JPS61155714A - Surface color tone control method and apparatus thereof - Google Patents

Surface color tone control method and apparatus thereof

Info

Publication number
JPS61155714A
JPS61155714A JP59278748A JP27874884A JPS61155714A JP S61155714 A JPS61155714 A JP S61155714A JP 59278748 A JP59278748 A JP 59278748A JP 27874884 A JP27874884 A JP 27874884A JP S61155714 A JPS61155714 A JP S61155714A
Authority
JP
Japan
Prior art keywords
color
operating conditions
control
color tone
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59278748A
Other languages
Japanese (ja)
Inventor
Akira Torao
彰 虎尾
Kenichiro Nakamura
中村 賢市郎
Masakazu Fujita
正和 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
TOEI DENSHI KOGYO KK
Original Assignee
Kawasaki Steel Corp
TOEI DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, TOEI DENSHI KOGYO KK filed Critical Kawasaki Steel Corp
Priority to JP59278748A priority Critical patent/JPS61155714A/en
Publication of JPS61155714A publication Critical patent/JPS61155714A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To achieve a stable management of surface color tone with uniformization thereof in a product, by determining the corresponding relation between color information comprising color parameters such as luminosity index and operating conditions such as the amount of a manipulation in operation beforehand to control operation conditions according to a command as alteration of operating conditions calculated based on measured values. CONSTITUTION:Color information such as color difference and luminosity index obtained by an analog.digital processor 22 are transmitted to a control arithmetic unit 24, in which a corresponding relation between color information and the amount of manipulation in operation is memorized beforehand and the control is computed automatically to direct a control manipulator 26 to alter operating conditions. As a running object 10 such as steel plate runs passing through the control manipulator 26 arranged in a production line, a fast feedback control is possible though depending on the distance manipulator 26 and the controlling capacity of time delay or the like.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、表面色1IIiIIIl!方法及び装置に係
り、特に、鉄鋼業、製紙業、非鉄金属業、プラスチック
業等における連続的に製品を製造するプロセスに使用す
るのに好適な表面色調制御方法及び!i髪に関する。
The present invention has a surface color of 1IIiIIIl! A surface color control method and apparatus, particularly suitable for use in continuous product manufacturing processes in the steel industry, paper industry, non-ferrous metal industry, plastic industry, etc. iRegarding hair.

【従来の技術) 各種鋼板、紙、非鉄金属製品等の品質情理の一項目に製
品の表面の色調が上げられる。この製品表面の色調W理
は、例えば、製品製造中に表面の色調を目視により検査
することによって、色むらや色通いを検出して、一定の
製品を製造することで行われている。 しかし、この表面QiI管理は、製造ラインのライン速
度の^速化、検出すべき色むらや色違いの微妙化に伴な
い、作業者の肉眼による検出によっては眼界になってき
ている。即ち、作業者の肉眼による検出は、多大な労力
と熟練を■する上に、個人差や各種外乱による検査精度
に内題があることや、作業条件が悪いこと等に起因して
限界となっているのが実情である。 −5、製造中に製品の一部をサンプリングしてオフライ
ンにて測色検査を行うこともあるが、この測色検査によ
る製品の表面色調管理は、その応答が遅れるため操業へ
の早急なフィードバックは難しいという内題点を有して
いる。 そこで、このような事情に迄みて種々のオンライン測色
装置が1!1Eされ製品化されている。例えば、白色光
源による走行物体からの反射光を、回折格子や並列検知
式光検出素子列等を組合せて、分光解析することにより
、走行物体の標準色サンプルからのずれを示す色差値や
反射率、三刺激値等の色彩パラメータを連続的に検出す
るための装置が、特開昭59−57123や特開昭53
−52183等で提寓され、各種の一部プロセスに適応
することにより表面色調管理に利用されている。 これらの装置によれば、走行物体の色彩情報を連続的又
は間欠的に得ることができ、従って操業を管理する作業
者は、CRT表示画面やアナログ出力チャートから色差
や反射率等の情報を帰ることで、操業条件を変化させ目
標の管理値内に収めるようにl11wを行っている。 しかし、このオンライン測色装置を用いた色調191m
によっても、IIIIIlを実際に行うのは作業者であ
り、従って、作業者により個人差があることや、応答の
遅れが生じるという内題点を有する。又、目標値へ到達
させるだめの操作パラメータが多い場合には、mwは複
雑になるため、最短時間で目標値に遅りることは極めて
困難であり、不良品を多積に発生させ、安定な操業が行
えないという内題点を有する。 ところで、測色方法には厳密に分光解析を行う方式や三
刺激mを直接得るフィルタ一方式がある。 その他に、光源の照射方法や反射光の受光方法の相違、
反射率を定義するための標準白色板の相通等に起因した
各種方法がある。そのため、同一物体を測定するとして
も、測定装置に何を用いるかにより、測定値は異なるこ
ととなる。即ち、色とは本来感覚量であり、絶対値とし
て定義付けすることができないからである。そこで、色
違いを管yI!rる一般的な方法として、ある目標の色
を決めて標準色を有する物体を定め、これを標準板とし
lこ後、検査対象である走行物体と標準板との色差値を
連続的に測定することで行う方法が採られており、前記
分光測色装置による製品表面の色II!!理もこの方法
によるものである。 分光測色装置による色差の算出は、以下の方法によって
いる。即ち、分光測色装置により得られる反射スペクト
ルを、所定の演算により三刺激値に変換した後、例えば
ハンターの色差式を用いて、色彩情報を現す三特性IL
、a 、bに変換する。 一方、標準板の測定により予め得られている三特性値を
Lssas、bsとプれば、色差値ΔEは、ΔE−((
L−L!+)’+(a−as)’+(b−bs)”)・
・・・・・・・・(1)の式により求められる。 従って、走行物体の表面色llを測定する場合には、前
記色彩情報を現す三特性IL% a 、bが連続的に演
算され、(1)式による変換によって、色差値ΔEが連
続して得られることになる。 ところが、上記(1)式からも明らかなように、色差値
ΔEはり、a 、bなる3つのパラメータで定義される
三次元空固上での距離として表されるので、第5図に示
すように、標準板の三特性値(Ls、as、ll5)を
中心として、半径ΔE。 の球体の同一球面上に位置する(L、a、b)の三特性
値を有する物体の色差値は、全て同一となる。 従って、色差値ΔEのみで品質を管理する場合には、標
準色とのずれがどの方向にあり、目標値に近づけるため
には、三次元空回上でどの方向に向って操作1べきかが
明確でないという問題点を右する。 そこで、通常は補助的に三特性1 (L、 a 、 b
 )のうち別のパラメータ、例えばa値、bli!を基
にして、目標の情理値内に収める方式が採用される。 前記a値は赤と緑の度合、b値は黄と胃の度合を現ずと
されているので、測定時点でのa、bill等から、染
料、塗料等の饅を調整して11mするものである。 [発明が解決しようとする問題点] しかしながら、前記色調制御方法もCR7画面上に現さ
れた三特性ML%a、b等を基にして手動で操作するこ
とが多く、経験的な五素が多く含まれる極めて不安定な
制御とならざるを得ないという問題点を有する。又、製
鉄業や非鉄金属業等の連続的に製品を製造りる製造プロ
セスでは、ラインの操業条件により表面色調が変化する
ことが多いので、操業状況を把握した色1 m1ll−
をラインの操業条件毎に行う必要があるという問題点を
有し、従って、操業状況を把握した自動調節機能を有し
た表面色調制御方法が望まれていた。 【発明の目的】 本発明は、前記従来の問題点を解8IJVべくなされた
もので、製品連続製造工程において、製品の表面色調を
均一化し、安定した表面色ll管理を行うことのできる
表面色l1llllll11方法及び装置を提供するこ
とを目的とする。
[Prior art] One of the quality considerations for various steel plates, paper, nonferrous metal products, etc. is the color tone of the product's surface. This color tone W treatment on the surface of a product is performed, for example, by visually inspecting the color tone of the surface during product manufacturing to detect color unevenness or color overlap, and then manufacturing a certain product. However, as the line speed of the production line increases and the color unevenness and color differences to be detected become more subtle, this surface QiI management is becoming more and more difficult to detect with the naked eye of an operator. In other words, detection by the operator's naked eye requires a great deal of labor and skill, and has its limitations due to internal problems in inspection accuracy due to individual differences and various external disturbances, as well as poor working conditions. The reality is that there are. -5.Sometimes a part of the product is sampled during manufacturing and subjected to off-line colorimetric inspection, but since the response to this colorimetric inspection is delayed, it is necessary to provide immediate feedback to operations. The problem is that it is difficult. Therefore, in consideration of such circumstances, various online color measurement devices have been commercialized as 1!1E. For example, by performing spectroscopic analysis of the light reflected from a moving object by a white light source using a combination of a diffraction grating, a parallel detection type photodetection element array, etc., we can obtain color difference values and reflectance values that indicate the deviation of the moving object from a standard color sample. , a device for continuously detecting color parameters such as tristimulus values was developed in Japanese Patent Application Laid-Open No. 59-57123 and
-52183, etc., and is used for surface color tone management by adapting it to some of various processes. According to these devices, color information of a moving object can be obtained continuously or intermittently, and therefore, operators managing operations can return information such as color difference and reflectance from a CRT display screen or an analog output chart. Therefore, l11w is performed to change the operating conditions and keep them within the target control values. However, the color tone was 191m using this online colorimetric device.
However, it is the worker who actually performs IIIIIII, and therefore there are internal problems such as individual differences between workers and a delay in response. In addition, if there are many operating parameters required to reach the target value, mw becomes complex, and it is extremely difficult to reach the target value in the shortest possible time, resulting in a large number of defective products and an unstable The problem is that proper operation cannot be carried out. By the way, color measurement methods include a method that strictly performs spectral analysis and a filter method that directly obtains the tristimulus m. In addition, differences in the irradiation method of the light source and the method of receiving reflected light,
There are various methods for defining reflectance, including the use of standard white plates. Therefore, even if the same object is measured, the measured values will differ depending on what measuring device is used. That is, color is essentially a sensory quantity and cannot be defined as an absolute value. So, I decided to try different colors! As a general method, a certain target color is determined, an object with the standard color is determined, this is used as a standard plate, and then the color difference value between the moving object to be inspected and the standard plate is continuously measured. A method is adopted in which the color of the product surface is measured by the spectrophotometric device II! ! The theory is also based on this method. The color difference is calculated by the spectrophotometer using the following method. That is, after converting the reflection spectrum obtained by a spectrophotometric device into tristimulus values by a predetermined calculation, for example, using Hunter's color difference formula, the three characteristics IL expressing color information are converted.
, a, b. On the other hand, if we take the three characteristic values obtained in advance by measuring the standard plate as Lssas and bs, the color difference value ΔE is calculated as ΔE−((
L-L! +)'+(a-as)'+(b-bs)")・
......It is determined by the formula (1). Therefore, when measuring the surface color ll of a moving object, the three characteristics IL% a and b representing the color information are continuously calculated, and the color difference value ΔE is continuously obtained by conversion according to equation (1). It will be done. However, as is clear from equation (1) above, the color difference value ΔE is expressed as a distance on a three-dimensional sky defined by three parameters, a and b, so as shown in Figure 5, , the radius ΔE is centered around the three characteristic values (Ls, as, ll5) of the standard plate. The color difference values of objects having three characteristic values (L, a, b) located on the same spherical surface of the sphere are all the same. Therefore, when controlling quality using only the color difference value ΔE, it is important to know in which direction the deviation from the standard color is, and in which direction the operation should be performed on the three-dimensional space in order to get closer to the target value. Correct the problem of not being clear. Therefore, usually the three characteristics 1 (L, a, b
), such as the a value, bli! Based on this, a method is adopted to keep it within the target emotional value. The a value is said to represent the degree of red and green, and the b value represents the degree of yellow and stomach, so from the a, bill, etc. at the time of measurement, the amount of dyes, paints, etc. is adjusted to 11m. It is. [Problems to be Solved by the Invention] However, the color tone control method described above is often manually operated based on the three characteristics ML%a, b, etc. displayed on the CR7 screen, and the empirical five elements are not used. There is a problem in that the control is extremely unstable due to the large number of components involved. In addition, in manufacturing processes where products are manufactured continuously, such as in the steel industry and non-ferrous metal industry, the surface color tone often changes depending on the operating conditions of the line, so the color tone of the line is determined based on the operating conditions.
Therefore, there has been a need for a surface color tone control method that has an automatic adjustment function that takes into account the operating conditions. OBJECTS OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and is to provide a surface color that can uniformize the surface color of a product and perform stable surface color management in a continuous product manufacturing process. It is an object of the present invention to provide a l1llllll11 method and apparatus.

【ll!1I11点を解決するための手段】本発明は、
第1図にその要旨を示プ如く、各種製造プロセスにて連
続的に製造される物体の表面色調を、分光測色装置を用
いて非接触に測定し、表面色調を均一化するよう−11
1する表面色II III a11方法において、予め
、明度指数等の色彩パラメータからなる色彩情報と操業
上の操作量等の操業条件との対応関係を把握しておき、
前記分光測色装置により、l準すンプルとの色pI値と
、前記操業条件と対応関係にある色彩パラメータとを連
続的に測定し、これらの測定値を基にして、前記対応関
係から操業条件の変更量を算出し、該変更量指令に従い
操業条件を1lIIIIlすることにより、前記目的を
達成したものである。 又、本発明は、表面色調M II @置において、白色
光を照射する光源と、測定視野を規定するスリット、測
定対象物体からの反射光をスリット上に結像する、若し
くは、スリット通過後の反射光を平行光に丈るレンズ系
、平行光にされた反射光を分光する分光素子、分光を検
出するための並列型光検出素子列を組合わゼで構成する
光学系と、前記並列型光検出素子列から得られる信号を
処理演算する演算処理系とを具備した分光測色II。 予め、明度指数等の色彩パラメータからなる色彩情報と
操業上の操作量等の操業条件との対応関係が把握記憶さ
れ、前記分光測色装置からの色彩パラメータを基に製造
プロセスの操業条件の変更量を演jlする制W演II装
置、 1ilitIII12!lll1装置からの操業条件変
更量に基き、m業条件を変更するMIll操作装置、そ
れぞれを具備することにより、−)2目的を達成したも
のである。
[ll! 1I Means for solving 11 points] The present invention has the following features:
As shown in Figure 1, the surface color tone of objects continuously manufactured in various manufacturing processes is measured non-contact using a spectrophotometer, and the surface color tone is made uniform.
1. In the surface color II III a11 method, the correspondence between color information consisting of color parameters such as brightness index and operational conditions such as operation amount is understood in advance,
The spectrophotometric device continuously measures the color pI value of the first sample and the color parameters that correspond to the operating conditions, and based on these measured values, the operation is adjusted based on the corresponding relationship. The above objective was achieved by calculating the amount of change in conditions and adjusting the operating conditions according to the instruction for the amount of change. In addition, the present invention provides a light source that irradiates white light, a slit that defines the field of view for measurement, and an image of the reflected light from the object to be measured on the slit in the surface color tone M II @ position. an optical system consisting of a lens system that converts reflected light into parallel light, a spectroscopic element that separates the reflected light that has been made into parallel light, and a row of parallel photodetecting elements for detecting the spectra; A spectrophotometer II equipped with an arithmetic processing system that processes and calculates signals obtained from a photodetector array. The correspondence between color information consisting of color parameters such as the brightness index and operating conditions such as operating variables is grasped and memorized in advance, and the operating conditions of the manufacturing process are changed based on the color parameters from the spectrophotometric device. Control W performance II device that performs quantity calculation, 1ilitIII12! By providing MIll operation devices that change the operating conditions based on the amount of change in operating conditions from the Ill1 device, the objectives of -)2 are achieved.

【作用】[Effect]

本発明は、各1i@品サンプルの測色を試みたところ、
同一製造工程による製品においても色調の異るものが多
数発見されたことに起因して、創出されたものである。 即ち、同一製造工程による製品においても色調の異るこ
とが発生することから、色調と操業条件との対応関係を
II研究した結果、色調を変化させる操業条件のうちで
も、特に大きく作用するものが存在することが判明した
。従って、この大きく作用する操業条件をl1IIll
することにより、目標の色差内に製品を管理することが
可能となる。 例えば、前記太き(作用する操業条件としてあげられる
ものは、亜鉛メッキ鋼板、着色亜鉛鉄板、特殊表面処理
鋼板等の製造ラインでは、クロメート処理液の濃度、塗
膜厚、電流値等である。これらの操業条件は、例えば前
記色彩パラメータのうら明a指数Lmと1対1の対応が
ほぼつくことが判明した。従って色MIIΔEと色彩パ
ラメータの1つ明度指数Lilとを同時に測定し、明度
指数り値に変化がある場合、前記操業条件を変化させる
ことで、安定した表面色調の製品を製造することができ
るようになる。 なお、色彩パラメータの1つとしての明度指数Li[と
操業条件との対応関係の他に、製品によっては、他の色
彩パラメータa値やb値等との対応関係、その他の特性
値との対応関係、又は、複数の特性値の組み合せとの対
応関係によって調−することも可能である。 なお、本発明方法の実施に際しては以下の点に考慮寥る
必要がある。 (1)走行又は可動物体の表面色調を測定するための分
光測色装置は、白色光源、スリット、レンズ系、回折格
子等の分光素子、可視m域での分光光を同時検出するた
めの並列型光検出素子列、アナログ・デジタル演算処理
系等を有した高分解能な性能を持つものを用いる。 (2)前記分光測色装置により得られる測色パラメータ
としては、前記色差値ΔEの他に、例えばLit、 a
 II、 b値、反射率sの一般的な値+、それらの変
換である白色度等を用いる。 (3)前記色彩パラメータと測定対象物体の表面f!!
、llを変化させる主要な操業上の操作量、即ち、操業
条件との対応付けをする制W漬棒装置と、このl!II
m演算!!li置によ装得られる操作指令を実行するた
めのII II操作装置を用いる。なお、この1ilJ
Il操作髄置としては、ロールコータ、a!l[Il!
1M置、通電装置等が考えられる。 次に第2図を参照して本発明の表面色調制御方法をその
装置と共に説明する。 本発明においては、定行物体10を2つの白色光源12
で照射してその反射光をレンズ系14やスリット16を
通した後に反II4’l!!回折格子18で分光し、そ
の分光光を並列型光検出素子列20で同時検出する。検
出された信号はアナログ・デジタル処]1装w122で
測色演算を施され、色彩情報に変換される。、前記アナ
ログ・デジタル処理装置22にはCR7表示画面やアナ
ログ出力チャート、プリンタ等を内蔵しており、従って
データの保存を可能なものとしている。 前記アナログ・デジタル処理装!?!f22により得ら
れた色彩情報、例えば色差値ΔEや明度指数り随等は訓
御演Wi装置124に伝送される。 このt+qw演鐸装置24内には予め色彩情報と操業上
の操作量との対応関係が記憶してあり、従って自動的に
制御量が演算され、tlJ’la操作装置26に操業条
件の変更が指令される。 鋼板等の走行物体10は製造ライン中に配設した制御操
作装置26中を通過して走行してくるので、測定位置と
制御操作装置26との間の距離や、時間遅れ等のm1l
l 1B 能力にはよるものの、迅速なフィードバック
制−が可能になる。なおl!IJ all演算装置i!
24内に記憶させておく対応関係は1例えば、前記り値
とロールコータの押し付は圧との関係や、Lit11a
 11と′IIi流値との回帰式、等がある。 従って、表面色調制御O装置は、物体10の表面に白色
光を照射するための光1112と、前記物体10表面か
らの乱反射光の1部をMliするための集光レンズ系1
4と、該集光レンズ系14のM像面において測定部位を
規定jるためのスリット16と、該スリット16を通過
した光を分光するための反gA型の回折格子18と、該
回折格子18によって分光された特定複数波長の光強度
を同時に検出可能な例えばフォトダイオードアレイのよ
うな並列型光検出索子列20と、この並列型光検出素子
列20によって得られるN気信号を後段の信号処理時開
に対応ずけられた積分時開でアナログ積分処理するアナ
ログ処理回路、該アナログ処理回路出力のアナログ信号
を、デジタル信号に変換するアナログ・デジタル変換器
、該アナログ・デジタル変換器出力のデジタル信号を演
算処Ig!することによって前記物体10表面の色彩1
1I報を連続的に得るための、例えばマイクロコンピュ
ータ等からなるデジタル処理回路それでれで構成するア
ナログ・デジタル処理@!1122と、このアナログ・
デジタル処理11122により得られた色彩情報をムに
して、予め記憶された色彩情報と操業条件との対応関係
から、操業条件の制m1llを演算する制御演算装置2
4と、この制御演算装置24からの操業条件変更指令に
より走行通過する物体10に対し操作指令を実行するた
めの、例えばO−ル」−タ、液1m調整、通電装置等の
制御操作装置26とで構成される。 【実施例1 以下第3図及び第4図を参照して、本発明の実施例を詳
細に説明する。 本実施例は、表面に特殊粉末を付着させた表面処理鋼板
の製造工程にgQする。この鋼板製造工程においては、
従来は、粉末を溶解付着させ、その付着粗さを電FIl
ll11111により調整しているが、その1111 
till I IKは目視にて観察される色調や明度で
ある。 第3図はサンプルの1枚を標準板としたときのオンライ
ン測定用分光測色装置とオフライン色差計との測定結果
の対応関係を示すものである。この第3図からも明らか
なように、色!!0〜7の広い範囲内において±0.2
5jX内の差でこれらの測定結果はよく一致しているこ
とが確認され、オンライン測定で色差管理が可能である
ことが大証される。なお、このオンライン測定用分光測
色装置では、走行中での測定と静止測定では差がないこ
とも確認されている。 一方、本実施例の鋼板では最適な明るさから表面の1肴
状態を推定しており、その目標明度を持つサンプルから
一定の色差値内に鋼板全長が収まることが要求される。 第4図は最適と思われる明度を持つサンプルを標準板と
したときの色差と明度の関係を示したものである。この
第4図からも明らかな如く、明度が低すぎても、若しく
は高すぎても色差が大きくなり、色差のみの管理では良
品に近づけるために操業条件をどのように変化させるべ
きかが判明しない。しかし、同時に明度指数り値をモニ
タしていれば、物体10の明度がどちらにずれているの
かが判明することになる。この明度指数LW1は、電流
値と対応関係にあることが判明しているため、操業条件
としての電流値を変化させることにより、例えば第4図
の破線で示した色差管理限界線内、即ち色差1.5以内
に全ての鋼板を収めることが可能になる。 即ち、第4図のV字形の対応関係において、右側の傾斜
部分Aでは明度が高すぎて色通いが生じているため、W
1211を低めにして粉末付着粗さを増すよう餌Ill
する。又、&lNの傾斜部分8では、右側の傾斜部分へ
の逆のIIIIIlを行う。即ち、明度が低ずぎて色通
いが生じているため、電流を高めにして粉末付着粗さを
減少するよう制御する。従って、前記制御演算装置24
内には、例えば第4図のV字形の対応関係を記憶させて
おく。 又、亜鉛メッキ鋼板の製造工程においては、明度wi数
Llと処理液濃度の対応関係を基に色調管理を行えばよ
い。その他に非鉄金属例えば銅箔製造工程等への応用も
可能である。 【発明の効果1 以上説明した通り、本発明によれば、III等の連続製
造工程において、安定した表面色3m管理が行えるため
製品品質が向上すると共に、不良品の発生量も減らすこ
とができ、しかも、目視検査をなくづことができるので
悪環境からの労働を解放すると共に省力にも役立つ等の
優れた効果を有する。
The present invention attempted to measure the color of each 1i@ product sample, and found that
It was created as a result of the discovery that many products with different color tones were created through the same manufacturing process. In other words, since products produced by the same manufacturing process may have different color tones, II research into the correspondence between color tone and operating conditions revealed that among the operating conditions that change color tone, the ones that have a particularly large effect are It turns out that it exists. Therefore, the operating conditions that have a large effect on this
By doing so, it becomes possible to manage products within the target color difference. For example, in production lines for galvanized steel sheets, colored galvanized iron sheets, special surface-treated steel sheets, etc., the operational conditions that affect the thickness include the concentration of the chromate treatment solution, the coating thickness, the current value, etc. It has been found that these operating conditions have a nearly one-to-one correspondence with, for example, the color parameter lining a index Lm.Therefore, the color MIIΔE and the lightness index Lil, one of the color parameters, are measured simultaneously, and the lightness index If there is a change in the color value, it is possible to produce a product with a stable surface color by changing the operating conditions. In addition to the correspondence, depending on the product, adjustments may be made based on the correspondence with other color parameters such as a value and b value, the correspondence with other characteristic values, or the correspondence with a combination of multiple characteristic values. When implementing the method of the present invention, it is necessary to take into account the following points: (1) A spectrophotometric device for measuring the surface color tone of a moving or movable object uses a white light source. , spectroscopic elements such as slits, lens systems, and diffraction gratings, parallel photodetection element rows for simultaneous detection of spectroscopic light in the visible m range, and high-resolution performance equipped with analog/digital processing systems, etc. (2) In addition to the color difference value ΔE, the colorimetric parameters obtained by the spectrophotometer include, for example, Lit, a
II, b value, general value of reflectance s +, whiteness which is a conversion thereof, etc. are used. (3) The color parameter and the surface f of the object to be measured! !
This l! II
m operation! ! A II operating device is used to execute the operating instructions obtained by the device. Furthermore, this 1ilJ
For Il operation, roll coater, a! l[Il!
Possible options include a 1M setting and an energizing device. Next, the surface color tone control method of the present invention will be explained together with its apparatus with reference to FIG. In the present invention, the regular object 10 is illuminated by two white light sources 12.
, and the reflected light passes through the lens system 14 and slit 16, and then the anti-II4'l! ! The diffraction grating 18 separates the light, and the parallel light detection element array 20 simultaneously detects the separated light. The detected signal is subjected to colorimetric calculation in an analog/digital processing unit W122 and converted into color information. The analog/digital processing device 22 has a built-in CR7 display screen, an analog output chart, a printer, etc., thus making it possible to save data. The analog/digital processing system! ? ! The color information obtained by f22, such as the color difference value ΔE and the brightness index, is transmitted to the training Wi device 124. The t+qw operating device 24 stores in advance the correspondence between the color information and the operation amount, so the control amount is automatically calculated and the tlJ'la operation device 26 is used to change the operating conditions. commanded. Since the traveling object 10 such as a steel plate passes through the control operating device 26 disposed in the production line and travels, the distance between the measurement position and the control operating device 26, time delay, etc.
l 1B Although it depends on the ability, quick feedback system becomes possible. In addition, l! IJ all computing device i!
For example, the relationship between the above-mentioned thickness value and the pressure of the roll coater, or the relationship between the pressure and the Lit11a.
11 and the 'IIi flow value, etc. Therefore, the surface color tone control O device includes a light 1112 for irradiating the surface of the object 10 with white light and a condensing lens system 1 for Mli of a part of the diffusely reflected light from the surface of the object 10.
4, a slit 16 for defining a measurement site on the M image plane of the condenser lens system 14, an anti-gA diffraction grating 18 for separating the light passing through the slit 16, and the diffraction grating. A parallel photodetector array 20 such as a photodiode array capable of simultaneously detecting the light intensity of a plurality of specific wavelengths separated by the light beam 18, and an N air signal obtained by this parallel photodetector array 20 are transmitted to a subsequent stage. An analog processing circuit that performs analog integration processing with the integration open corresponding to the signal processing open, an analog-digital converter that converts the analog signal output from the analog processing circuit into a digital signal, and an output of the analog-digital converter. Compute the digital signal of Ig! By doing so, the color 1 of the surface of the object 10 is
Analog/digital processing consisting of a digital processing circuit, such as a microcomputer, to continuously obtain 1I information @! 1122 and this analog
A control calculation device 2 that uses the color information obtained by digital processing 11122 to calculate the control m1ll of the operating conditions from the correspondence between the color information stored in advance and the operating conditions.
4, and a control operation device 26, such as an O-router, a liquid 1m adjustment device, an energization device, etc., for executing operation commands for the object 10 that travels through in accordance with the operation condition change command from the control calculation device 24. It consists of Embodiment 1 An embodiment of the present invention will be described in detail below with reference to FIGS. 3 and 4. This example is applied to the manufacturing process of a surface-treated steel sheet whose surface is coated with special powder. In this steel sheet manufacturing process,
Conventionally, powder was melted and adhered, and the roughness of the adhesion was measured using an electric field.
It is adjusted by ll11111, but that 1111
till I IK is the color tone and brightness observed visually. FIG. 3 shows the correspondence of measurement results between an online measurement spectrophotometer and an offline color difference meter when one of the samples is used as a standard plate. As is clear from this third figure, color! ! ±0.2 within a wide range of 0 to 7
It was confirmed that these measurement results were in good agreement with each other in terms of differences within 5jX, demonstrating that color difference management is possible with online measurement. It has also been confirmed that with this spectrophotometric device for online measurements, there is no difference between measurements while the vehicle is running and measurements when the vehicle is stationary. On the other hand, in the steel plate of this example, the surface condition is estimated from the optimum brightness, and the entire length of the steel plate is required to fall within a certain color difference value from a sample having the target brightness. FIG. 4 shows the relationship between color difference and brightness when a sample with the optimum brightness is used as a standard plate. As is clear from Figure 4, if the brightness is too low or too high, the color difference will increase, and by managing only the color difference, it is not clear how to change the operating conditions to get closer to a good product. . However, if the brightness index value is monitored at the same time, it becomes clear in which direction the brightness of the object 10 has shifted. It is known that this lightness index LW1 has a corresponding relationship with the current value, so by changing the current value as an operating condition, for example, the lightness index LW1 can be adjusted to within the color difference control limit line shown by the broken line in FIG. It becomes possible to fit all steel plates within 1.5. In other words, in the V-shaped correspondence relationship in FIG.
1211 is lowered to increase the roughness of powder adhesion.
do. Also, in the sloped portion 8 of &lN, the reverse IIIIIIl to the right sloped portion is performed. That is, since the brightness is too low and the color is washed out, the current is increased to reduce the powder adhesion roughness. Therefore, the control calculation device 24
For example, the V-shaped correspondence shown in FIG. 4 is stored in the memory. Further, in the manufacturing process of galvanized steel sheets, color tone management may be performed based on the correspondence between the brightness wi number Ll and the concentration of the treatment liquid. In addition, it can also be applied to non-ferrous metals such as copper foil manufacturing processes. [Effect of the invention 1] As explained above, according to the present invention, stable surface color 3m control can be performed in the continuous manufacturing process of III etc., so product quality can be improved and the number of defective products can be reduced. Moreover, since visual inspection can be eliminated, it has excellent effects such as relieving labor from a bad environment and helping to save labor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る表面色1IIIllIO方法の
要旨を示す流れ図、12図は、本発明に係る表面色調I
IIIl@置の構成を示す、一部ブロック線図を含む断
面図、第3図は、本発明の実施例における特殊表面処理
鋼板サンプルのオンライン分光測色装置とオフライン色
差計とによる測定結果を比較して示す線図、第4図は、
同じく、特殊表面処理鋼板サンプルの色差値と明度との
関係を示1縮図、M5図は、色彩の三特性IL、a 、
b三次元空間における同一色差サンプルの分布を示1線
図である。 10・・・走行物体、     12・・・光源、14
・・・レンズ、       16・・・スリット、1
8・・・反射型回折格子、 19・・・並列型光検出素子列、 22・・・アナログ・デジタル処理装置、24 ・JI
JIIl&tllll、 26・・・制御[l!th!作装置。
FIG. 1 is a flowchart showing the gist of the surface color 1IIIllIO method according to the present invention, and FIG.
FIG. 3 is a cross-sectional view including a partial block diagram showing the configuration of the Ill@ installation, and compares the measurement results of a special surface-treated steel sheet sample in an example of the present invention using an online spectrophotometer and an offline color difference meter. The line diagram shown in Figure 4 is
Similarly, the relationship between the color difference value and brightness of the special surface-treated steel sheet sample is shown in the 1-reduced map, M5, which shows the three color characteristics IL, a,
b is a one-line diagram showing the distribution of samples with the same color difference in a three-dimensional space. 10... Running object, 12... Light source, 14
...Lens, 16...Slit, 1
8... Reflection type diffraction grating, 19... Parallel type photodetecting element array, 22... Analog/digital processing device, 24 ・JI
JIIl&tllll, 26...control [l! Th! production equipment.

Claims (2)

【特許請求の範囲】[Claims] (1)各種製造プロセスにて連続的に製造される物体の
表面色調を、分光測色装置を用いて非接触に測定し、表
面色調を均一化するよう制御する表面色調制御方法にお
いて、予め、明度指数等の色彩パラメータからなる色彩
情報と操業上の操作量等の操業条件との対応関係を把握
しておき、前記分光測色装置により、標準サンプルとの
色差値と、前記操業条件と対応関係にある色彩パラメー
タとを連続的に測定し、これらの測定値を基にして前記
対応関係から操業条件の変更量を算出し、該変更量指令
に従い、操業条件を制御することを特徴とする表面色調
制御方法。
(1) In a surface color tone control method in which the surface color tone of an object that is continuously manufactured in various manufacturing processes is measured in a non-contact manner using a spectrophotometer, and the surface color tone is controlled to be uniform, in advance, The correspondence between color information consisting of color parameters such as the brightness index and operating conditions such as operating variables is understood, and the spectrophotometric device is used to calculate the color difference value from the standard sample and its correspondence to the operating conditions. It is characterized by continuously measuring related color parameters, calculating the amount of change in operating conditions from the correspondence relationship based on these measured values, and controlling the operating conditions in accordance with the change amount command. Surface color tone control method.
(2)白色光を照射する光源と、測定視野を規定するス
リット、測定対象物体からの反射光をスリット上に結像
する、若しくは、スリット通過後の反射光を平行光にす
るレンズ系、平行光にされた反射光を分光する分光素子
、分光光を検出するための並列型光検出素子列を組合わ
せて構成する光学系と、前記並列型光検出素子列から得
られる信号を処理演算する演算処理系とを具備した分光
測色装置、 予め、明度指数等の色彩パラメータからなる色彩情報と
操業上の操作量等の操業条件との対応関係が把握記憶さ
れ、前記分光測色装置からの色彩パラメータを基に製造
プロセスの操業条件の変更量を演算する制御演算装置、 該制御演算装置からの操業条件変更量に基き、操業条件
を変更する制御操作装置、それぞれを具備することを特
徴とする表面色調制御装置。
(2) A light source that irradiates white light, a slit that defines the field of view for measurement, a lens system that images the reflected light from the object to be measured on the slit, or converts the reflected light after passing through the slit into parallel light, and parallel an optical system configured by combining a spectroscopic element that separates the reflected light into light, a parallel photodetector array for detecting the spectral light, and a signal obtained from the parallel photodetector array. A spectrophotometric device equipped with an arithmetic processing system, in which the correspondence between color information consisting of color parameters such as a brightness index and operating conditions such as operating amounts is grasped and memorized in advance, A control operation device that calculates the amount of change in the operating conditions of the manufacturing process based on the color parameter, and a control operation device that changes the operating conditions based on the amount of change in the operating conditions from the control and calculation device. Surface color tone control device.
JP59278748A 1984-12-27 1984-12-27 Surface color tone control method and apparatus thereof Pending JPS61155714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59278748A JPS61155714A (en) 1984-12-27 1984-12-27 Surface color tone control method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59278748A JPS61155714A (en) 1984-12-27 1984-12-27 Surface color tone control method and apparatus thereof

Publications (1)

Publication Number Publication Date
JPS61155714A true JPS61155714A (en) 1986-07-15

Family

ID=17601648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59278748A Pending JPS61155714A (en) 1984-12-27 1984-12-27 Surface color tone control method and apparatus thereof

Country Status (1)

Country Link
JP (1) JPS61155714A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103426A (en) * 1988-10-12 1990-04-16 Kuraray Co Ltd Color sensor
JP2002015903A (en) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd Method for manufacturing ceramic electronic component
JP2017500576A (en) * 2013-12-26 2017-01-05 ポスコPosco Simultaneous measurement device for whiteness and adhesion
WO2019097981A1 (en) * 2017-11-14 2019-05-23 新東工業株式会社 Evaluation method and evaluation device for surface state of inspection object, control method for evaluation device, and control program for evaluation device
JP2022525241A (en) * 2019-04-25 2022-05-11 スペイラ ゲゼルシャフト ミット ベシュレンクテル ハフツング Surface treatment of flat products made of aluminum alloy including color measurement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139480A (en) * 1976-05-13 1977-11-21 Magnuson Eng Inc Apparatus for rating color utilizing infrared ray
JPS5410786A (en) * 1977-06-25 1979-01-26 Ritsuo Hasumi Continuous inspection device for surface color

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139480A (en) * 1976-05-13 1977-11-21 Magnuson Eng Inc Apparatus for rating color utilizing infrared ray
JPS5410786A (en) * 1977-06-25 1979-01-26 Ritsuo Hasumi Continuous inspection device for surface color

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103426A (en) * 1988-10-12 1990-04-16 Kuraray Co Ltd Color sensor
JP2002015903A (en) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd Method for manufacturing ceramic electronic component
JP4501235B2 (en) * 2000-06-29 2010-07-14 パナソニック株式会社 Manufacturing method of ceramic electronic component
JP2017500576A (en) * 2013-12-26 2017-01-05 ポスコPosco Simultaneous measurement device for whiteness and adhesion
WO2019097981A1 (en) * 2017-11-14 2019-05-23 新東工業株式会社 Evaluation method and evaluation device for surface state of inspection object, control method for evaluation device, and control program for evaluation device
JPWO2019097981A1 (en) * 2017-11-14 2020-09-24 新東工業株式会社 Evaluation method of surface condition of inspection object, evaluation device, control method of evaluation device and control program of evaluation device
JP2022525241A (en) * 2019-04-25 2022-05-11 スペイラ ゲゼルシャフト ミット ベシュレンクテル ハフツング Surface treatment of flat products made of aluminum alloy including color measurement
US11953424B2 (en) 2019-04-25 2024-04-09 Speira Gmbh Surface treatment of flat products made of aluminium alloys comprising colour measurements

Similar Documents

Publication Publication Date Title
ITTO930654A1 (en) METHOD AND EQUIPMENT FOR SURVEILLANCE AND CONTROL OF THE THICKNESS OF A THIN FILM
EP0081702A1 (en) Electro-optical system for color monitoring
US10345100B1 (en) Apparatus and method for evaluating metal surface texture
JPS63145926A (en) Color sensor
JPS61155714A (en) Surface color tone control method and apparatus thereof
JPH03252512A (en) Method and device for on-line measurement of oil film or coated film
JPH0472551A (en) Method and device for measuring configuration of surface of metal plate
JP3933581B2 (en) Method and apparatus for surface evaluation
US11143500B2 (en) Methods and systems for real-time, in-process measurement of automobile paints and transparent coatings
US20210215618A1 (en) Multi-color surface inspection system, method for inspecting a surface, and method for calibrating the multi-color surface inspection system
KR20140065500A (en) Apparatus for measuring remain scale and the method thereof
EP3090249B1 (en) A method and an arrangement for measuring the gloss of grains
JPS6236543A (en) Purity measurement for steel plate surface
JPH09113364A (en) Method and device to characterize surface optically
JP6770541B2 (en) Diagnostic dictionary registration device, diagnostic device, method, program, and data structure
KR100255500B1 (en) Apparatus and method for measurement and decision of color matching for 3d objects
KR20160065303A (en) Method of analyzing color alloy using reflectivity
JPH07107499B2 (en) Continuous colorimeter
JP2001242092A (en) Evaluation device
WO2023223598A1 (en) Temperature measurement method, temperature measurement device, temperature control method, temperature control device, steel material manufacturing method, and steel material manufacturing equipment
RU2059211C1 (en) Method of measurement of colour of leather or other similar materials
JPH0540422Y2 (en)
KR20240042886A (en) Application state analysis system and method
JPH02221824A (en) Instrument for measuring characteristic of surface color
KR20030018725A (en) Apparatus for measuring temperature of strip in twin roll strip casting process