JPS61161702A - Energy absorber - Google Patents

Energy absorber

Info

Publication number
JPS61161702A
JPS61161702A JP60002036A JP203685A JPS61161702A JP S61161702 A JPS61161702 A JP S61161702A JP 60002036 A JP60002036 A JP 60002036A JP 203685 A JP203685 A JP 203685A JP S61161702 A JPS61161702 A JP S61161702A
Authority
JP
Japan
Prior art keywords
voltage
resistor
diode
constant voltage
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60002036A
Other languages
Japanese (ja)
Inventor
Satoru Yagiu
悟 柳父
Susumu Nishiwaki
進 西脇
Toshikazu Sato
佐藤 敏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60002036A priority Critical patent/JPS61161702A/en
Publication of JPS61161702A publication Critical patent/JPS61161702A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • H02H3/048Checking overvoltage diverters

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To detect a destruction of a ZnO type non-linear resistor by detecting a voltage generated in this resistor after connecting a resistance in series with the ZnO type non-linear resistor. CONSTITUTION:In ZnO type non-linear resistors 5a-5c, the first linear resistors 6a-6c for breaking off current unbalance generated in connecting the resistors 5a-5c in parallel, the second linear resistors 7a-7c for detecting a trouble, the first constant voltage diodes 8a-8c, and the second constant voltage diodes 8a'-8c' are provided. When the resistor 5a is broken off, the diode 8a is conducted and a detected voltage comes out in a voltage detecting terminal 10.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、例えば核融合実験装置等のエネルギー蓄積回
路において、蓄積されたエネルギーを吸収する必要が生
じた場合にエネルギーを吸収する為の装置に関するもの
である。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a device for absorbing energy when it becomes necessary to absorb stored energy in an energy storage circuit such as a nuclear fusion experimental device. It is something.

[発明の技術的背景とその問題点] 従来のエネルギー蓄積回路の一例を第3図を用いて説明
する。
[Technical background of the invention and its problems] An example of a conventional energy storage circuit will be explained with reference to FIG.

第3図において、1は直流電源、2はエネルギー蓄積用
負荷コイル、3はしゃ断器、4は低抗器である。
In FIG. 3, 1 is a DC power source, 2 is an energy storage load coil, 3 is a breaker, and 4 is a low resistance device.

同図において、しゃ断器3を投入した状態で、直流筒1
1!1により、負荷コイル2に電流を流すことにより、
負荷コイル2には、概略1/2・LIのエネルギーが蓄
積される。ここでLは負荷コイル2のインダクタンス、
■は流れる電流値である。負荷コイル2が超電導特性を
示す場合には、その抵抗弁は非常に小さくなるのでLと
1は大きな値とするのが一般的であり、蓄えられるエネ
ルギーは非常に大きくなる。
In the same figure, with the breaker 3 turned on, the DC cylinder 1
By applying current to the load coil 2 using 1!1,
Approximately 1/2·LI of energy is stored in the load coil 2. Here, L is the inductance of load coil 2,
■ is the flowing current value. When the load coil 2 exhibits superconducting characteristics, its resistance valve becomes very small, so L and 1 are generally set to large values, and the stored energy becomes very large.

第3図の構成においてエネルギーを吸収する必要が生じ
た場合には、しゃ断器3をしゃ断することにより、負荷
コイル2と抵抗器4の直列回路を作り、この回路を流れ
る電流を抵抗器4と負荷コイル2の抵抗弁によるジュー
ル発熱としてエネルギー吸収し減少させる。この場合、
しゃ断器3がしゃ断されると、回路を流れる電流■が抵
抗器4に流れることになり、抵抗器の抵抗弁をRとして
、R1の電圧が抵抗器4の両端、即ち、負荷コイル2の
両端間に発生することになる。
When it becomes necessary to absorb energy in the configuration shown in FIG. 3, a series circuit of the load coil 2 and the resistor 4 is created by breaking the circuit breaker 3, and the current flowing through this circuit is connected to the resistor 4. Energy is absorbed and reduced as Joule heat generation by the resistance valve of the load coil 2. in this case,
When the breaker 3 is cut off, the current flowing through the circuit flows through the resistor 4, and with the resistance valve of the resistor being R, the voltage across R1 is across the resistor 4, that is, across the load coil 2. will occur in between.

従って、抵抗器4の抵抗値Rを大きくすると、電流の減
少速度が遅くなる一方、負荷コイル2の両端間に発生す
る最大電圧も大きくなり、負荷コイル2の絶縁設計が難
しくなり、且つ高価なものとなる。そこで抵抗RをZn
On茸形線抵抗体とするととび考えられている。zno
n卵形線抵抗体は、第4図に示す様に非直線係数(V=
kleKにおけるα)が極めて小さい為、高電圧では低
抵抗、低電圧領域では高抵抗になる為、最大電圧を抑制
し、また、電流の減少速度も大きくすることが可能とな
る。
Therefore, when the resistance value R of the resistor 4 is increased, the rate of current decrease slows down, and the maximum voltage generated between both ends of the load coil 2 also increases, making the insulation design of the load coil 2 difficult and expensive. Become something. Therefore, the resistance R is Zn
It is considered to be an on mushroom shaped wire resistor. zno
The n oval wire resistor has a nonlinear coefficient (V=
Since α) in kleK is extremely small, the resistance is low at high voltages and high at low voltages, making it possible to suppress the maximum voltage and increase the rate of decrease in current.

znOn卵形線抵抗体を用いた場合、1/2・LI2と
いう大きなエネルギーを処理する為には、ZnOn茸形
線抵抗体を並列にして用いなければならない。ここで問
題となるのが、並列接続した抵抗体の1個が破壊した場
合、電流Iは破壊抵抗体だけに流れてしまうことである
。この点を改善する為に、従来は、第5図に示す様に各
非直線抵抗体5からでるリード線を変流器CTを通して
接続し、この変流器電流を測定して、非直線抵抗体CT
の破壊を確認していた。しかし、数十並列もある各非直
線抵抗体CT全てに変流器C王を接続すると価格が高く
なり、また、スペース的にも問題となっていた。
When a ZnOn egg-shaped wire resistor is used, in order to process a large energy of 1/2.LI2, ZnOn mushroom-shaped wire resistors must be used in parallel. The problem here is that if one of the resistors connected in parallel breaks down, the current I will flow only through the broken resistor. In order to improve this point, conventionally, as shown in Fig. 5, the lead wires coming out from each nonlinear resistor 5 are connected through a current transformer CT, and the current of this current transformer is measured, and the nonlinear resistance is body CT
The destruction of the was confirmed. However, connecting current transformers C to all of the non-linear resistors CT, which are connected in several dozen parallels, increases the cost and also poses a problem in terms of space.

[発明の目的] 本発明は、上述の従来技術を解消する為に提案されたも
ので、その目的は、ZnOn茸形線抵抗体を並列接続し
て構成したサージエネルギー吸収装置において、簡単な
構成として低1面格及び省スペースを実現して、しかも
破壊された非直線抵抗体の早期発見を可能としたエネル
ギー吸収装置を提供することである。
[Object of the Invention] The present invention was proposed in order to solve the above-mentioned prior art, and its purpose is to provide a surge energy absorption device with a simple configuration in which ZnOn mushroom-shaped wire resistors are connected in parallel. It is an object of the present invention to provide an energy absorbing device that realizes a low one-sided design and space saving, and also enables early detection of a destroyed non-linear resistor.

[発明の概要] 本発明のエネルギー吸収装置は、11111或いは複数
個にてなるZnon卵形線抵抗体に第1の直線抵抗体と
第2の直線抵抗体を直列に接続したものを1ユニットと
して、複数個のユニットを並列接続し、各第2の直線抵
抗体の高圧側の各点より、ツェナ電圧の異なる第1の定
電圧ダイオードと第2の定電圧ダイオードを直列に接続
し、且つ各定電圧ダイオード同士はその極性が相対する
様に設け、各第2の定電圧ダイオードには、第1の定電
圧ダイオードの接続点と異なる端子を接続し、その接続
点から信号を検出する端子を設ける構成としたものであ
る。
[Summary of the Invention] The energy absorbing device of the present invention is a unit in which a first linear resistor and a second linear resistor are connected in series to a Znon oval wire resistor made of 11111 or a plurality of resistors. , a plurality of units are connected in parallel, a first constant voltage diode and a second constant voltage diode having different Zener voltages are connected in series from each point on the high voltage side of each second linear resistor, and each The constant voltage diodes are provided so that their polarities are opposite to each other, and each second constant voltage diode is connected to a terminal different from the connection point of the first constant voltage diode, and a terminal for detecting a signal from the connection point is connected to each second constant voltage diode. This is a configuration in which it is provided.

そして、この様な構成を有することにより、ZnOn茸
形線抵抗体が破壊した場合、第2の直線抵抗体に発生す
る電圧が定格電圧ダイオードのツェナ電圧以上になる為
、信号検出用端子部にて電圧を検出し、破壊されたZn
On茸形線抵抗体の早期発見を行なうものである。
With such a configuration, if the ZnOn mushroom-shaped wire resistor breaks down, the voltage generated in the second linear resistor will exceed the zener voltage of the rated voltage diode. Detects the voltage and detects the destroyed Zn.
This is for early detection of On mushroom-shaped wire resistors.

[発明の実施例] 第1図に、本発明による一実施例の構成を示す。[Embodiments of the invention] FIG. 1 shows the configuration of an embodiment according to the present invention.

図中5a〜5CはZnOn茸形線抵抗体、68〜6Cは
Zno非直線抵抗体を並列接続した時に生じる電流アン
バランスをなくす為の第1直線抵抗体、7a、7cは、
故障検出用の第2直線抵抗体、88〜8Cは第1定電圧
ダイオードで、第2定電圧ダイオード8a−〜8G−と
陰極同士が相対する様に設けられている。
In the figure, 5a to 5C are ZnOn mushroom-shaped wire resistors, 68 to 6C are first linear resistors for eliminating current imbalance that occurs when Zno nonlinear resistors are connected in parallel, and 7a and 7c are
The second linear resistors 88 to 8C for failure detection are first constant voltage diodes, and are provided so that their cathodes face the second constant voltage diodes 8a to 8G-.

なお、図中9は電圧検出する為の抵抗、10は電圧検出
端子であり、図示しない主回路に停止信号を送りシステ
ム停止を行なう様になっている。
In the figure, 9 is a resistor for voltage detection, and 10 is a voltage detection terminal, which sends a stop signal to a main circuit (not shown) to stop the system.

上記の様に構成されたznO形非直線抵抗体58〜5C
1第1直線抵抗体68〜5c、第2直線抵抗体7a〜7
cは、各直線抵抗体リード線11゜12で並列接続され
る。
ZnO type nonlinear resistor 58 to 5C configured as above
1 First linear resistors 68 to 5c, second linear resistors 7a to 7
c are connected in parallel with each linear resistor lead wire 11°12.

上記の様に構成された本実施例のエネルギー吸収装置に
おいて、1/2LI2という大きなエネルギーを吸収し
、ZnOn卵形線抵抗体に電流が流れた時、−例として
ZnO形非直線抵抗体5aの最上部素子5a−1が熱破
壊した条件を考える。
In the energy absorbing device of this embodiment configured as described above, when a large energy of 1/2 LI2 is absorbed and a current flows through the ZnOn oval wire resistor, - For example, when the ZnO nonlinear resistor 5a Consider the conditions under which the uppermost element 5a-1 was thermally destroyed.

熱破壊した最上部素子5a−1から熱分解ガスが発生し
、そのガスが、下部の素子5a−2,5a−3外部を周
回し、従って、同抵抗体5aの外部がガス全体にて覆わ
れる。これにより、同抵抗体5aの外部が導通状態とな
り、その電圧効果は零になる。その結果、エネルギー吸
収装置に印加される電圧Voは、第1直線抵抗体6aと
第2直線抵抗体7aに夫々印加され、この場合、第1直
線低抗体6aの抵抗値をR+、第2直線抵抗体7aの抵
抗値をR2とすれば、第2直線抵抗体7aに発生する電
圧は、 V+  =Vo XR2/ (R1+R2)となる。
Pyrolysis gas is generated from the thermally destroyed top element 5a-1, and the gas circulates around the outside of the lower elements 5a-2 and 5a-3, so that the entire outside of the resistor 5a is covered with the gas. be exposed. As a result, the outside of the resistor 5a becomes conductive, and its voltage effect becomes zero. As a result, the voltage Vo applied to the energy absorbing device is applied to the first linear resistor 6a and the second linear resistor 7a, respectively. If the resistance value of the resistor 7a is R2, the voltage generated across the second linear resistor 7a is V+=Vo XR2/(R1+R2).

電圧V1が第1定電圧ダイオード8aのツェナ電圧以上
になると第1定電圧ダイオード8aが入力され、電圧V
1が電圧検出端子10に表れる。
When the voltage V1 becomes equal to or higher than the Zener voltage of the first voltage regulator diode 8a, the first voltage regulator diode 8a is input, and the voltage V
1 appears on the voltage detection terminal 10.

この電圧信号を検知すると、主回路に停止信号を送り、
システム停止を行なうことができる。
When this voltage signal is detected, it sends a stop signal to the main circuit,
System can be stopped.

ここで、第1定電圧ダイオード8a〜8cと第2定電圧
ダイオード8a−〜8c−とがその陰極同士にて接続さ
れていることがら、第2定電圧ダイオード8a−〜8c
mのツェナ電圧Vs−を、第1定電圧ダイオード8a〜
8cの電圧Vsより大きく、且つV+<VS−という関
係にしておけば、ZnOn卵形線抵抗体が破壊して、第
1定電圧ダイオード8aが入力された時、検出信号は第
2定電圧ダイオード8b′、8c−によって阻止され、
直線抵抗体7b、7cに影響を与えることはない。
Here, since the first voltage regulator diodes 8a-8c and the second voltage regulator diodes 8a--8c- are connected at their cathodes, the second voltage regulator diodes 8a--8c-
The Zener voltage Vs- of m is connected to the first constant voltage diode 8a~
If the voltage is higher than the voltage Vs of 8c and the relationship is V+<VS-, when the ZnOn oval wire resistor is destroyed and the first voltage regulator diode 8a is input, the detection signal will be transferred to the second voltage regulator diode. blocked by 8b', 8c-,
This does not affect the linear resistors 7b and 7c.

従って、本発明によれば、破壊された非直線抵抗体の早
期発見を容易且つ確実に行える。しかも、本発明の構成
は、各非直線抵抗体に直線抵抗体及び定電圧ダイオード
を順次接続するだけである為、各非直線抵抗体に夫々変
流器を設ける等の従来の複雑な構成に比べてはるかに簡
略化されている為、部品点数も少なくて済み、価格も低
減できるつ第2図は、第1定電圧ダイオード8a〜8C
と第2定電圧ダイオード8a−〜8C−とを、その陽極
同士にて接続した他の実施例を示すもので、この場合は
、前実施例とは逆にVs>V+ >Vs−という条件を
満足しておく必要がある。
Therefore, according to the present invention, a destroyed non-linear resistor can be easily and reliably detected at an early stage. Moreover, since the configuration of the present invention simply connects a linear resistor and a constant voltage diode to each non-linear resistor in sequence, it does not require the conventional complicated configuration such as providing a current transformer for each non-linear resistor. Since it is much simpler than the previous one, the number of parts can be reduced and the price can be reduced.
This shows another embodiment in which the and second voltage regulator diodes 8a- to 8C- are connected by their anodes, and in this case, the condition of Vs>V+>Vs- is set, contrary to the previous embodiment. I need to be satisfied.

なお、本発明は前記実施例に限定されるものではなく、
例えば、ZnOn卵形線抵抗体を構成する素子の数は、
何個でもよく、従って1個だけのものでもよい。
Note that the present invention is not limited to the above embodiments,
For example, the number of elements constituting a ZnOn oval wire resistor is
Any number of pieces may be used, and therefore, only one piece may be used.

[発明の効果] 以上説明した様に、本発明によれば、ZnOn卵形線抵
抗体に第1、第2の直線抵抗体を直列に接続して構成し
た複数個のユニットを並ダj接続し、且つ第2の直線抵
抗体部に第1.第2の定電圧ダイオードを直列に接続し
、第2の定電圧ダイオードに、信号検出端支部を設ける
構成としたことにより、簡単な構成として低価格及び省
スペースを実現し、しかもZnOn卵形線抵抗体が破壊
した場合、信号検出端子部に電圧を発生させ、破壊され
たZnOn卵形線抵抗体の早期発見を可能にしたもので
ある。
[Effects of the Invention] As explained above, according to the present invention, a plurality of units configured by connecting a ZnOn oval wire resistor and a first and second linear resistor in series can be connected in parallel. and the second linear resistor section has the first. By connecting the second constant voltage diode in series and providing a signal detection end branch on the second constant voltage diode, it is possible to realize a simple configuration, low cost and space saving. When the resistor is destroyed, a voltage is generated at the signal detection terminal section, making it possible to detect the destroyed ZnOn oval wire resistor at an early stage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明によるエネルギー吸収装置の一実施例
を示す構成図、第2図は本発明の他の実施例を示す構成
図、第3図は従来のエネルギー蓄積回路の一例を示す回
路図、第4図はZnOn卵形線抵抗体の■−■特性を示
すグラフ図、第5図は従来のエネルギー吸収装置を示す
構成図である。 1・・・直流電源、2・・・エネルギー蓄積負荷コイル
。 3・・・しゃ断器、4・・・抵抗器、5a〜5c・・・
ZnOn卵形線抵抗体、68〜6c・・・第1直線抵抗
体、7a〜7C・・・第2直線抵抗体、8a〜8c・・
・体1定電圧ダイオード、8a−〜8c−・・・第2定
電圧ダイオード、9・・・抵抗、1o・・・電圧検出端
子、11.12・・・リード線。 第1図 第2図
FIG. 1 is a block diagram showing one embodiment of an energy absorption device according to the present invention, FIG. 2 is a block diagram showing another embodiment of the present invention, and FIG. 3 is a circuit diagram showing an example of a conventional energy storage circuit. 4 is a graph showing the ■-■ characteristics of a ZnOn oval wire resistor, and FIG. 5 is a configuration diagram showing a conventional energy absorbing device. 1... DC power supply, 2... Energy storage load coil. 3... Breaker, 4... Resistor, 5a-5c...
ZnOn oval wire resistor, 68-6c...first linear resistor, 7a-7C...second linear resistor, 8a-8c...
- Body 1 constant voltage diode, 8a- to 8c-... second constant voltage diode, 9... resistor, 1o... voltage detection terminal, 11.12... lead wire. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)1個又は複数個の素子にて成るZnO形非直線抵
抗体に第1の直線抵抗体と第2の直線抵抗体を直列に接
続したものを1ユニットとして、複数個の前記ユニット
を並列接続し、各第2の直線抵抗体の高圧側の各点より
、ツェナ電圧の異なる第1の定電圧ダイオードと第2の
定電圧ダイオードを直列に接続し、且つ各定電圧ダイオ
ード同士はその極性が相対する様に設け、各第2の定電
圧ダイオードには、第1の定電圧ダイオードとの接続点
と異なる端子を接続し、その接続点から信号を検出する
端子を設けたことを特徴とするエネルギー吸収装置。
(1) One unit is a ZnO type non-linear resistor made up of one or more elements, and a first linear resistor and a second linear resistor connected in series, and a plurality of the units are A first constant voltage diode and a second constant voltage diode having different Zener voltages are connected in parallel and connected in series from each point on the high voltage side of each second linear resistor, and each constant voltage diode is It is characterized in that the polarities are opposite to each other, each second voltage regulator diode is connected to a terminal different from the connection point with the first voltage regulator diode, and a terminal is provided to detect a signal from the connection point. energy absorption device.
(2)第1の定電圧ダイオードと第2の定電圧ダイオー
ドとの接続が陽極同士にて行なわれ、且つ第2の定電圧
ダイオードより第1の定電圧ダイオードのツェナ電圧が
大きいものである特許請求の範囲第1項記載のエネルギ
ー吸収装置。
(2) A patent in which the first constant voltage diode and the second constant voltage diode are connected at their anodes, and the zener voltage of the first constant voltage diode is higher than that of the second constant voltage diode. An energy absorbing device according to claim 1.
(3)第1の定電圧ダイオードと第2の定電圧ダイオー
ドとの接続が陰極同士にて行なわれ、且つ第1の定電圧
ダイオードより第2の定電圧ダイオードのツェナ電圧が
大きいものである特許請求の範囲第1項記載のエネルギ
ー吸収装置。
(3) A patent in which the first voltage regulator diode and the second voltage regulator diode are connected at their cathodes, and the zener voltage of the second voltage regulator is greater than that of the first voltage regulator diode. An energy absorbing device according to claim 1.
JP60002036A 1985-01-11 1985-01-11 Energy absorber Pending JPS61161702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60002036A JPS61161702A (en) 1985-01-11 1985-01-11 Energy absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60002036A JPS61161702A (en) 1985-01-11 1985-01-11 Energy absorber

Publications (1)

Publication Number Publication Date
JPS61161702A true JPS61161702A (en) 1986-07-22

Family

ID=11518101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60002036A Pending JPS61161702A (en) 1985-01-11 1985-01-11 Energy absorber

Country Status (1)

Country Link
JP (1) JPS61161702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021678A1 (en) * 1992-04-08 1993-10-28 Critec Pty. Ltd. Improvements in surge diverters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021678A1 (en) * 1992-04-08 1993-10-28 Critec Pty. Ltd. Improvements in surge diverters

Similar Documents

Publication Publication Date Title
CA1248584A (en) Shunt arrangement
JPS61114509A (en) Superconductive coil device
JPH0254025B2 (en)
US6654222B2 (en) Current limiter with electric valves for limiting the short-circuit current in an electric power circuit
JPS61161702A (en) Energy absorber
US4717996A (en) Gated parallel power switching devices protection circuit
US20020012215A1 (en) Protection of a dynamic voltage restorer
JPS642011B2 (en)
BRPI0721927A2 (en) &#34;METHOD OF AUTHENUATING A MOMENTARY PEAK IN A C.C. POLARIZATION COIL ON A LEAKAGE CURRENT LIMITER AND PARALLEL CIRCUIT CIRCUIT WITH A C.C. POLARIZATION COILER
SK283834B6 (en) AC input cell for data acquisition circuits
JP3317386B2 (en) Secondary voltage suppression circuit of power supply CT
JPS60238770A (en) Operating duty testing method of lightning arrester
JPS60134768A (en) Voltage doubler rectifier circuit
JPS62502910A (en) Electrical load monitoring device for vehicles
SU1115175A1 (en) Rectifier assembly for semiconductor converter
JP2670261B2 (en) Thyristor valve
SU1051510A1 (en) Device for regulating a.c. voltage
JP2614278B2 (en) How to protect superconducting energy storage systems.
JPH0239183B2 (en) SAIRISUTABARUBU
JPS6225822A (en) Surge absorption circuit
JPS61157224A (en) Energy absorber
JPS61221526A (en) Surge absorbor
SU1198492A1 (en) D.c.voltage stabilizer with protection
JPH05184057A (en) Open-phase sensor
SU955344A1 (en) Protection device