JPS61160938A - Damage removal for si substrate after dry etching - Google Patents

Damage removal for si substrate after dry etching

Info

Publication number
JPS61160938A
JPS61160938A JP163485A JP163485A JPS61160938A JP S61160938 A JPS61160938 A JP S61160938A JP 163485 A JP163485 A JP 163485A JP 163485 A JP163485 A JP 163485A JP S61160938 A JPS61160938 A JP S61160938A
Authority
JP
Japan
Prior art keywords
substrate
gas
dry etching
atoms
hcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP163485A
Other languages
Japanese (ja)
Inventor
Nahomi Aoto
青砥 なほみ
Yukinori Kuroki
黒木 幸令
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP163485A priority Critical patent/JPS61160938A/en
Publication of JPS61160938A publication Critical patent/JPS61160938A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To obtain the method much effective in damage removal by a low- temperature process, by a method wherein an Si substrate is etched with ion beams in an atmosphere of chlorine gas or fluorine gas and next washed with a boiled and mixed solution of H2O2, HCl, and H2O. CONSTITUTION:An Si substrate 21 after dry etching in a halogenated carbon series gas is installed in an ion beam etching device and etched with ion beams on irradiation with Ar<+> ion beams 25 with an acceleration voltage of 0.1-1kV and a current density of 0.01-10mA/cm<2> in an atmosphere of 1X10<-2>-1X10<-5>Torr chlorine gas or fluorine gas, thus removing the Si surface layer containing carbon atoms. Next, the substrate 21 is dipped in a boiled mixed solution 28 of H2O2, HCl, and H2O for 5-15min and is then washed in pure water. Chlorine atoms and fluorine atoms are absorbed to the Si surface during the process of ion beam etching, but substituted with oxygen atoms during the process of washing in the mixed solution 28 of H2O2, HCl, and H2O and in pure water; accordingly, a halogenated Si surface layer is changed into a thin oxide layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子デバイス調造プロセスに用いる、Siの
ドライエツチング損傷除去方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for removing dry etching damage from Si used in an electronic device manufacturing process.

(従来技術とその問題点) 従来のハロゲン化炭素系ガスによるドライエツチング後
のSi表面の損傷除去方法としては、8i表面を950
℃、H2: Ox = 1 : 1  で200A程度
熱酸化し、その後希釈したフッ酸で酸化膜を除去する、
などの方法が行われている。(井用英治他、第30回応
用物理学関係連合講演会講演予稿集P310,6a−V
−10)。しかしながらこのような方法においては、ド
ライエツチングによる損傷は除去できるものの、8j基
板を高温に加熱する方法であるために、基板に注入した
不純物のプロファイルが変化して設計通りの不純物分布
が得られない、高温加熱によって新たに結晶欠陥が発生
する可能性がある、などの欠点があった。
(Prior art and its problems) As a conventional method for removing damage from the Si surface after dry etching using a halogenated carbon gas, the 8i surface is
℃, H2: Ox = 1: 1, thermally oxidize at about 200 A, and then remove the oxide film with diluted hydrofluoric acid.
Methods such as these are being used. (Eiji Iyo et al., Proceedings of the 30th Applied Physics Association Conference P310, 6a-V
-10). However, although this method can remove damage caused by dry etching, since the 8J substrate is heated to a high temperature, the profile of the impurities implanted into the substrate changes and the impurity distribution as designed cannot be obtained. , there is a possibility that new crystal defects may be generated due to high-temperature heating.

第1図はハロゲン化炭素系ガスによるドライエツチング
後の8i表面に対し損傷除去処理を施した後のSiの注
入不純物プロファイルをSIMSによって測定した結果
を示したものである。11は損傷除去処理を施す前のB
(ボロン)の分布を示すプロファイル、12は従来方法
による損傷除去処理を施した後のBの分布を示すプロフ
ァイルで、従来方法による損傷除去処理によってBの分
布が変化してしまっていることがわかる、これは、従来
方法が高温加熱を伴うプロセスであるためである。
FIG. 1 shows the results of SIMS measurement of the implanted Si impurity profile after damage removal treatment was performed on the 8i surface after dry etching with a halogenated carbon gas. 11 is B before damage removal treatment
12 is a profile showing the distribution of B after damage removal processing using the conventional method. It can be seen that the distribution of B has changed due to the damage removal processing using the conventional method. This is because the conventional method involves high temperature heating.

(発明の目的) 本発明は、このような従来の欠点を除去せしめて、ハロ
ゲン化炭素系ガスによるドライエツチング後8iの損傷
除去において、低温のプロセスでかつ十分な損傷除去効
果のある損傷除去方法を提供することを目的とする。
(Objective of the Invention) The present invention eliminates such conventional drawbacks and provides a damage removal method that is a low temperature process and has a sufficient damage removal effect in removing damage of 8i after dry etching with a halogenated carbon gas. The purpose is to provide

(発明の構成) 本発明では、少なくと本表面にSi層を有する基板の表
面をハロゲン化炭素系ガスによってドライエツチングし
た後、塩素ガス雰囲気中またはフッ素ガス雰囲気中でイ
オンビーム・エッチングを施す。次に同Si基板を沸騰
したH、O,、HCl1゜H,0混液に浸し、その後同
8i基板を純水中で洗浄する。この方法によシ、ドライ
エツチングにょるSi表面の損傷を除去することができ
る。
(Structure of the Invention) In the present invention, after dry etching the surface of a substrate having at least a Si layer on the surface using a halogenated carbon gas, ion beam etching is performed in a chlorine gas atmosphere or a fluorine gas atmosphere. Next, the same Si substrate is immersed in a boiling mixture of H, O, and HCl of 1°H,0, and then the 8i substrate is washed in pure water. By this method, damage to the Si surface caused by dry etching can be removed.

(構成の詳細な説明) 本発明は、上述の方法を取ることにより、従来技術の問
題点を解決した。本発明では、まず、ハロゲン化炭素系
ガスでドライエツチングした後の8i基板をイオンビー
ムエツチング装置内に設置し、lXl04Torr〜1
X104Torrの塩素ガス雰囲気中またはフッ素ガス
中で加速電圧0.1kV〜lkv、電流密度0.01 
mA /Cdl〜10 mA/Cl/1のAr+イオン
ビームを照射してイオンビームエツチングを施す。ハロ
ゲン化炭素系ガスでドライエツチングするとその際に表
面層内に多くの炭素原子が浅くたたき込まれている。こ
のSi表面層の炭素原子は8i表面損傷の原因となるた
め取り除く必要があり、本発明では上述のcl、雰囲気
中またはF、雰囲気中のイオンビームエツチング過程で
8i表面の炭素原子を含む層を取り除いている。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by taking the above-described method. In the present invention, first, an 8i substrate that has been dry etched with a halogenated carbon gas is placed in an ion beam etching apparatus,
Acceleration voltage 0.1 kV to lkv, current density 0.01 in X104 Torr chlorine gas atmosphere or fluorine gas
Ion beam etching is performed by irradiating with an Ar+ ion beam of mA/Cdl to 10 mA/Cl/1. When dry etching is performed using a halogenated carbon gas, many carbon atoms are etched into the surface layer. These carbon atoms on the Si surface layer need to be removed because they cause damage to the 8i surface.In the present invention, the layer containing carbon atoms on the 8i surface is removed by the ion beam etching process in the above-mentioned Cl atmosphere or F atmosphere. is being removed.

本発明では、次に、上述の処理後の8i基板を沸騰した
H1偽、HCj、H!O混液に5分〜15分浸した後、
純水中で洗浄する。上述の塩素ガス雰囲気中またはフッ
素ガス雰囲気中のイオンビームエツチングの過程で8i
表面には塩素原子またはフッ素原子が吸着しており、こ
のままではS&表面損傷の原因となるが、これらは%O
,、HCJ、H,O混液中及び純水中の洗浄の過程で酸
素原子に置換され、81表面のハロゲン化した層は薄い
酸化層に変わる。この酸化された8i表面層内にも塩素
原子またはフッ素原子が多少残留しているが81表面損
傷の原因となるほどではない。
In the present invention, next, the 8i substrate after the above-mentioned processing is boiled H1 fake, HCj, H! After soaking in the O mixture for 5 to 15 minutes,
Wash in pure water. In the process of ion beam etching in the above-mentioned chlorine gas atmosphere or fluorine gas atmosphere, 8i
Chlorine atoms or fluorine atoms are adsorbed on the surface, which will cause S & surface damage if left as is, but these
,,HCJ is replaced by oxygen atoms during the cleaning process in a H,O mixture and in pure water, and the halogenated layer on the surface of 81 turns into a thin oxide layer. Although some chlorine atoms or fluorine atoms remain in this oxidized 8i surface layer, they are not large enough to cause damage to the 81 surface.

以上に述べた方法により、ハロゲン化炭素系ガス中のド
ライエツチング後の81表面損傷の原因となる炭素原子
を低温のプロセスで取り除き、またこのプロセス中で吸
着するハロゲン原子も低温のプロセスで減少させること
ができ、ハロゲン化炭素系ガス中のドライエツチング後
の8i表面の低温プロセスによる損傷除去が可能となる
By the method described above, the carbon atoms that cause damage to the 81 surface after dry etching in the halogenated carbon gas are removed in a low-temperature process, and the halogen atoms adsorbed during this process are also reduced in the low-temperature process. This makes it possible to remove damage from the 8i surface by a low temperature process after dry etching in a halogenated carbon gas.

(実施例) 以下本発明の実施例について図面を参照して詳細に説明
する。第2図に本発明の実施例を示す。
(Example) Examples of the present invention will be described in detail below with reference to the drawings. FIG. 2 shows an embodiment of the present invention.

第2 図(a)ハ、ハロゲン化炭素系ガス中のドライエ
ツチング後の81基板をイオンビームエツチングする装
置である。8iの試料21は、ガス導入!!2から導入
した塩素ガスまたはフッ素ガス22の雰囲気中に置かれ
ている。この試料21に対し、イオン源24から出たA
r+イオンビーム25を照射する。
FIG. 2(a) shows an apparatus for ion beam etching an 81 substrate after dry etching in a halogenated carbon gas. For sample 21 of 8i, gas was introduced! ! It is placed in an atmosphere of chlorine gas or fluorine gas 22 introduced from 2. For this sample 21, A released from the ion source 24
The r+ ion beam 25 is irradiated.

ガス導入管22から導入する塩素ガスまたはフッ素ガス
23の分圧は、バルブ26の調節によりIX 104T
orr 〜I X 104T6r1の適当な流量に調整
する。イオン源24から出すAIイオンビーム25は、
加速電圧0.1kV 〜1kV、電流密度0.01 m
A/d〜10 mA/mの適当な値に調整する。ガス流
量及びイオン源の加速電圧、電流密度の設定は、これら
の条件とエツチング速度との関係を示した第3図を参照
して、ハロゲン化炭素系ガス中のドライエツチングで形
成された炭素原子を含む8i表面層が、イオンビームエ
ツチングで完全に除去される条件を決めるものとする。
The partial pressure of the chlorine gas or fluorine gas 23 introduced from the gas introduction pipe 22 is controlled by adjusting the valve 26.
Adjust the flow rate to an appropriate flow rate of orr ~ I X 104T6r1. The AI ion beam 25 emitted from the ion source 24 is
Accelerating voltage 0.1kV ~ 1kV, current density 0.01 m
Adjust to an appropriate value of A/d to 10 mA/m. When setting the gas flow rate, accelerating voltage of the ion source, and current density, refer to Figure 3, which shows the relationship between these conditions and the etching rate. The conditions under which the 8i surface layer containing the 8i surface layer is completely removed by ion beam etching shall be determined.

第3図(、)はAr’″加速電圧1 kV、価)は0.
5 kV、(C)は0.2 kV (7)場合のエツチ
ング速度の電流密度及び塩素分圧依存性を示したもので
ある。例えば、Cp、 、 H,混合ガスでエツチング
した後の8i表面の場合には厚さ約200大の炭素原子
を含む表面層が形成されているため、塩素ガス分圧lX
104Torr中で加速電圧1kV、電流密度1 rn
A/C11tのArイオンビームで10秒間のエツチン
グを行うことにより、炭素原子を含む表面層を除去する
ことができる。フッ素ガスを用いる場合は、エツチング
速度は同じ分圧で塩素の約1.5倍となる。次に、この
処理後のSt基板を、第2図(b)に示した装置に入れ
る。容器27をHlo、 、 HCl、 H,O混液(
成分比−0,:HCl:H,0=1 : 1 : 6 
) 28で満たし、この混液28をヒーター29によっ
て加熱し沸騰させる。
Figure 3 (,) shows Ar''' acceleration voltage 1 kV, charge) 0.
5 kV, (C) shows the dependence of etching rate on current density and chlorine partial pressure at 0.2 kV (7). For example, in the case of the 8i surface after etching with Cp, , H, mixed gas, a surface layer containing carbon atoms with a thickness of about 200 is formed, so the chlorine gas partial pressure lX
Accelerating voltage 1 kV, current density 1 rn at 104 Torr
The surface layer containing carbon atoms can be removed by etching for 10 seconds with an Ar ion beam of A/C11t. When fluorine gas is used, the etching rate is approximately 1.5 times that of chlorine at the same partial pressure. Next, the St substrate after this treatment is placed in the apparatus shown in FIG. 2(b). The container 27 is filled with Hlo, , HCl, H, O mixed solution (
Component ratio -0, :HCl:H, 0=1:1:6
) 28, and this mixed liquid 28 is heated by a heater 29 to bring it to a boil.

この中に8i基板21を浸し、5分〜15分間の洗浄を
行う。この後、同8i基板を純水中で洗浄する。この混
液中及び純水中の洗浄により、St衣表面吸着していた
ハロゲン原子の多くが酸素原子に置換される。
The 8i substrate 21 is immersed in this solution and cleaned for 5 to 15 minutes. After that, the 8i substrate is washed in pure water. By washing in this mixture and in pure water, most of the halogen atoms adsorbed on the surface of the St coat are replaced with oxygen atoms.

(発明の効果) 第4図は、SL基板表面のXP8スペクトルのピーク強
度を示したものである。横軸には、処理前、従来の方法
後、本発明の方法後(塩素ガス雰囲気中のイオンビーム
エツチング)を示している@41は自Sピーク面積のS
i 2pピ一ク面積に対する比を示している。Si表面
の炭素量を示すCtSピークの大きさは、処理前に比べ
、従来の方法後、本発明の方法ともに減少している。
(Effects of the Invention) FIG. 4 shows the peak intensity of the XP8 spectrum on the surface of the SL substrate. The horizontal axis shows before processing, after the conventional method, and after the method of the present invention (ion beam etching in a chlorine gas atmosphere).
The ratio to the i 2p peak area is shown. The magnitude of the CtS peak, which indicates the amount of carbon on the Si surface, decreases in both the conventional method and the method of the present invention compared to before treatment.

従来の方法後、本発明の方法後とも、その8i表面を厚
さ約5000λ酸化させた後に酸化膜を除去しセコ・エ
ッチを施してエッチピットを観察する表面損傷観察法に
よれば、処理後の別表面には損傷を示すエッチピットは
ほとんど現れない。
Both after the conventional method and the method of the present invention, according to the surface damage observation method in which the 8i surface is oxidized to a thickness of approximately 5000λ, the oxide film is removed, Seco-etch is performed, and etch pits are observed. Almost no etch pits indicating damage appear on the other surface.

第1図13は、ハロゲン化炭素系ガスでドライエツチン
グした後のSt基板を本発明の方法を用7いて処理した
後の、注入不純物Bのプロファイルを、8IM8によっ
て測定した結果を示したものである。従来の方法を用い
て処理した後のプロファイルである12に比べ、処理前
のプロファイル11からの変化は圧倒的に少ない。
FIG. 13 shows the results of measuring the profile of the implanted impurity B using the 8IM8 after dry etching the St substrate with a halogenated carbon gas and treating it using the method of the present invention. be. Compared to profile 12, which is the profile after processing using the conventional method, the change from profile 11 before processing is overwhelmingly small.

以上詳細に述べた通り、本発明によれば、注入不純物プ
ロファイルを変化させない低温で、ハロゲン化炭素系ガ
スによるドライエツチング後の8i表面の損傷を除去す
ることができる。
As described above in detail, according to the present invention, damage to the 8i surface after dry etching with a halogenated carbon gas can be removed at a low temperature without changing the implanted impurity profile.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は注入不純物プロファイルの従来方法及び本発明
の方法による変化を示す図。 第2図は本発明の詳細な説明する図。 第3図は塩素分圧及びイオン加速電圧をパラメータとし
たイオンビーム電流密度の変化によるエツチングレート
の変化を示す図。 第4図はXPSピークの従来方法及び本発明の方法によ
る変化を示す図。 代!人弁理士内原  1へ、 オ 1 図 深さくμm) II:処理前(ドライエツチング直後)の注入不純物プ
ロファイル 12:従来方法の処理後の 注入不純物プロファイル I3:本発明方法の処理後の 注入不純物プロファイル オ 4 図
FIG. 1 is a diagram showing changes in the implanted impurity profile according to the conventional method and the method of the present invention. FIG. 2 is a diagram illustrating the present invention in detail. FIG. 3 is a diagram showing changes in etching rate due to changes in ion beam current density using chlorine partial pressure and ion acceleration voltage as parameters. FIG. 4 is a diagram showing changes in XPS peaks according to the conventional method and the method of the present invention. Teens! To Mr. Uchihara, Patent Attorney 1, O 1 Figure depth: μm) II: Implanted impurity profile before processing (immediately after dry etching) 12: Implanted impurity profile after conventional method processing I3: Implanted impurity profile after processing using the method of the present invention E 4 Figure

Claims (1)

【特許請求の範囲】[Claims]  少なくと一も表面にSi層を有する基板の表面をハロ
ゲン化炭素系のガスでドライエッチングした後塩素ガス
雰囲気中またはフッ素ガス雰囲気中でイオンビーム・エ
ッチングし、H_2O_2、HCl、H_2O混液で洗
浄することを特徴とする、ハロゲン化炭素系ガスのドラ
イエッチングに伴うSi表面損傷の除去方法。
After dry etching the surface of the substrate having at least one Si layer on the surface with a halogenated carbon gas, ion beam etching is performed in a chlorine gas atmosphere or a fluorine gas atmosphere, and cleaning is performed with a mixed solution of H_2O_2, HCl, and H_2O. A method for removing Si surface damage caused by dry etching using a halogenated carbon gas.
JP163485A 1985-01-09 1985-01-09 Damage removal for si substrate after dry etching Pending JPS61160938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP163485A JPS61160938A (en) 1985-01-09 1985-01-09 Damage removal for si substrate after dry etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP163485A JPS61160938A (en) 1985-01-09 1985-01-09 Damage removal for si substrate after dry etching

Publications (1)

Publication Number Publication Date
JPS61160938A true JPS61160938A (en) 1986-07-21

Family

ID=11506957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP163485A Pending JPS61160938A (en) 1985-01-09 1985-01-09 Damage removal for si substrate after dry etching

Country Status (1)

Country Link
JP (1) JPS61160938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023920A (en) * 1988-01-25 1990-01-09 Intel Corp Method of pregate etching of metal-oxide-semiconductor thin film
WO2015149846A1 (en) * 2014-04-01 2015-10-08 Ev Group E. Thallner Gmbh Method and device for the surface treatment of substrates

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023920A (en) * 1988-01-25 1990-01-09 Intel Corp Method of pregate etching of metal-oxide-semiconductor thin film
WO2015149846A1 (en) * 2014-04-01 2015-10-08 Ev Group E. Thallner Gmbh Method and device for the surface treatment of substrates
KR20160140620A (en) * 2014-04-01 2016-12-07 에베 그룹 에. 탈너 게엠베하 Method and device for the surface treatment of substrates
CN106463342A (en) * 2014-04-01 2017-02-22 Ev 集团 E·索尔纳有限责任公司 Method and device for the surface treatment of substrates
JP2017513216A (en) * 2014-04-01 2017-05-25 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method and apparatus for surface treating a substrate
US9960030B2 (en) 2014-04-01 2018-05-01 Ev Group E. Thallner Gmbh Method and device for the surface treatment of substrates
US20180204717A1 (en) * 2014-04-01 2018-07-19 Ev Group E. Thallner Gmbh Method and device for the surface treatment of substrates
CN111261498A (en) * 2014-04-01 2020-06-09 Ev 集团 E·索尔纳有限责任公司 Method and device for treating a surface of a substrate
CN111326405A (en) * 2014-04-01 2020-06-23 Ev 集团 E·索尔纳有限责任公司 Method and device for treating a surface of a substrate
US10867783B2 (en) 2014-04-01 2020-12-15 Ev Group E. Thallner Gmbh Method and device for the surface treatment of substrates
EP3859766A1 (en) * 2014-04-01 2021-08-04 EV Group E. Thallner GmbH Method and device for treating surfaces on substrates
TWI829968B (en) * 2014-04-01 2024-01-21 奧地利商Ev集團E塔那有限公司 Method and device for the surface treatment of substrates
US11901172B2 (en) 2014-04-01 2024-02-13 Ev Group E. Thallner Gmbh Method and device for the surface treatment of substrates

Similar Documents

Publication Publication Date Title
JP2004517475A (en) Process for removing photoresist after ion implantation
KR19990083075A (en) Sc-2 based pre-thermal treatment wafer cleaning process
KR20000076362A (en) A process for photoresist removal
US5704986A (en) Semiconductor substrate dry cleaning method
JPS61270830A (en) Surface cleaning method
JPH04113620A (en) Cleaning method for semiconductor substrate
GB2376797A (en) Stable, oxide-free silicon surface preparation
JPH08186099A (en) Ashing of resist
JPS61160938A (en) Damage removal for si substrate after dry etching
KR102071794B1 (en) Boron film removing method, and pattern forming method and apparatus using boron film
JP2956347B2 (en) Semiconductor substrate cleaning method
JPS61160939A (en) Method of dry removal of si surface damage after dry etching
JPH03116727A (en) Manufacture of semiconductor device
US4954189A (en) Silicon wafers for producing oxide layers of high breakdown strength and process for the production thereof
JPH1064839A (en) Method for treating oxide
JPS59162200A (en) Cleaning of surface of silicon substrate
KR0171983B1 (en) Wafer cleaning method
JPH09283456A (en) Manufacture of semiconductor device
JP2612024B2 (en) Preparation method of silicon wafer contamination sample
JPH065559A (en) Ozone plasma treatment
JPS62139335A (en) Surface cleaning process
JPS63228620A (en) Surface cleaning method
JPH0521411A (en) Surface processing method and surface processor
KR910006094B1 (en) Burying layer forming process using revolution-application of extrinsic metal
JP2681112B2 (en) Method for manufacturing silicon substrate for semiconductor device