JPS61155722A - Destructive testing for ceramic material - Google Patents

Destructive testing for ceramic material

Info

Publication number
JPS61155722A
JPS61155722A JP27457184A JP27457184A JPS61155722A JP S61155722 A JPS61155722 A JP S61155722A JP 27457184 A JP27457184 A JP 27457184A JP 27457184 A JP27457184 A JP 27457184A JP S61155722 A JPS61155722 A JP S61155722A
Authority
JP
Japan
Prior art keywords
test piece
actuator
displacement
load
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27457184A
Other languages
Japanese (ja)
Inventor
Hiroshi Uno
宇野 博
Hajime Watanabe
元 渡辺
Nobumasa Ichikawa
市川 順正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP27457184A priority Critical patent/JPS61155722A/en
Publication of JPS61155722A publication Critical patent/JPS61155722A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/388Ceramics

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To make clear the test starting point eliminating the delay in the displacement control, by controlling an actuator with a computer to shift the actuator to the displacement control for testing when a pressurizing element hits a DT test piece and a load acting upon it exceeds a specified value. CONSTITUTION:The displacement of a pressurizing element 2 is detected with a fine displacement meter 5 to operate an actuator 1 so that the pressurizing element 2 moves with a displacement waveform. As the pressurizing element 2 hits a DT test piece 3, a load cell 7 detects the load acting upon the DT test piece 3. When the load exceeds a specified value, the actuator 1 is shifted to displacement control for testing from the moment. The displacement of the pressurizing element 2 is maintained unchanged when reaching a specified value, while a cracking develops after the pressurizing element 2 hits the DT test piece 3, the load acting upon the DT test piece 3 is detected with a load cell 7 and recorded on a recorder 8. The test starting point is shown clearly in the recorded load waveform.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス材料の破壊試験方法に係るもので
、詳しくはセラミックス材料の応力拡大係数に、とクラ
ック進展速度Vを測定する方法の一つであるD.T.法
(Double torston technique
)によるセラミックス材料の破壊試験方法に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a destructive testing method for ceramic materials, and more specifically, it is a method for measuring the stress intensity factor and crack growth rate V of ceramic materials. D. T. Double torston technique
) relates to a destructive testing method for ceramic materials.

〔従来の技術〕[Conventional technology]

近年、セラミックス材料は種々の分野での使用が検討さ
れ、このためセラミックス材料の寿命予測に貴重なデー
タを提供する応力拡大係数に1とクラック進展速度Vを
正確に測定することが要求されるようになった。
In recent years, the use of ceramic materials in various fields has been considered, and for this reason, it has become necessary to accurately measure the stress intensity factor of 1 and the crack growth rate V, which provides valuable data for predicting the life of ceramic materials. Became.

セラミックス材料の応力拡大係数に、とクラック進展速
度Vを測定する方法しとてり、C,B。
A method for measuring the stress intensity factor and crack growth rate V of ceramic materials, C, B.

法(Double cantilever beas+
 technique)とり。
Law (Double cantilever beads+
technique).

T、法等が知られている。T, law, etc. are known.

D、 C,B、法では、応力拡大係数に、とクラック進
展速度Vを求めるのに、共にクラック長さの測定を必要
とし、しかもクラック進展速度■を求める際には顕微鏡
によりクラック長さの変化を時間とともに観測するため
、不透明なセラミックス材料の場合、測定が困難である
といった原理的な問題がある。
In the D, C, B method, it is necessary to measure the crack length in order to determine the stress intensity factor and the crack growth rate V, and when determining the crack growth rate ■, the crack length is measured using a microscope. Since changes are observed over time, there is a fundamental problem in that measurement is difficult in the case of opaque ceramic materials.

これに対し、D、T、法では、応力拡大係数に1を求め
るのにクラック長さの測定を必要とせず、またクラック
進展速度Vを求めるのに顕微鏡によりクラック長さの変
化を時間とともに観測しなくてもすみ、原理的な便利さ
がある。このため、真空中、高温、その他の環境中でも
容易に試験を行なうことができる。
On the other hand, the D, T, method does not require measurement of the crack length to determine the stress intensity factor of 1, and changes in the crack length are observed over time using a microscope to determine the crack growth rate V. There is no need to do this, and it is convenient in principle. Therefore, tests can be easily performed in vacuum, at high temperatures, and in other environments.

第4図はD.T.法で使用するDT試験片Tの形状を示
している。試験片Tは長手方向の両端に沿って支持され
、中央の溝tに沿ってあらかじめ生成させられたクラッ
クは一端部で荷重Pを受けて成長する。
Figure 4 is D. T. The shape of the DT test piece T used in the method is shown. The test piece T is supported along both ends in the longitudinal direction, and a crack generated in advance along the central groove t grows under a load P at one end.

クラック進展速度■は次の手順で求められる。The crack growth rate ■ is determined by the following procedure.

先ず、加圧子によりDT試験片に所定の変位を急速に生
じさせた後、該変位が変化しないように維持し、このと
きのDT試験片が受ける荷重の変化を記録計で求める。
First, after a predetermined displacement is rapidly caused in the DT test piece using a presser, the displacement is maintained so as not to change, and the change in the load applied to the DT test piece at this time is determined using a recorder.

本明細書中では、“試験片の変位”は、無負荷時の試験
片の中央部の軸線方向の位置を基準とし、該中央部の周
辺を加圧して試験片が湾曲し中央部の軸線方向の位置が
変化したときその変化のことを意味する。
In this specification, "displacement of a test piece" refers to the position in the axial direction of the center of the test piece under no load, and when the periphery of the center is pressurized, the test piece curves and the axis of the center It means a change in the position of a direction.

また、応力拡大係数KlはDT試験片が受ける荷重Pを
次式に代入して求めることができる。
Further, the stress intensity factor Kl can be determined by substituting the load P that the DT test piece receives into the following equation.

ここで、γはポアソン比である。Here, γ is Poisson's ratio.

なお、D、T、法には、この方法の外に、DT試験片に
加圧子で所定荷重まで急速に加重し、所定荷重になった
時点で加圧子を停止させる方法もあるが、本明細書中で
のD.T.法は上述の方法(試験片に所定の変位を急速
に生じさせて行なう方法)を意味する。
In addition to this method, the D, T method also includes a method in which the DT test piece is rapidly loaded with an indenter up to a predetermined load and the indenter is stopped when the predetermined load is reached. D. in the book. T. The method refers to the method described above (a method in which a predetermined displacement is rapidly caused in a test piece).

従来、このD.T.法により破壊試験を行なう場合には
、まず加圧子を出来る限りDT試験片に近づけておき、
そしてアクチュエータにより加圧子を試験速度(セラミ
ックス材料により異なる。)で前進させてDT試験片に
荷重を作用させていた。
Conventionally, this D. T. When performing a destructive test using the method, first keep the pressurizer as close to the DT test piece as possible,
Then, the actuator was used to advance the pressurizer at a testing speed (which differs depending on the ceramic material) to apply a load to the DT test piece.

しかし、この方法では、試験速度が早いと、加圧子がD
T試験片に当たってアクチュエータが変位制御に移行す
るときに制御の時間遅れが生ずる問題があった。すなわ
ち、加圧子がDT試験片に当たるとロードセルがこれを
検出してアクチュエータを制御するコンピュータに検出
信号を出力し、コンピュータはこの検出信号を受けてア
クチュエータの変位制御を開始するが、試験速度が早い
とコンピュータがロードセルからの検出信号を読み取っ
て変位制御の開始時点であることを判断するまでの間に
加圧子が前進してしまい変位制御が遅れる問題があった
However, with this method, if the test speed is fast, the presser
There was a problem in that a time delay in control occurred when the actuator shifted to displacement control after hitting the T test piece. In other words, when the pressurizer hits the DT test piece, the load cell detects this and outputs a detection signal to the computer that controls the actuator.The computer receives this detection signal and starts controlling the displacement of the actuator, but the test speed is fast. There was a problem in that the pressurizer moved forward until the computer read the detection signal from the load cell and determined that it was the time to start displacement control, causing a delay in displacement control.

この制御の遅れを解決するには、遅れを修正するように
制御することが考えられるが、試験速度はセラミックス
材料によって異なり、したがって制御の遅れもセラミッ
クス材料によってまちまちであり非常に手間がかかり得
策′ではない。
To solve this control delay, it is possible to control the delay to correct it, but the test speed varies depending on the ceramic material, so the control delay also varies depending on the ceramic material, and it is very time-consuming and unsuitable. isn't it.

また、従来の方法では、セラミックス材料により試験開
始点(基準点)がずれ、また加圧子がDT試験片に当た
るまでの間も記録されることから不必要なデータが入り
、しかもデータから試験開始時点を正確に判断できない
場合がある等の問題があった。
In addition, in the conventional method, the test start point (reference point) is shifted due to the ceramic material, and unnecessary data is recorded until the presser hits the DT test piece, and moreover, the data is not correct at the test start point. There were problems, such as in some cases not being able to judge accurately.

〔発明が解決ようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記事情に鑑みてなされたもので、その目的と
するところは、変位制御の遅れをなくし、試験開始時点
が明瞭となって、正確に応力拡大係数に、とクラック進
展速度■を求めることができるセラミックス材料の破壊
試験方法を提供することである。
The present invention has been made in view of the above circumstances, and its purpose is to eliminate delays in displacement control, make the test start point clear, and accurately determine the stress intensity factor and crack growth rate. An object of the present invention is to provide a method for destructive testing of ceramic materials.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するため、アクチェエータをコ
ンピュータにより変位制御してDT試験片に荷重を作用
させて、前記DT試験片に生ずるクラックの進展速度V
と応力拡大係数に1を求めるD.T.法によるセラミッ
クス材料の破壊試験方法において、コンピュータによる
前記DT試験片に作用する荷重の読み取り速度に対応し
た一定の速度で加圧子がDT試験片に近づいて当たるよ
うに前記アクチェエータを制御し、加圧子がDT試験片
に当ってDT試験片に作用する荷重が所定値以上になっ
た時点でアクチェエータを試験時の変位制御に移行させ
ることを特徴としている。
In order to achieve the above object, the present invention controls the displacement of an actuator using a computer to apply a load to a DT test piece, thereby increasing the growth rate V of cracks occurring in the DT test piece.
D. Find 1 for the stress intensity factor. T. In the destructive testing method for ceramic materials according to the method, the actuator is controlled so that the indenter approaches and hits the DT test piece at a constant speed corresponding to the reading speed of the load acting on the DT test piece by a computer, and The actuator is characterized in that the actuator is shifted to displacement control during testing when the load acting on the DT test piece reaches a predetermined value or more when the actuator hits the DT test piece.

〔実施例〕〔Example〕

以下本発明の一実施例を図面の簡単な説明する。 An embodiment of the present invention will be briefly described below with reference to the drawings.

第1図は本発明の方法を実施する試験装置を示している
0図中符号lはアクチュエータで、加圧子2を移動させ
てDT試験片3(第4図参照)にクラックを生じさせる
FIG. 1 shows a test apparatus for carrying out the method of the present invention. In FIG. 0, reference numeral 1 is an actuator, which moves the presser 2 to generate cracks in the DT test piece 3 (see FIG. 4).

4は変位計、5は微小変位計で、加圧子2の移動を検出
し、この検出信号を制御部6に出力する。
4 is a displacement meter, and 5 is a minute displacement meter, which detects the movement of the pressurizer 2 and outputs this detection signal to the control section 6.

制御部6はマイクロコンピュータからなり、第4図に示
すフローチャートの内容に従ってアクチュエータ1を制
御する。
The control section 6 is composed of a microcomputer and controls the actuator 1 according to the contents of the flowchart shown in FIG.

7はロードセルで、DT試験片3に作用する荷重を検出
し、この検出信号を制御部6とレコーダ8に出力する。
A load cell 7 detects the load acting on the DT test piece 3 and outputs this detection signal to the control section 6 and the recorder 8.

次に上記試験装置を使用して本発明の方法の一例を説明
する。
Next, an example of the method of the present invention will be explained using the above test apparatus.

まず、アクチュエータ1をマニュアルで操作して加圧子
2をDT試験片3に近づける。加圧子が4■層程度近づ
くと、すなわち微小変位計5の動作可能範囲内になると
、制御部6がアクチュエータlの制御を開始する。微小
変位計5はこの時点でクリアされる。
First, the actuator 1 is manually operated to bring the pressurizer 2 close to the DT test piece 3. When the pressurizing element approaches about 4 layers, that is, when it comes within the operable range of the minute displacement meter 5, the control section 6 starts controlling the actuator 1. The minute displacement meter 5 is cleared at this point.

この制御は、微小変位計5で加圧子2の変位を検出して
、加圧子2が第2図aに示すような変位波形で移動する
ようにアクチュエータlを動作させる。すなわち、まず
制御部6でのロートセルフの検出信号の読み取り速度に
対応した一定の速度で加圧子2を前進させる。加圧子2
がDT試験片3に当たると、ロードセル7がDT試験片
3に作用する荷重を検出する。この荷重が所定値以上に
なったら、この時点からアクチュエータ1を試験時の変
位制御に移す。すなわち、DT試験片3に急速に変位を
生じさせるようにアクチュエータ1を制御する。加圧子
2の変位(DT試験片3の変位に相当する)が所定値に
なったらこれが変化しないように維持する。
In this control, the displacement of the presser 2 is detected by the minute displacement meter 5, and the actuator 1 is operated so that the presser 2 moves with a displacement waveform as shown in FIG. 2a. That is, first, the pressurizer 2 is advanced at a constant speed corresponding to the reading speed of the rotor self detection signal in the control section 6. Pressure element 2
hits the DT test piece 3, the load cell 7 detects the load acting on the DT test piece 3. When this load reaches a predetermined value or more, from this point on, the actuator 1 is shifted to displacement control during the test. That is, the actuator 1 is controlled so as to cause the DT test piece 3 to be rapidly displaced. Once the displacement of the presser 2 (corresponding to the displacement of the DT test piece 3) reaches a predetermined value, this is maintained so as not to change.

加圧子2がDT試験片3に当たってからクラックが進展
する間、DT試験片3に作用する荷重はロートセルフで
検出されて、レコーダ8に記録される(第2図す参照)
、記録された荷重波形には、試験開始時点(アクチュエ
ータ1が試験時の変位制御に移行した時点)が明瞭に表
われる。
While the crack develops after the pressurizer 2 hits the DT test piece 3, the load acting on the DT test piece 3 is detected by the rotor self and recorded on the recorder 8 (see Figure 2).
The recorded load waveform clearly shows the test start point (the point in time when the actuator 1 shifts to displacement control during the test).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、コンピュータによ
るDT試験片に作用する荷重の読み取り速度に対応した
一定の速度で加圧子がDT試験片に近づいて当たるよう
にアクチュエータを制御し、加圧子がDT試験片に当っ
てDT試験片に作用する荷重が所定値以上になった時点
でアクチュエータを試験時の変位制御に移行させるので
、アクチュエータの変位制御に際して時間遅れを生ずる
おそれがなく、またセラミックス材料によって試験速度
が変わっても試験開始点(基準点)が常に一定で、不必
要なデータが入らず試験開始点が明瞭で、このため正確
に応力拡大係数に、とクラック進展速度Vを求めること
ができる。
As explained above, according to the present invention, the actuator is controlled so that the indenter approaches and hits the DT test piece at a constant speed corresponding to the reading speed of the load acting on the DT test piece by the computer, and the indenter Since the actuator shifts to displacement control during testing when the load acting on the DT test piece reaches a predetermined value or more, there is no risk of time delay in controlling the displacement of the actuator, and the ceramic material Even if the test speed changes, the test start point (reference point) is always constant, and the test start point is clear without unnecessary data being included. Therefore, it is possible to accurately determine the stress intensity factor and crack growth rate V. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する試験装置のブロック図
、第2図aは変位波形を示すグラフ、同図すは荷重波形
を示すグラフ、第3図は制御部の制御内容を示すフロー
チャート、第4図はDT試験片の傾斜図である。 1・・・アクチュエータ、2・・・加圧子、3・・・D
T試験片、4・・・変位計、5・・・微小変位計、6・
・・制御部、7・・・ロードセル、8・・・レコーダ。 特 許 出 願 人  株式会社鷺宮製作所第1図 第2図 撞イ); 第3図
Fig. 1 is a block diagram of a test device that implements the method of the present invention, Fig. 2a is a graph showing a displacement waveform, Fig. 3 is a graph showing a load waveform, and Fig. 3 is a flowchart showing the control contents of the control section. , FIG. 4 is an oblique view of the DT test piece. 1... Actuator, 2... Pressure element, 3... D
T test piece, 4... Displacement meter, 5... Minute displacement meter, 6...
...Control unit, 7...Load cell, 8...Recorder. Patent applicant: Saginomiya Seisakusho Co., Ltd. (Figure 1, Figure 2); Figure 3

Claims (1)

【特許請求の範囲】[Claims] アクチュエータをコンピュータにより変位制御してDT
試験片に荷重を作用させて、前記DT試験片に生ずクラ
ックの進展速度Vと応力拡大係数K_1を求めるD.T
.法によるセラミックス材料の破壊試験方法において、
コンピュータによる前記DT試験片に作用する荷重の読
み取り速度に対応した一定の速度で加圧子がDT試験片
に近づいて当たるように前記アクチュエータを制御し、
加圧子がDT試験片に当ってDT試験片に作用する荷重
が所定値以上になった時点でアクチュエータを試験時の
変位制御に移行させることを特徴としたセラミックス材
料の破壊試験方法。
DT by controlling the displacement of the actuator by computer
D. Applying a load to the test piece and determining the propagation rate V and stress intensity factor K_1 of cracks that occur in the DT test piece. T
.. In the destructive testing method for ceramic materials according to the method,
controlling the actuator so that the presser approaches and hits the DT test piece at a constant speed corresponding to the reading speed of the load acting on the DT test piece by the computer;
A method for destructive testing of ceramic materials characterized by shifting an actuator to displacement control during testing when a pressurizer hits the DT test piece and the load acting on the DT test piece exceeds a predetermined value.
JP27457184A 1984-12-28 1984-12-28 Destructive testing for ceramic material Pending JPS61155722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27457184A JPS61155722A (en) 1984-12-28 1984-12-28 Destructive testing for ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27457184A JPS61155722A (en) 1984-12-28 1984-12-28 Destructive testing for ceramic material

Publications (1)

Publication Number Publication Date
JPS61155722A true JPS61155722A (en) 1986-07-15

Family

ID=17543591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27457184A Pending JPS61155722A (en) 1984-12-28 1984-12-28 Destructive testing for ceramic material

Country Status (1)

Country Link
JP (1) JPS61155722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144343A (en) * 1989-10-31 1991-06-19 Shinagawa Refract Co Ltd Measuring system for hot displacement-load
JP2010243387A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Delayed destructive test method and tester by indentation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144343A (en) * 1989-10-31 1991-06-19 Shinagawa Refract Co Ltd Measuring system for hot displacement-load
JP2010243387A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Delayed destructive test method and tester by indentation method

Similar Documents

Publication Publication Date Title
Srawley et al. Fracture toughness testing
Wang et al. Effects of high‐pressure CO2 on the glass transition temperature and mechanical properties of polystyrene
US3222917A (en) Non-destructive testing of objects
JPS58501966A (en) Method for non-destructively measuring fatigue strength of ferromagnetic materials
JPS61155722A (en) Destructive testing for ceramic material
GB1451807A (en) Infinitesimal hardness value measuring
CN112630023A (en) Ferromagnetic metal material axial stress detection method based on thermomagnetic transformation principle
Freeman et al. The Measurement of Crack Length During Fracture at Elevated Temperatures Using the D. C. Potential Drop Technique
RU2160441C2 (en) Method of nondestructive test of ferromagnetic materials
Abbott et al. A stress-wave technique for determining the tensile strength of brittle materials: Authors present and discuss the results of experiments conducted with bar specimens of aluminum oxide
Okade et al. Localized stress measurement of aluminum alloy with acoustic microscope
JPS585629A (en) Method for measuring ductile fracture resistance
SU1727004A1 (en) Method of locating residual stress zones in ferromagnetic products
SU800800A1 (en) Non-destructive method of determining fatigue degree of structure components
SU1753351A1 (en) Material fatigue stress testing method
SU1619132A1 (en) Device for sclerometric investigations of materials
SU1080064A1 (en) Method of determination of ferromagnetic material strength
CN115267123A (en) Detection method for surface crack initiation and propagation of steel structure
RU2095784C1 (en) Process of determination of fatigue characteristic of ferromagnetic materials and welds
Kaisand et al. Digital computer controlled threshold stress intensity factor fatigue testing
SU834459A1 (en) Method of diffusion factor determination
Chen et al. Fracture toughness of brittle materials from small disk-shaped specimens
Larsson Measurement of Residual Stress by X-Ray Diffraction in a Weldment of Pressure Vessel Steel A 533-B. Comparison Between Strain Data Obtained by Means of the Film or Camera Method and the Diffractometer Method
JPH01267434A (en) Evaluation of crack progress characteristic for ceramic
JPS614939A (en) J1c fracture toughness testing method