number of mountain bows over 0.611m ooo pieces/m
Plate thickness 0.2 using graining roll with m2
8III11 aluminum plate was rolled at three different rolling reduction ratios, and the surface condition of the rolled plate was investigated using a scanning electron microscope and a stylus type surface roughness meter, and the surface roughness, surface shape, and density of unevenness were investigated. The printing characteristics were evaluated and the results are shown below.

また、実施例1のショツトブラストによるグレイニング
ミールによる同様の試験を行なった結果を同じく第2表
に示しである。
Table 2 also shows the results of a similar test using the shot blasted graining meal of Example 1.

また、上記ロールによる圧下量と転写状況との関係を第
2図に示しである。
Further, the relationship between the amount of reduction by the roll and the transfer situation is shown in FIG.

この第2表から、放電加工法のロールにより圧下率2〜
20%の範囲、ロールの中心線平均粗さが0.7〜1.
7μmの範囲および深さ0.6μm以上の凹凸の山の数
が500個/111111 ”以上であれば、圧延され
たアルミニツム板は平版印刷版支持体と12で印刷にお
ける密着性に優れ、総合評価が良好で、比較材は密着性
は良いが耐蝕性が劣り、綜合評価でも印刷性が悪いこと
がわかる。
From this Table 2, it can be seen that the rolling reduction rate is 2 to
20% range, the center line average roughness of the roll is 0.7 to 1.
If the number of uneven peaks with a range of 7 μm and a depth of 0.6 μm or more is 500/111111” or more, the rolled aluminum plate has excellent adhesion to the lithographic printing plate support during printing, and the overall evaluation It can be seen that the comparative material has good adhesion but poor corrosion resistance and poor printability in the overall evaluation.

第2図には、圧延による表面粗き(Ra)の転写率とロ
ールの0.6μm以上の凹凸の山の数の変化が示されて
いるが、圧下率が2〜20%の範囲において優れている
ことがわかる。
Figure 2 shows the change in the transfer rate of surface roughness (Ra) due to rolling and the number of peaks of unevenness of 0.6 μm or more on the roll. You can see that

比較例1 第3図(、>(b)には、放電加工法およびジョン)ブ
ラスト法によるグレイニングロールな用いて板厚0.2
8mmのアルミニウム板を1パス6.0%の圧下率で圧
延を杼打なった時の、アルミニウム板表面の圧延方向に
垂直面の粗さプロフィルを触針式表面粗さ計により求め
て比較して示しである。
Comparative Example 1 In Figure 3 (>(b), a plate thickness of 0.2
When an 8 mm aluminum plate was rolled at a rolling reduction rate of 6.0% in one pass, the roughness profile of the surface perpendicular to the rolling direction of the aluminum plate surface was determined using a stylus type surface roughness meter and compared. This is an indication.

なお、ロールの放電加工は、而粗さくRmax)6.0
μmとし、加工液圧0.3kg/’cm’以上、加工速
度2.4m/minで行ない、ロール表面の中心線平均
粗さ(Ra)を1.1μmとした。また、ショツトブラ
スト加工は、又ケールグリッド粒径300μm、インペ
ラー回転数2250rpm、投射量300kg/min
、台車速度0.3m/minの条件で行なった。中心線
平均粗さ(Ra)は1.1μmとした。
In addition, the electric discharge machining of the roll is rough (Rmax) 6.0
The processing was carried out at a machining liquid pressure of 0.3 kg/'cm' or more and a machining speed of 2.4 m/min, and the center line average roughness (Ra) of the roll surface was 1.1 μm. In addition, the shot blasting process also uses a kale grid particle size of 300 μm, an impeller rotation speed of 2250 rpm, and a blasting rate of 300 kg/min.
The test was carried out under conditions of a truck speed of 0.3 m/min. The center line average roughness (Ra) was 1.1 μm.

第3図(a)仕)において、樅および横倍率1000X
IOでみると、放電加工法による平版印刷版支持体の砂
目プロフィルはショツトブラスト法に比べてピッチも小
さく均一性があるのに対し、ショツトブラスト法は不均
一性か強くピンチも粗く、特に、凹凸の突出部はジョン
ドブラスト法に著しく、これらは感光膜の上に露出して
腐蝕漏れの原因となり易く、また、深い凹みは感光膜の
残渣が残り易く地汚れの原因となり、平版印刷版の砂目
としては不充分である。従って、放電加工法がショツト
ブラスト法よりも優れた砂目プロフィルを得る、二とか
できるのである。
In Figure 3 (a)), fir and lateral magnification 1000X
Looking at IO, the grain profile of the lithographic printing plate support produced by the electric discharge machining method has a smaller pitch and more uniformity than that produced by the shot blasting method, whereas the grain profile of the planographic printing plate support produced by the shot blasting method is uneven, and the pinch is rougher, especially , uneven protrusions are noticeable in the John de blasting method, and these are likely to be exposed on the photoresist film and cause corrosion leakage.Furthermore, deep depressions tend to leave photoresist film residue, causing background smearing, and the lithographic printing plate The grain is insufficient. Therefore, it is possible to obtain a better grain profile with electric discharge machining than with shot blasting.

比較例2 第4図は、比較例1と同様に板N O,28m+nのア
ルミニウム板を1パスで6.0%の圧下率で圧延したア
ルミニウム板の砂目構造を、放電加工法およびショツト
ブラスト法について比較したものであり、何れも圧延板
の中心線平均粗さ(Ra)は0.85μmおよび0.8
1μII+であった。そして、触針式表面粗さ計のチャ
ートプロフィルから凹凸の深さ0.2μm以上、0.6
μm以上および1.2μm以上の山数を9mm2の面積
中について測定した結果ら示されており、ショソ)プラ
ストロールにより製造した砂目よりも、放電加工法によ
り製造した砂目の方が各凹凸の深さ、山数が多く、特に
、深さ1.2μm以上のものについては著しく向上して
いることがわかる。即ち、浅い山数が増加することは感
光膜の密着性を向上させ、また、深い山数が増加するこ
とは小点再現性および保水性を向上させるものである。
Comparative Example 2 Figure 4 shows the grain structure of an aluminum plate obtained by rolling an aluminum plate of N O, 28m+n in one pass at a reduction rate of 6.0% in the same way as Comparative Example 1, using the electric discharge machining method and shot blasting. The center line average roughness (Ra) of the rolled plate is 0.85 μm and 0.8 μm.
It was 1μII+. Then, from the chart profile of the stylus type surface roughness meter, the depth of the unevenness is 0.2 μm or more, 0.6
The results show that the number of peaks larger than μm and 1.2 μm in an area of 9 mm2 was measured, and the grains produced by electrical discharge machining were more sensitive to each irregularity than the grains produced by shosoplastrol. It can be seen that the depth and the number of peaks are large, and in particular, those with a depth of 1.2 μm or more are significantly improved. That is, an increase in the number of shallow peaks improves the adhesion of the photoresist film, and an increase in the number of deep peaks improves spot reproducibility and water retention.

従って、平版印刷版支持体の砂目製造としては、放電加
工法により製造したグレイニングロールによって製造し
た砂目の方か、at戒的方法によるものより1憂れた砂
目構造であり、がっ、安価である。
Therefore, the grain structure of the lithographic printing plate support is better than that produced by a graining roll produced by the electric discharge machining method, or by the at-method method. Well, it's cheap.

[発明の効果1 以上説明したように、本発明に係る平版印刷版支持体の
砂目製造法は上記の構成を有しているものであるから、
平版印刷版支持体としての優れた表面粗さ、表面形状お
よび凹凸の密度を有する砂目構造が得られるという効果
を有するものである。
[Effect of the Invention 1] As explained above, the method for producing grains of a lithographic printing plate support according to the present invention has the above structure;
This has the effect of providing a grain structure having excellent surface roughness, surface shape, and unevenness density as a lithographic printing plate support.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1における粗さ形状のタイプを示す図、
第2図は圧延による表面粗さ(Ra)の転写率および凹
凸密度の変化を示す図、第3図は放電加工法およびショ
ツトブラスト法によるロールによって圧延した際の、圧
延アルミニウム板の触針式表面粗さ計による砂目プロフ
ィルを示す図、第4図は触針式表面粗さ計のチャート上
における砂目構造の凹凸の密度を示す図である。 特許出願人 株式会社 神戸製鋼所 才3図 (α) (山姑伺詠面面) f3図  (I)) 矛4図 0.2   0,6     1.2 i?l猟全十入表づbず且ノ1を寸9チャート上1′°
9凹凸の5甲さ  (P77?)
FIG. 1 is a diagram showing the type of roughness shape in Example 1,
Figure 2 is a diagram showing changes in the transfer rate of surface roughness (Ra) and unevenness density due to rolling, and Figure 3 is a diagram showing the stylus type of a rolled aluminum plate when rolled by a roll using the electrical discharge machining method and the shot blasting method. FIG. 4 is a diagram showing a grain profile measured by a surface roughness meter, and FIG. 4 is a diagram showing the density of unevenness of a grain structure on a chart of a stylus type surface roughness meter. Patent Applicant: Kobe Steel, Ltd. Sai3 Figure (α) (Yamago Kyoei Men) f3 Figure (I)) Spear 4 Figure 0.2 0,6 1.2 i? 1'° on the 9th chart
9 unevenness 5 instep (P77?)

Claims (1)

【特許請求の範囲】[Claims] 放電加工により、中心線平均粗さ(Ra)を0.7〜1
.7μmとし、深さ0.6μm以上の凹凸の山数が50
0個/mm^2以上としたロールにより、アルミニウム
板およびアルミニウム箔を圧下率2〜20%で圧延を行
なうことを特徴とする平版印刷版支持体の砂目製造法。
By electric discharge machining, the center line average roughness (Ra) is 0.7 to 1.
.. 7μm, and the number of unevenness with a depth of 0.6μm or more is 50.
1. A method for producing grains for a lithographic printing plate support, which comprises rolling an aluminum plate and aluminum foil at a rolling reduction ratio of 2 to 20% using rolls of 0 pieces/mm^2 or more.
JP305285A 1985-01-11 1985-01-11 Manufacture of grain on lithographic printing plate Pending JPS61162351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP305285A JPS61162351A (en) 1985-01-11 1985-01-11 Manufacture of grain on lithographic printing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP305285A JPS61162351A (en) 1985-01-11 1985-01-11 Manufacture of grain on lithographic printing plate

Publications (1)

Publication Number Publication Date
JPS61162351A true JPS61162351A (en) 1986-07-23

Family

ID=11546548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP305285A Pending JPS61162351A (en) 1985-01-11 1985-01-11 Manufacture of grain on lithographic printing plate

Country Status (1)

Country Link
JP (1) JPS61162351A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145419A (en) * 1987-10-14 1989-06-07 Chiron Werke Gmbh & Co Kg Machine tool
WO1997031783A1 (en) * 1996-02-27 1997-09-04 Aluminum Company Of America Texture rolled lithosheet
EP1338436A2 (en) 2002-02-26 2003-08-27 Fuji Photo Film Co., Ltd. Aluminum support for lithographic printing plate, method of preparing the same and presensitized plate using the same
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
EP2110261A2 (en) 2008-04-18 2009-10-21 FUJIFILM Corporation Aluminum alloy plate for lithographic printing plate, ligthographic printing plate support, presensitized plate, method of manufacturing aluminum alloy plate for lithographic printing plate and method of manufacturing lithographic printing plate support
EP2145772A2 (en) 2008-07-16 2010-01-20 FUJIFILM Corporation Method of manufacturing aluminum alloy plate for lithographic printing plate, aluminum alloy plate for lithographic printing plate, lithographic printing plate support and presensitized plate
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
EP2384100A2 (en) 2010-04-28 2011-11-02 Fujifilm Corporation Insulated light-reflective substrate
CN102416788A (en) * 2010-07-13 2012-04-18 施乐公司 Surface finishing process for indirect or offset printing components
EP2586621A1 (en) 2011-10-28 2013-05-01 Fujifilm Corporation Manufacturing method and manufacturing apparatus of support for planographic printing plate
WO2018235659A1 (en) 2017-06-21 2018-12-27 富士フイルム株式会社 Composite aluminum material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145419A (en) * 1987-10-14 1989-06-07 Chiron Werke Gmbh & Co Kg Machine tool
JPH0581764B2 (en) * 1987-10-14 1993-11-16 Chiron Werke Gmbh
WO1997031783A1 (en) * 1996-02-27 1997-09-04 Aluminum Company Of America Texture rolled lithosheet
EP1338436A2 (en) 2002-02-26 2003-08-27 Fuji Photo Film Co., Ltd. Aluminum support for lithographic printing plate, method of preparing the same and presensitized plate using the same
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
EP2110261A2 (en) 2008-04-18 2009-10-21 FUJIFILM Corporation Aluminum alloy plate for lithographic printing plate, ligthographic printing plate support, presensitized plate, method of manufacturing aluminum alloy plate for lithographic printing plate and method of manufacturing lithographic printing plate support
EP2145772A2 (en) 2008-07-16 2010-01-20 FUJIFILM Corporation Method of manufacturing aluminum alloy plate for lithographic printing plate, aluminum alloy plate for lithographic printing plate, lithographic printing plate support and presensitized plate
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
EP2384100A2 (en) 2010-04-28 2011-11-02 Fujifilm Corporation Insulated light-reflective substrate
CN102416788A (en) * 2010-07-13 2012-04-18 施乐公司 Surface finishing process for indirect or offset printing components
EP2586621A1 (en) 2011-10-28 2013-05-01 Fujifilm Corporation Manufacturing method and manufacturing apparatus of support for planographic printing plate
WO2018235659A1 (en) 2017-06-21 2018-12-27 富士フイルム株式会社 Composite aluminum material

Similar Documents

Publication Publication Date Title
JPS61162351A (en) Manufacture of grain on lithographic printing plate
EP1557484A2 (en) Aluminium sheet embossing roll
EP1625944B1 (en) Method of manufacturing lithographic printing plate support
US6324978B1 (en) Printing plate substrate and method of making a printing plate substrate or an offset printing plate
EP1338436B1 (en) Aluminum support for lithographic printing plate, method of preparing the same and presensitized plate using the same
JPH1199758A (en) Manufacture of supporting body for lithographic printing plate, and photo-sensitive lithographic printing plate
US5998044A (en) Aluminium sheet with rough surface
US4545866A (en) Process for producing support for planographic printing
US4909894A (en) Process for producing support for lithographic printing plate
WO1997031783A1 (en) Texture rolled lithosheet
JPH0419291B2 (en)
US20060049037A1 (en) Method of manufacturing lithographic printing plate support
JPS60203497A (en) Manufacture of aluminum base material for lithographic printing plate and aluminum substrate for lithographic printing plate
JPS6063347A (en) High strength aluminum alloy plate for printing plate
JPH0765226B2 (en) Method for producing Cr-plated roll for rolling
JPS6225094A (en) Graining method for substrate of lithography
JPS62218189A (en) Grainning method for base for planographic plate
CN100446993C (en) Method for manufacturing support body for lithographic plate and its support body
JPH01262006A (en) Manufacture of crome plated roll for rolling
JPH0467518B2 (en)
US5651871A (en) Process for graining and anodizing a metal plate
US4678551A (en) Process for producing an aluminum support for a lithographic printing plate
JPH01123094A (en) Production of chromium plated roll
EP1712368A1 (en) Method of manufacturing a support for a lithographic printing plate
JPH06262873A (en) Production of lithographic plate substrate