JPS61161133A - Endothermic reaction apparatus - Google Patents

Endothermic reaction apparatus

Info

Publication number
JPS61161133A
JPS61161133A JP41985A JP41985A JPS61161133A JP S61161133 A JPS61161133 A JP S61161133A JP 41985 A JP41985 A JP 41985A JP 41985 A JP41985 A JP 41985A JP S61161133 A JPS61161133 A JP S61161133A
Authority
JP
Japan
Prior art keywords
catalyst
catalytic
oxidizing catalyst
particles
endothermic reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41985A
Other languages
Japanese (ja)
Inventor
Nobuaki Murakami
信明 村上
Toshiro Nishi
敏郎 西
Akio Nishi
西 昭雄
Masayasu Sakai
正康 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP41985A priority Critical patent/JPS61161133A/en
Publication of JPS61161133A publication Critical patent/JPS61161133A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes

Abstract

PURPOSE:To retain the stable endothermic reaction performance for a long period by constituting a catalytic layer in a catalytic reaction tube a mixture of the noncatalytic particles and an oxidizing catalyst and lowering the degree of packing of the oxidizing catalyst gradually with proceeding toward the upper part in the vertical axial direction. CONSTITUTION:The titled apparatus is packed so that the more quantities of the dummy particles 31 are present in a feed side (upper part) of air for combustion and fuel, and the ratio of an oxidizing catalyst 32 becomes gradually higher with proceeding to the lower part. Thereby the calorific value due to an oxidizing reaction is made uniform in the inside of the laters of the oxidizing catalyst 32 and the dummy particles 31. In the oxidizing catalyst 32, alumina, aluminosilicate and titania, etc. are generally used as a carrier and Pt, Ce, Pd and Ni, etc. are used as a metallic deposit. As the dummy particles 31, the material which has the corrosion resistance and the fire resistance and is high in the thermal conductivity such as alumina, silica, earthenware and porcelain is preferable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸熱反応装置、特に水蒸気改實反応用の吸熱
反応装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an endothermic reactor, in particular an endothermic reactor for steam reforming reactions.

(従来の技術) 第3図は、従来よシ化学工業界で多用されている水蒸気
改質反応装置の模式図である(模式的に触媒反応管が1
本の場合を示した)。この装置において、メタン、ナフ
サ等の炭化水素と水蒸気との混合物11は、高温(45
0〜900℃)のN1糸触媒(以下改質触媒と称する)
150層内で、次式(1)に従ってCO,H,となり水
素富化ガス12として排出される。
(Prior art) Fig. 3 is a schematic diagram of a steam reforming reactor that has conventionally been widely used in the chemical industry (schematically, one catalytic reaction tube is one
(shown in the case of books). In this device, a mixture 11 of hydrocarbons such as methane and naphtha and steam is heated at a high temperature (45
0~900℃) N1 thread catalyst (hereinafter referred to as reforming catalyst)
Within the 150 layers, CO and H are formed according to the following equation (1) and are discharged as hydrogen-enriched gas 12.

CnHm + H2O−+ Co + Hl    (
1)この水蒸気改質反!6は、吸熱反応のため、外部よ
り加熱して反応熱を与える必要がある。
CnHm + H2O−+ Co + Hl (
1) This is against steam reforming! Since No. 6 is an endothermic reaction, it is necessary to heat it from the outside to provide reaction heat.

14は、その為の燃焼用バーナであるが、燃焼の輻射熱
を利用するこの方式の原理上、炉容積を小さくすると、
触媒管15にいわゆるホットスポット(局所的な高温部
)を生じる為、コンパクト化は至難である。
14 is a combustion burner for this purpose, but due to the principle of this method, which uses radiant heat of combustion, if the furnace volume is reduced,
Since a so-called hot spot (local high temperature area) is generated in the catalyst tube 15, it is extremely difficult to make it compact.

第4図も、従来型の吸熱反応装置の模式図である。これ
は、主に燃料電池用の原料改質装置として使用されてい
るものであり、従来よシ周知の触媒燃焼法を用いるもの
である。図で、21は、燃焼(酸化)用燃料及び空気の
投入ライン、22.25は、アルミナ等にプラチナ、セ
リウム等を担持した酸化反応(下記(2)式促進用触媒
(以下酸化触媒と称する)の充填層、24はアルミナ粒
子充填部、25は燃焼排ガスの出口である。
FIG. 4 is also a schematic diagram of a conventional endothermic reaction device. This is mainly used as a raw material reforming device for fuel cells, and uses a conventionally well-known catalytic combustion method. In the figure, 21 is an input line for fuel and air for combustion (oxidation), and 22.25 is an oxidation reaction (formula (2) promoting catalyst (hereinafter referred to as oxidation catalyst) in which platinum, cerium, etc. are supported on alumina etc. ), 24 is an alumina particle filling part, and 25 is an outlet for combustion exhaust gas.

CnHm + O,(Ai r ) −+ CO2+ 
H20(2)26は改質原料の入口、28は改質触媒の
充填層であり、ここで前記(1)式によりH2冨化ガス
が生成する。27は、生成改質ガスの出口である。
CnHm + O, (Air) −+ CO2+
H20(2) 26 is an inlet for the reforming raw material, and 28 is a packed bed of a reforming catalyst, where H2-enriched gas is generated according to the above equation (1). 27 is an outlet for the produced reformed gas.

この図の吸熱反応装置の熱供給方式は、二段の酸化触媒
層22.25で生じる酸化(燃焼)熱を、その下流アル
ミナ粒子充填部24に充填したアルミナボールに伝え、
更にこれを吸熱反応部となる改質触媒の充填層28に伝
達するものであり、第3図の方式と比較し、相当程度の
コンパクト化が可能であるが、この方式では、酸化触媒
層22.25の酸化触媒の耐久性、寿命が問題となる。
The heat supply system of the endothermic reactor shown in this figure transfers the oxidation (combustion) heat generated in the two-stage oxidation catalyst layer 22.25 to the alumina balls filled in the downstream alumina particle filling section 24.
Furthermore, this is transmitted to the packed bed 28 of the reforming catalyst, which serves as an endothermic reaction section.Compared with the method shown in FIG. 3, this method can be made considerably more compact. The durability and lifespan of the .25 oxidation catalyst are a problem.

例えば、触媒担体として一般的なr−アルミナを用いた
場合、良く知られているように、結晶転移のため、10
00℃以上の操作では寿命が極めて短い。即ち、第4図
のように、上部のみで集中的に酸化燃焼させると、その
部分は相当な温度上昇となシ、短時間のうちに触媒性能
が低下してしまう可能性かある。
For example, when common r-alumina is used as a catalyst carrier, as is well known, crystal transition occurs, resulting in 10
Operation at temperatures above 00°C results in extremely short service life. That is, as shown in FIG. 4, if oxidation combustion is performed intensively only in the upper part, the temperature in that part will rise considerably, and there is a possibility that the catalyst performance will deteriorate in a short period of time.

これを防ぐため、ば化触媒充填N23.24に触媒量を
平等に充填する方法も考えられるが、それでも燃料用ガ
ス濃度が高い入口部での反応!(および発生熱量)が多
大でちゃ、触媒の劣化速度が大となることは否めない。
In order to prevent this, a method of filling the oxidation catalyst N23.24 with an equal amount of catalyst can be considered, but even then, the reaction occurs at the inlet where the fuel gas concentration is high! It cannot be denied that if the amount of heat (and amount of heat generated) is large, the rate of deterioration of the catalyst will be high.

(発明が解決しようとする問題点) 本発明は、上記欠点全解消する吸熱反応装置を提供する
ことを目的とする。すなわち、本発明は、燃焼(rR化
)用触媒の実質的な触媒性能を軸方向に沿って変化させ
、これよシ、長期間安定した性能全保持し得る吸熱反応
装置を提供することを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to provide an endothermic reaction device that eliminates all of the above-mentioned drawbacks. That is, an object of the present invention is to provide an endothermic reaction device in which the substantial catalytic performance of a combustion (rR conversion) catalyst can be changed along the axial direction, and which can maintain stable performance for a long period of time. shall be.

(問題点金牌決するだめの手段) 本発明は、触媒反応管内で生起する吸熱反応に必要な熱
量全燃料の触媒酸化反応によって得、これを該触媒反応
管の外側よシ供給する吸熱反応装置に於て、該触媒反応
管内の触媒層を、触媒性を有しない粒子と酸化触媒の混
合物で構成し、しかも酸化触媒の充填率を縦軸方向に上
に低く、下に高くするか、或いは、触媒性能の異る酸化
触媒を用い、縦軸方向に上方より性能が低い触媒から高
い触媒へ順次分布を持たせて配したことt%徴とする吸
熱反応装置に関する。
(Means for determining the problem) The present invention provides an endothermic reaction device in which the amount of heat required for the endothermic reaction that occurs within the catalytic reaction tube is obtained through a catalytic oxidation reaction of all the fuel, and this is supplied to the outside of the catalytic reaction tube. The catalyst layer in the catalytic reaction tube is composed of a mixture of non-catalytic particles and an oxidation catalyst, and the filling rate of the oxidation catalyst is made lower in the vertical axis direction and higher in the downward direction, or The present invention relates to an endothermic reaction device in which oxidation catalysts with different catalytic performances are used and arranged in a sequential manner from the lowest performance catalyst to the highest performance catalyst upward in the vertical axis direction.

すなわち、本発明の特徴は、上記目的を達成する手段と
して、(a)触媒性能を有しない粒子(以下ダミー粒子
と称する)を燃焼用燃料及び空気供給側に、より多量に
混入する、あるいは(b) IIl!1!媒性能の異る
(例えば、同一触媒金属を用い、触媒担持量を変化させ
ることによって触媒性能の調整は容易である)触媒を軸
方向に分布をもって充填することにある。このような方
式によって、燃料の酸化反応を第4図に示した例の場合
よりも均等に進行させるようmVでき、酸化触媒層、改
質触媒チューブ、及び改質触媒そのいずれにも急激な高
温度部金主じることのない、安全な運用が可能となるの
である。かかる特徴?:有する本発明装置は、吸熱反応
を伴う化学反応装置に広く適用できる。
That is, the feature of the present invention is that, as a means for achieving the above object, (a) a larger amount of particles having no catalytic performance (hereinafter referred to as dummy particles) is mixed into the combustion fuel and air supply side; b) IIl! 1! The purpose is to fill catalysts with different media performance (for example, the catalyst performance can be easily adjusted by using the same catalyst metal and changing the amount of catalyst supported) in a distributed manner in the axial direction. By using such a system, the mV can be made so that the fuel oxidation reaction proceeds more evenly than in the case of the example shown in Figure 4, and there is no sudden rise in temperature in the oxidation catalyst layer, reforming catalyst tube, or reforming catalyst. This enables safe operation without worrying about temperature control. Features like that? The device of the present invention having: can be widely applied to chemical reaction devices involving endothermic reactions.

(作用) 以下に、本発明装置を図面に基つき説明する。(effect) The apparatus of the present invention will be explained below with reference to the drawings.

第1図は、本発明の一実施態様を示すフローシートであ
り、図で、第4図と同一符号は、同一部材を示す。51
はダミー粒子(図中○印へ52は酸化触媒(図中・印)
であり、図の上方部(即ち、燃焼用空気及び燃料の供給
側)にダミー粒子61がより多重に、下方へいくに従い
酸化触媒62の比率が犬となるよう充填する。
FIG. 1 is a flow sheet showing one embodiment of the present invention, in which the same reference numerals as in FIG. 4 indicate the same members. 51
is a dummy particle (marked with ○ in the figure) 52 is an oxidation catalyst (marked in the figure)
The dummy particles 61 are filled in the upper part of the figure (that is, on the combustion air and fuel supply side) in a larger number, and the ratio of the oxidation catalyst 62 becomes smaller as it goes downward.

33は燃料と燃焼用空気の混合部、54は触媒層保持用
の粒子層(タ゛ミー粒子61と同一物で良い〕。酸化反
応による発熱量は、これによって、酸化触媒32・ダミ
ー粒子31層内で均等化される。
33 is a mixing part for fuel and combustion air, and 54 is a particle layer for holding the catalyst layer (the same material as the dummy particles 61 may be used). equalized by

ここで、酸化触媒52は、担体として、前述したアルミ
ナ、アルミノンリケード、チタニアなど、金属担持物と
して、Pt、 Ce、 pa、 Ni  %を用いるも
のが一般であるが、必ずしもこ扛に限られない。又、ダ
ミー粒子61としては、アルミナ、シリカ、陶器、磁器
等の耐食・耐火性金有し、熱伝導率が高いものが好まし
い。形状は、酸化哩媒32、ダミー粒子31とも、球状
、円筒状、ランヒリング状、その他種々のものが使用さ
れる。
Here, the oxidation catalyst 52 generally uses the above-mentioned alumina, aluminonilicade, titania, etc. as a carrier, and Pt, Ce, Pa, Ni% as a metal support, but is not necessarily limited to this. do not have. Further, the dummy particles 61 are preferably made of a corrosion-resistant and refractory metal such as alumina, silica, ceramic, or porcelain, and have high thermal conductivity. Regarding the shape, the oxidizing medium 32 and the dummy particles 31 may have various shapes such as spherical, cylindrical, Landhilling, and others.

第2図は、本発明の他の実施態様管示す。図で、第1.
4図と同一符号は同一部材を示す。
FIG. 2 shows another embodiment of the invention. In the figure, 1.
The same symbols as in FIG. 4 indicate the same members.

55(ム印)、56(○印)、67(◎印)は、それぞ
れ触媒性能が低い触媒、通常の触媒、高い触媒である。
55 (mu mark), 56 (○ mark), and 67 (◎ mark) are catalysts with low catalytic performance, normal catalyst, and high catalyst performance, respectively.

触媒性能に高低をつけるには、例えば、同一触媒・触媒
担体を用い、触媒の担持量を変化させる方法、あるいは
触媒性能の高い触媒金属と、さほど高くない触媒金属に
よる等の方法によって容易であり、どのような方法でも
本発明の実施には支障がない。
It is easy to vary the catalytic performance by, for example, using the same catalyst and catalyst carrier and varying the amount of catalyst supported, or by using a catalytic metal with high catalytic performance and a catalytic metal with not so high catalytic performance. However, there is no problem in implementing the present invention in any method.

また、第1図と第2図の混合形態でも、本発明の目的を
達することが可能なことは勿論である。
It goes without saying that the object of the present invention can also be achieved with a combination of the configurations shown in FIGS. 1 and 2.

(発明の効果) 本発明の吸熱反応装置は、コンパクト化が達成でき、し
かも使用する触媒の劣化を伴うことなく長期間の運転を
行うことができる。
(Effects of the Invention) The endothermic reaction apparatus of the present invention can be made compact and can be operated for a long period of time without deterioration of the catalyst used.

次に、本発明の実施例金示す。Next, examples of the present invention will be shown.

実施例 モデル装置を用いて本発明の有用性全検討した結果を、
以下に示す。
The results of fully examining the usefulness of the present invention using an example model device are as follows:
It is shown below.

第1図、第2図及び第4図と同様の装置(処理量CH4
’ 1.5 Nm”/H、H204Nm’/H、燃料も
CH4、改質触媒はNl系ペレント型)ヲ作製し、それ
ぞれの状態を模擬したテストを実施した。
Equipment similar to Figures 1, 2, and 4 (throughput CH4
'1.5 Nm''/H, H204Nm'/H, the fuel was CH4, and the reforming catalyst was Nl-based perent type), and tests were conducted simulating each condition.

酸化触媒としては、5fi径の球状アルミナにptを担
持したもの全使用した。Pt担持童は、第1図及び第4
図の方式のテストの場合、0.5q/?であり、第2図
の方式のテストの場合、Q印は[1,7η/2、○印は
α5W9/?、Δ印はα25rIq/Pである。ダミー
粒子としては、2waの球状アルミナを用いた。
As the oxidation catalyst, a 5fi diameter spherical alumina supporting PT was used. For children with Pt, see Figures 1 and 4.
In the case of the test using the method shown in the figure, 0.5q/? In the case of the test using the method shown in Figure 2, the mark Q is [1,7η/2, and the mark ○ is α5W9/? , Δ mark is α25rIq/P. As the dummy particles, 2wa spherical alumina was used.

その結果、いずれの場合も、運転開始直後の改質後出ロ
ガス組成は未反応CH,がtovol、S以下と問題が
なかったが、歌化触媒側の最高温1更は、それぞれ16
50℃(第4図方式の場合入970℃(第1図の場合)
、925℃(第21方式の場合)で、本発明の方式(第
1図、第2図)により、触媒層内の温展分布が均一化さ
れることが示された。また、第4図の方式の@会には、
運転開始後、約150時間でば化触媒の性能劣化のため
、ピーク温度域が4弘開始時よりも下流側に移行し、約
200時間後には、燃焼用CH,の酸化が不充分になる
とともに、改質ガス中のCH4濃反が2 VOI、% 
l:上辺る状!虎となった。第1,2図の場合には、運
転開始後、200時間でも全く性能の変化がなかった。
As a result, in all cases, there was no problem in the log gas composition after reforming immediately after the start of operation, with unreacted CH, being less than tovol and S, but the maximum temperature on the catalyst side was 16
50℃ (in case of Figure 4 method) 970℃ (in case of Figure 1)
, 925° C. (in the case of the 21st method), it was shown that the method of the present invention (FIGS. 1 and 2) makes the thermal expansion distribution in the catalyst layer uniform. In addition, in the @ meeting of the method shown in Figure 4,
Approximately 150 hours after the start of operation, due to performance deterioration of the oxidation catalyst, the peak temperature range shifts to the downstream side compared to when the 4th generation was started, and after about 200 hours, the oxidation of the combustion CH becomes insufficient. At the same time, the CH4 concentration in the reformed gas is 2 VOI,%
l: It's over the top! He became a tiger. In the case of Figures 1 and 2, there was no change in performance even 200 hours after the start of operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ本発明の吸熱反応装置(
水蒸気改質装置)の一実施態様管示す。第6図は、従来
の水蒸気改質装置の模式図、第4図は、従来の吸熱反応
装置の模式図である。 第1図     第2図
FIG. 1 and FIG. 2 respectively show the endothermic reaction apparatus (
One embodiment of the steam reformer (steam reformer) is shown. FIG. 6 is a schematic diagram of a conventional steam reformer, and FIG. 4 is a schematic diagram of a conventional endothermic reaction device. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 触媒反応管内で生起する吸熱反応に必要な熱量を燃料の
触媒酸化反応によつて得、これを該触媒反応管の外側よ
り供給する吸熱反応装置に於て、該触媒反応管内の触媒
層を、触媒性を有しない粒子と酸化触媒の混合物で構成
し、しかも酸化触媒の充填率を縦軸方向に上に低く、下
に高くするか、或いは、触媒性能の異る酸化触媒を用い
、縦軸方向に上方より性能が低い触媒から高い触媒へ順
次分布を持たせて配したことを特徴とする吸熱反応装置
In an endothermic reaction device, the amount of heat required for the endothermic reaction occurring in the catalytic reaction tube is obtained through a catalytic oxidation reaction of fuel, and this is supplied from the outside of the catalytic reaction tube. It is composed of a mixture of particles that do not have catalytic properties and an oxidation catalyst, and the filling rate of the oxidation catalyst is made lower in the vertical axis direction and higher in the downward direction, or oxidation catalysts with different catalytic performance are used. An endothermic reaction device characterized in that the catalysts are arranged with a sequential distribution from lower to higher performance catalysts in the upward direction.
JP41985A 1985-01-08 1985-01-08 Endothermic reaction apparatus Pending JPS61161133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41985A JPS61161133A (en) 1985-01-08 1985-01-08 Endothermic reaction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41985A JPS61161133A (en) 1985-01-08 1985-01-08 Endothermic reaction apparatus

Publications (1)

Publication Number Publication Date
JPS61161133A true JPS61161133A (en) 1986-07-21

Family

ID=11473279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41985A Pending JPS61161133A (en) 1985-01-08 1985-01-08 Endothermic reaction apparatus

Country Status (1)

Country Link
JP (1) JPS61161133A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119901A (en) * 1990-09-11 1992-04-21 Ube Ind Ltd Reforming tube and reformer
EP0625481A1 (en) * 1993-05-17 1994-11-23 Haldor Topsoe A/S High temperature steam reforming
WO1996016898A1 (en) * 1994-12-01 1996-06-06 Idemitsu Petrochemical Co., Ltd. Process for producing phosgene
EP1035072A1 (en) * 1999-03-05 2000-09-13 Haldor Topsoe A/S Process for autothermal catalytic stream reforming
FR2790750A1 (en) * 1999-03-10 2000-09-15 Air Liquide PROCESS AND DEVICE FOR PRODUCING HYDROGEN BY THERMOCATALYTIC DECOMPOSITION OF HYDROCARBONS

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119901A (en) * 1990-09-11 1992-04-21 Ube Ind Ltd Reforming tube and reformer
EP0625481A1 (en) * 1993-05-17 1994-11-23 Haldor Topsoe A/S High temperature steam reforming
CN1037760C (en) * 1993-05-17 1998-03-18 赫多特普索化工设备公司 High temperature steam reforming
WO1996016898A1 (en) * 1994-12-01 1996-06-06 Idemitsu Petrochemical Co., Ltd. Process for producing phosgene
EP1035072A1 (en) * 1999-03-05 2000-09-13 Haldor Topsoe A/S Process for autothermal catalytic stream reforming
FR2790750A1 (en) * 1999-03-10 2000-09-15 Air Liquide PROCESS AND DEVICE FOR PRODUCING HYDROGEN BY THERMOCATALYTIC DECOMPOSITION OF HYDROCARBONS
EP1036756A1 (en) * 1999-03-10 2000-09-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for the production of hydrogen by thermocatalytic cracking of hydrocarbons
US6315977B1 (en) 1999-03-10 2001-11-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for producing hydrogen by thermocatalytic decomposition of hydrocarbons

Similar Documents

Publication Publication Date Title
JP4590262B2 (en) Pressure swing reforming
JP4335535B2 (en) Single chamber compact fuel processor
US6969411B2 (en) Compact light weight autothermal reformer assembly
JP5042853B2 (en) Oxidation autothermal reformer and oxidation autothermal reforming method using the same
GB2181740A (en) Generation of synthesis gas
CA2377372A1 (en) Apparatus for providing a pure hydrogen stream for use with fuel cells
JP2008532215A (en) Proton conducting solid oxide fuel cell system with temperature swing reforming
JP4504016B2 (en) Highly efficient and compact reformer unit for producing hydrogen from gaseous hydrocarbons in the low power range
KR20010106413A (en) Synthesis gas production by steam reforming
JP2004203737A (en) Method for producing hydrogen and carbon monoxide by partial oxidation of hydrocarbons
WO2006134887A1 (en) Process and apparatus for producing hydrogen-containing gas
US11607657B2 (en) Heat integrated reformer with catalytic combustion for hydrogen production
US3962411A (en) Method for catalytically cracking a hydrocarbon fuel
US20070295937A1 (en) Method for Producing Synthesis Gas and Apparatus for Producing Synthesis Gas
KR20200097755A (en) Method and system for reforming hydrocarbon gas
JPS61161133A (en) Endothermic reaction apparatus
JPH11315323A (en) Device for generating heat treatment atmosphere
RU2286308C2 (en) Radial type device for production of the synthesis gas
JP5329944B2 (en) Steam reformer for fuel cell
JPS63129002A (en) Internal heating fuel reformer
JP4147521B2 (en) Self-oxidation internal heating type reforming method and apparatus
JPH0867502A (en) Fuel reformer
JP2002025597A (en) Reforming device for fuel cell and its operating method
JP2005193110A (en) Synthetic gas producing catalyst and method for producing synthetic gas by using the same
JPH0764521B2 (en) Fuel reformer