JPS61153910A - Hydraulic type manipulator - Google Patents

Hydraulic type manipulator

Info

Publication number
JPS61153910A
JPS61153910A JP59280160A JP28016084A JPS61153910A JP S61153910 A JPS61153910 A JP S61153910A JP 59280160 A JP59280160 A JP 59280160A JP 28016084 A JP28016084 A JP 28016084A JP S61153910 A JPS61153910 A JP S61153910A
Authority
JP
Japan
Prior art keywords
piston
pressure
differential piston
pipe
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59280160A
Other languages
Japanese (ja)
Other versions
JPH0472325B2 (en
Inventor
敏昭 吉積
勉 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59280160A priority Critical patent/JPS61153910A/en
Publication of JPS61153910A publication Critical patent/JPS61153910A/en
Publication of JPH0472325B2 publication Critical patent/JPH0472325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、操作指令を受けて高速度で負荷を運動させ
る機器の液圧式操作装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydraulic operating device for equipment that moves a load at high speed in response to an operating command.

〔従来の技術〕[Conventional technology]

従来、高速度の直線や回転の運動を行う機器の駆動源と
しては、空気等の気体圧や油等の液体圧が用いられてお
り、比較的軽負荷においては空気圧操作装置が適用され
ることが多い。
Conventionally, gas pressure such as air or liquid pressure such as oil has been used as the drive source for equipment that performs high-speed linear or rotational motion, and pneumatic operating devices are used for relatively light loads. There are many.

しかし、負荷が大形化し、例えば数トン前後になると、
空気圧式操作装置は大形化し操作時の給排気に伴う騒音
が高くなるとともに空気圧を発生するコン1レッサの保
守費用が増大する等の欠点があるので、油圧等の液体圧
を用いる操作方式が用いられることが多い。
However, when the load becomes large, for example around several tons,
Pneumatic operating devices have drawbacks such as increased size, increased noise due to supply and exhaust during operation, and increased maintenance costs for the compressor that generates air pressure. Often used.

液圧式操作装置、中でも油圧操作装置は油の非圧縮性の
故に空気圧に比べて高圧化し易く、その結果操作時の騒
音が少なく、また装置が縮少化されるとともに高速操作
時においても応答性が良い等の数多くの利点がある0 一方、液圧操作方式においては組立初期に液中に空気が
混入したり、液の圧縮過程において空気が液中へ溶解し
たジすれば、これらの空気のために機器の応答が遅れ、
操作時間がばらつくなどの問題点を有している。
Hydraulic operating devices, especially hydraulic operating devices, are easier to increase pressure than air pressure due to the incompressibility of oil.As a result, they produce less noise during operation, are smaller in size, and are more responsive even during high-speed operation. On the other hand, in the hydraulic operation method, if air gets mixed into the liquid at the initial stage of assembly, or if air is dissolved into the liquid during the liquid compression process, these air The response of the device may be delayed due to
This method has problems such as variations in operation time.

このような高速度の運動を行なう機器のうちでも特に送
電系統に用いられる開閉機器はその代表的なものである
Among devices that perform such high-speed motion, switching devices used in power transmission systems are particularly representative.

送電系統の大容量化、高電圧化に伴って、開閉器、特に
電力用!!断器の性能向上についての要求は強い。消弧
絶縁媒体としてSF、ガスを用いるガス絶縁遮断器の適
用は言うに及ばず、開閉速度の高速化や、開閉時間のば
らつきを少なくするなどの系統の安定化に寄与する性能
の向上が望まれている。同時に、操作時の騒音を低く押
え、また機器の保守性を向上させるなど、使用時の問題
点の改善も要求されつつある。
With the increase in capacity and voltage of power transmission systems, switchgear, especially for electric power! ! There is a strong demand for improved performance of disconnectors. In addition to the application of gas-insulated circuit breakers that use SF or gas as arc-extinguishing insulating media, improvements in performance that contribute to system stability, such as faster opening/closing speed and less variation in opening/closing times, are desirable. It is rare. At the same time, there is a growing demand for improvements in problems encountered during use, such as keeping operating noise low and improving equipment maintainability.

本発明の詳細説明においては、このような電力用開閉機
器の操作装置を例に取シ上げてこの発明の特徴を述べる
が、これに類する他の高速動作を行う機器の操作装置と
して適用し得ることは言うまでもない。
In the detailed explanation of the present invention, the features of the present invention will be described by taking the operating device for such electric power switching equipment as an example, but the present invention can also be applied as an operating device for other similar devices that operate at high speed. Needless to say.

第4図は例えば、特開昭57−111916号公報1c
開示された従来の液圧式操作装置の構成図である。
FIG. 4 shows, for example, Japanese Patent Application Laid-Open No. 57-111916 1c.
FIG. 1 is a configuration diagram of a disclosed conventional hydraulic operating device.

図において、(1)は開閉器例えば遮断器の開閉部で、
固定接点(2)及び可動接点(3)とからなり、駆動装
置(4)によって駆動されて接点を開閉する。駆動装置
(4)は可動接点(3)と連結されるロッド(5)を有
する差動ピストン(6)とシリンダ(ηとからなってお
り、両者の間をパツキン(6a)が液密にシールしてい
る。
In the figure, (1) is the opening/closing part of a switch, for example a circuit breaker,
It consists of a fixed contact (2) and a movable contact (3), and is driven by a drive device (4) to open and close the contacts. The drive device (4) consists of a differential piston (6) having a rod (5) connected to a movable contact (3) and a cylinder (η), and a gasket (6a) provides a fluid-tight seal between the two. are doing.

シリンダ(7)のヘッド側(大面積側) (7a)に接
続された管路(8)は液圧制御装置(9)に取り付けら
れ、この液圧制御装置(9) VCri低圧タ低圧タン
ク低Q管路(ロ)を介して取り付けられている。また、
シリンダ(7)のロッド側(小面積側)(7b)には、
ボート(2)を介してアキエムレータ斡が接続されると
ともに、液圧制御装置(9)に連通ずる高圧管路−が設
けられている。更に、高圧液を供給するボングユニツI
nは、低圧タンクαq内に排出された液を管路σηを介
して回収し、管路C1を介してアキュムレータ(2)に
高圧液を供給する。
The pipe line (8) connected to the head side (large area side) (7a) of the cylinder (7) is attached to a hydraulic pressure control device (9), It is attached via the Q pipe (b). Also,
On the rod side (small area side) (7b) of the cylinder (7),
A high-pressure pipe line is provided which is connected to the aqueous emulator via the boat (2) and communicates with the hydraulic pressure control device (9). In addition, Bong Units I supplies high-pressure liquid.
n recovers the liquid discharged into the low-pressure tank αq via the conduit ση, and supplies the high-pressure liquid to the accumulator (2) via the conduit C1.

次に、上記のように構成された従来装置の動作について
説明する。差動ピストン(8)のロッド側(7b)には
ボートcL1を介してアキュムレータ(2)からの高圧
液が常に供給されている。開閉部(1)を開くために液
圧制御装置(9)に操作指令が与えられると差動ピスト
ン(6)のヘッド側(7a)に管路(至)’kA4て供
給されていた高圧液は、管路(8)及び管路(6)を介
して低圧タンクαQへ排出される。このとき同時に管路
(8)への高圧液の供給路は閉止される。その結果差動
ピストン(6)のロッド側(7b)の高圧液の力によっ
て差動ピストン(6)は下方へ移動し、開閉部(1)は
開かれて第4図の状態となる。この状態においては、管
路(8)を含む差動ピストンのヘッド側(7a)ri低
圧液で満たされているため、バラ午ン(6&)には高低
圧間の液漏れが生じぬよう高いシール機能が要求される
Next, the operation of the conventional device configured as described above will be explained. The rod side (7b) of the differential piston (8) is constantly supplied with high pressure liquid from the accumulator (2) via the boat cL1. When an operation command is given to the hydraulic pressure control device (9) to open the opening/closing part (1), the high pressure fluid supplied to the head side (7a) of the differential piston (6) through the pipe (to) 'kA4' is discharged to the low pressure tank αQ via the pipe (8) and the pipe (6). At the same time, the high pressure liquid supply path to the pipe line (8) is closed. As a result, the differential piston (6) is moved downward by the force of the high pressure fluid on the rod side (7b) of the differential piston (6), and the opening/closing portion (1) is opened to be in the state shown in FIG. 4. In this state, since the head side (7a) of the differential piston including the pipe line (8) is filled with low pressure liquid, the valve nozzle (6&) is kept at a high level to prevent liquid leakage between high and low pressure. Seal function is required.

次に、開閉部(1)t−閉じるために、液圧制御装置(
9)に操作指令が与えられると、管路(8)から低圧管
路(ロ)への連通路は閉止され、同時に管路(8)への
高圧液の供給路は開放されて、管路(8)は高圧管路α
尋に連通する。その結果、差動ピストン(6)のヘッド
側(7a)及びロッド側(7b)のいづれにも高圧液が
供給され、ヘッド側とロッド側の面積差によって生じる
推力によって、差動ビス)y(a)は上方向へ移動する
ので、開閉部(1)が投入される。開閉部(1)の投入
状態においては管路(8)には高圧液が満されている。
Next, in order to close the opening/closing part (1), the hydraulic pressure control device (
When an operation command is given to 9), the communication path from the pipe (8) to the low pressure pipe (B) is closed, and at the same time, the high pressure liquid supply path to the pipe (8) is opened, and the pipe (8) is high pressure pipe α
Communicate with Hiron. As a result, high-pressure fluid is supplied to both the head side (7a) and rod side (7b) of the differential piston (6), and the thrust generated by the difference in area between the head side and the rod side causes the differential screw) y( Since a) moves upward, the opening/closing part (1) is closed. When the opening/closing part (1) is in the closed state, the pipe line (8) is filled with high pressure liquid.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の液圧式操作装置1は以上のように構成されている
ので、管路(8)は高圧及び低圧の両状態を交互に保持
するいわゆる高低圧変動回路となる。このため一旦油な
どの液中に空気等の気体が混入溶解すると、管路を高圧
状態に保持する間には生じなかった気泡が、管路を低圧
状態にして長時間保持するうちに、放生に生じて、高低
圧変動管路(8)を閉塞することになる。
Since the conventional hydraulic operating device 1 is configured as described above, the pipe line (8) becomes a so-called high-low pressure fluctuation circuit that alternately maintains both high-pressure and low-pressure states. For this reason, once gases such as air get mixed in and dissolve in liquids such as oil, bubbles that did not form while the pipes were kept at a high pressure state are released and released as the pipes are kept at a low pressure state for a long time. This occurs and the high/low pressure fluctuating pipe (8) is blocked.

このような状態において、再び高低圧変動管路(8)に
高圧液体を流入させると、気泡が再度圧縮きれるために
圧力の伝播が遅れる。その結果、操作信号の伝達が遅れ
て開閉時間がばらつく等の問題点を有していた。
In such a state, when high-pressure liquid is allowed to flow into the high-low pressure fluctuating pipe (8) again, the bubbles are compressed again, so that the pressure propagation is delayed. As a result, there have been problems such as a delay in transmission of the operation signal and variations in opening/closing time.

このため、従来の装置においては組立後に長時間に亘り
多数回のならし操作を繰り返して装置内部の空気を排出
する作業が必要となり、特に変電所等に据え付けられた
後に部品交換のための解体再組立を行なう場合、このよ
うな多数回のならし操作は開閉設備の復旧時間を長びか
せる原因となり変電所の運を上問題となっていた。
For this reason, with conventional equipment, after assembly, it is necessary to repeat the break-in operation many times over a long period of time to exhaust the air inside the equipment, and especially after it has been installed in a substation, etc., it is necessary to disassemble it to replace parts. When performing reassembly, such a large number of break-in operations prolong the recovery time of the switchgear equipment, posing a problem to the operation of the substation.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る液圧式操作装置は、差動ピストンのヘッ
ド側の大受圧面に作用する液体圧力を、操作指令の与え
られ九瞬時を除いて常時高圧に保ち、ピストンが後退位
置にあって停止するときは、両1ヒストン面に作用する
力の差によって生じるピストンの推力を保持装置を用い
て保持するよう構成したものである。
The hydraulic operating device according to the present invention maintains the hydraulic pressure acting on the large pressure-receiving surface on the head side of the differential piston at high pressure at all times except for nine moments when an operating command is given, and stops when the piston is in the backward position. In this case, the thrust force of the piston caused by the difference in the forces acting on both histone surfaces is held by a holding device.

〔作 用〕[For production]

その結果、差動ピストンのロッド側は、操作瞬時を除い
て低圧状態になることはなく、液中に混入溶解した気体
が気泡と成って開閉時間をばらつかせる等の問題を生じ
ることは無く、組立後の排気のためのならし操作も不要
となる。
As a result, the rod side of the differential piston will not be in a low pressure state except for the moment of operation, and there will be no problems such as gas mixed and dissolved in the liquid forming bubbles and causing variations in opening/closing time. There is also no need for a break-in operation for exhaust after assembly.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図は開閉器の投入状態を示すものである0図において、
(X4は駆動部で、差動ピストン(ホ)とシリンダ(7
)からなっている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows the closed state of the switch.
(X4 is the drive unit, with the differential piston (E) and cylinder (7)
).

シリンダ(7)のヘッド側(7a)に接続された管路(
7)は液圧制御装置(2)に取り付けられ、この液圧制
御装置−には低圧タンク(IQが低圧管路(6)を介し
て取り付けられている。cIρは差動ピストン(至)の
上方向推力を保持するための保合装置で、摺動自在に設
けられた保合ビン(至)を有しており、管路田を介して
液圧制御装置−に接続されている。保合装置311への
油圧力の供給及び排出によって保合ビン■は左右に駆動
される。
Pipe line (7a) connected to the head side (7a) of the cylinder (7)
7) is attached to a hydraulic pressure control device (2), and a low pressure tank (IQ) is attached to this hydraulic pressure control device via a low pressure pipe (6). This is a locking device for holding upward thrust, and has a locking bin (to) that is slidably installed, and is connected to the hydraulic pressure control device via a conduit field. By supplying and discharging hydraulic pressure to the coupling device 311, the coupling bin (2) is driven left and right.

次に、上記のように構成されたこの発明による装置の動
作について第2図に示したタイムチャートを併せ用いて
説明する。図において、(a) td操作指令信号の人
、切を、(b)は管路に)及び差動ピストン(至)のヘ
ッド側の圧力を、(C)は差動ピストン(至)の動きを
、また(d)は保合ビン(至)の動きを表わすタイムチ
ャートである。
Next, the operation of the apparatus according to the present invention configured as described above will be explained with reference to the time chart shown in FIG. 2. In the figure, (a) shows the td operation command signal (off), (b) shows the pressure on the pipe line) and the head side of the differential piston (to), and (C) shows the movement of the differential piston (to). , and (d) is a time chart showing the movement of the binding bin (to).

投入状態を示す第1図において、開閉部(1)を開くた
めに、第2図(a)の88点で液圧制御装置−に操作指
令が与えられると、差動ピストン(至)のヘッド側(7
a)に管路α4を経て供給されていた高圧液は管路四及
び管路(ロ)を介して低圧タンク叫へ排出される。たの
とき、管路(2)への高圧液の供給路は瞬時閉止される
ように液圧制御装置四は構成されているため、第2図(
b)のb1点で示すように差動ピストン(ホ)のヘッド
側(7a)及び管路…の内部は瞬時に低圧となる。そし
て、差動ピストン(至)d!2図(C)で・示す01点
から02点のように遮断方向に駆動を開始する。このと
き係合装置(至)には、液圧制御装置−から管路■を介
して高圧液が供給されているため差動ピストン(至)が
遮断方向に駆動を完了(第2図(c)の02点)すると
、第2図(d)の山鹿から山鹿のように保合ビン口が正
方向に移動を開始する。これによつ°C1短時間のうち
に差動ピストン(至)と保合ビン圏の保合は完了(第2
図(d)の62点)し、その後、准圧制御装置の動作に
よって、管路(至)への高圧液の供給路に開放され、同
時に低圧タンクαQへ連通する管路(ロ)が閉止される
ため、差動ピストン(至)のヘッド側(7a)及び管路
@は高圧管路α4と連通して、その内部tfg2図(b
)のb2点で示すようにして高圧液で満されて、第3図
に示す遮断状態となる0 投入のための操作指令が液圧制御装置(至)に与えられ
ると、管路■の圧力は瞬時に低下し、保合ビン(至)に
加えられ°Cいた押圧力が除去されるとともに保合装置
3])の内部に設けられた図示しない、例えばばね等に
よって保合ビン(至)は、右方向へ引き戻される。この
とき、差動ピストン(至)のヘッド側(7a)及び管路
(2)の内部には高圧液が#され、管路α4と連通して
いるため、保合ビン(至)と差動ピストン(至)の保合
が解除されると同時に差動ピストン(ホ)は投入方向へ
駆動されて第1図の状態になる。差動ピストン(至)の
駆動が開始されると、液圧制御装置−の動作によって管
路(至)には高圧液が供給され次の遮断動作の準備を行
なう。
In Fig. 1 showing the closed state, when an operation command is given to the hydraulic pressure control device at point 88 in Fig. 2 (a) to open the opening/closing part (1), the head of the differential piston (to) Side (7
The high-pressure liquid supplied to a) via the pipe α4 is discharged to the low-pressure tank via the pipe 4 and the pipe (b). Since the hydraulic control device 4 is configured so that the high-pressure liquid supply path to the pipe line (2) is instantaneously closed when the
As shown at point b1 in b), the pressure inside the head side (7a) of the differential piston (e) and the pipe line instantly becomes low. And differential piston (to) d! Driving is started in the blocking direction from point 01 to point 02 shown in FIG. 2(C). At this time, the engagement device (to) is supplied with high-pressure fluid from the hydraulic pressure control device through the pipe line (2), so the differential piston (to) has completed its drive in the blocking direction (Fig. 2 (c) 02 point) Then, the holding bottle opening starts moving in the forward direction from Yamaga to Yamaga in FIG. 2(d). As a result, the engagement between the differential piston (to) and the engagement bin area is completed within a short time of °C1 (second
62 point in figure (d)), and then, by the operation of the quasi-pressure control device, the high-pressure liquid supply path to the pipe (to) is opened, and at the same time, the pipe (b) communicating with the low-pressure tank αQ is closed. Therefore, the head side (7a) of the differential piston (to) and the pipe @ communicate with the high pressure pipe α4, and its internal tfg2 (Fig.
) is filled with high-pressure liquid as shown at point b2, and enters the shutoff state shown in Figure 3.0 When an operation command for closing is given to the hydraulic pressure control device (to), the pressure in the pipe line is instantaneously lowered, the pressing force applied to the locking bottle (°C) is removed, and the locking bottle (°C) is removed by a spring or the like (not shown) provided inside the locking device (3). is pulled back to the right. At this time, high pressure fluid is supplied to the head side (7a) of the differential piston (to) and inside the pipe (2), which communicates with pipe α4, so that the differential piston (to) and the differential piston At the same time that the piston (to) is released, the differential piston (e) is driven in the closing direction and enters the state shown in FIG. When the differential piston (to) starts to be driven, high pressure liquid is supplied to the pipe (to) by the operation of the hydraulic pressure control device to prepare for the next shutoff operation.

本発明の装置は、上記のように操作の瞬時を除くほとん
ど全ての状態において、管路に)及び差動ピストン(4
)のヘッド側(7a)が高圧に保持き・れて馳るため、
液中に混入・溶解した空気が気泡に成長することはなく
、開閉時間のばらつきが無くなる。
The device of the invention, as mentioned above, is capable of maintaining the piston (4) and the differential piston (4) in almost all conditions except at the moment of operation.
) because the head side (7a) is held at high pressure.
Air mixed in and dissolved in the liquid does not grow into bubbles, eliminating variations in opening and closing times.

従って、組立後に混入した空気を排出するための多数回
のならし操作も不要となり、その結果変電所の運営上も
好都合である。
Therefore, there is no need for multiple break-in operations to exhaust air mixed in after assembly, and as a result, it is convenient for the operation of the substation.

なお、本発明の一実施例の説明において「遮断」または
「投入」とあるところを各々「投入」または「遮断」に
読み換えても本発明の効果は同様である。
Note that in the description of the embodiment of the present invention, the effects of the present invention are the same even if the words "blocking" or "throwing in" are read as "throwing in" or "blocking," respectively.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれは、差動ピストンのヘッ
ド側に作用する液体圧力を、操作指令の与えられた瞬時
を除いて高圧に保ち、ピストンが後退位置にあって停止
するときは、差動ピストンのロット側とヘッド側の面積
差によって生じるピストンの推力を保持装置を用いて保
持するように構成したので、成体中に混入溶解した気体
が気泡と成って開閉時間をばらつかせる等の問題を生じ
ることは無く、組立後の排気のためのならし操作も不要
となる等の利点がある。
As described above, according to the present invention, the fluid pressure acting on the head side of the differential piston is maintained at a high pressure except for the moment when an operation command is given, and when the piston is in the retracted position and stops, Since the piston thrust generated by the difference in area between the lot side and the head side of the differential piston is configured to be held using a holding device, the gas mixed and dissolved in the finished product forms bubbles, causing variations in opening and closing times. There are advantages such as no problem arises, and there is no need for a break-in operation for exhausting air after assembly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成図、第2図は第
1図の動作を説明するタイムチャート、第3図は第1図
の動作を示す説明図、第4図は従来の液圧式操作装置を
示す構成図である0図におい−C,(4)は駆動装置、
(7)はシリンダ、(7a)は大ピストン面側(ヘッド
側)、(乃)は小ピストン面側(ロット側)・、(2)
に差動ヒストン、@は液圧制御装置である。 なお、各図中同一符号は同−又は相当部分を示す〇
Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2 is a time chart explaining the operation of Fig. 1, Fig. 3 is an explanatory diagram showing the operation of Fig. 1, and Fig. 4 is a conventional In Figure 0-C, which is a configuration diagram showing a hydraulic operating device, (4) is a drive device;
(7) is the cylinder, (7a) is the large piston surface side (head side), (no) is the small piston surface side (lot side), (2)
is a differential histone, @ is a hydraulic control device. In addition, the same symbols in each figure indicate the same or equivalent parts〇

Claims (1)

【特許請求の範囲】[Claims] 駆動装置として差動ピストンを使用し、その小ピストン
面側(ロッド側)には常時高圧液体を作用させ、大ピス
トン面側(ヘッド側)には液体圧を制御する液圧制御装
置を介して高圧液体を作用させて上記ピストンを駆動す
るものにおいて、上記差動ピストンが後退位置において
停止するときは上記両ピストン面に高圧液体が同時に作
用するように構成し、上記両ピストン面に作用する力の
差によって生じる推力を上記差動ピストンまたはその延
長部に作用するよう構成した保持装置で保持することに
よって上記差動ピストンの位置を保持し、保持装置の保
持力の除去によって上記差動ピストンを前進させ、上記
大ピストン面側(ヘッド側)の高圧液体を除去すること
によってピストンを後退させることを特徴とする液圧式
操作装置。
A differential piston is used as the drive device, and high-pressure liquid is constantly applied to the small piston side (rod side), and a hydraulic pressure control device that controls the liquid pressure is applied to the large piston side (head side). In the device that drives the piston by applying high-pressure liquid, when the differential piston stops at a retreated position, the high-pressure liquid acts on both piston surfaces at the same time, and the force acting on both piston surfaces is configured. The position of the differential piston is maintained by holding the thrust force generated by the difference in the differential piston with a holding device configured to act on the differential piston or an extension thereof, and the position of the differential piston is maintained by removing the holding force of the holding device. A hydraulic operating device characterized by moving the piston forward and retracting the piston by removing high-pressure liquid on the large piston surface side (head side).
JP59280160A 1984-12-26 1984-12-26 Hydraulic type manipulator Granted JPS61153910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59280160A JPS61153910A (en) 1984-12-26 1984-12-26 Hydraulic type manipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59280160A JPS61153910A (en) 1984-12-26 1984-12-26 Hydraulic type manipulator

Publications (2)

Publication Number Publication Date
JPS61153910A true JPS61153910A (en) 1986-07-12
JPH0472325B2 JPH0472325B2 (en) 1992-11-18

Family

ID=17621145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59280160A Granted JPS61153910A (en) 1984-12-26 1984-12-26 Hydraulic type manipulator

Country Status (1)

Country Link
JP (1) JPS61153910A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161627A (en) * 1985-01-08 1986-07-22 三菱電機株式会社 Hydraulic type operator
EP0250619A1 (en) * 1986-05-27 1988-01-07 Mitsubishi Denki Kabushiki Kaisha Hydraulic operating apparatus
JPH06196047A (en) * 1992-12-25 1994-07-15 Toshiba Corp Liquid pressure operating device for power switch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814636U (en) * 1981-07-22 1983-01-29 三菱電機株式会社 hydraulic operating device
JPS58166108A (en) * 1982-03-26 1983-10-01 Hitachi Ltd Hydraulic operating unit for breaker

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814636B2 (en) * 1974-09-19 1983-03-19 ソニー株式会社 timer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814636U (en) * 1981-07-22 1983-01-29 三菱電機株式会社 hydraulic operating device
JPS58166108A (en) * 1982-03-26 1983-10-01 Hitachi Ltd Hydraulic operating unit for breaker

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161627A (en) * 1985-01-08 1986-07-22 三菱電機株式会社 Hydraulic type operator
JPH0439166B2 (en) * 1985-01-08 1992-06-26
EP0250619A1 (en) * 1986-05-27 1988-01-07 Mitsubishi Denki Kabushiki Kaisha Hydraulic operating apparatus
US4785712A (en) * 1986-05-27 1988-11-22 Mitsubishi Denki Kabushiki Kaisha Hydraulic operating apparatus for electric circuit breaker
JPH06196047A (en) * 1992-12-25 1994-07-15 Toshiba Corp Liquid pressure operating device for power switch

Also Published As

Publication number Publication date
JPH0472325B2 (en) 1992-11-18

Similar Documents

Publication Publication Date Title
JPS61153910A (en) Hydraulic type manipulator
CN1249747C (en) Hydraulic operation device for switching device
US7652221B2 (en) Contact drive arrangement
EP0250619B1 (en) Hydraulic operating apparatus
US4002103A (en) Reciprocating apparatus with a controllable dwell time at each end of the stroke
CN201540835U (en) Device for hydraulic drive device of electric switch
CN115140634B (en) Cylinder self-locking device, lifter and control method
EP0283986A3 (en) Hydraulic or pneumatic control for the operation of the movable contact of a middle- and/or high tension circuit-breaker
US3930134A (en) Pneumatic power-unit having a driving piston and an exhaust valve
JPS61161627A (en) Hydraulic type operator
US5760358A (en) Hydraulic device for operating a drive piston for a moving component
JPH0213408B2 (en)
CN108231484B (en) Relay based on pneumatic transmission
CN217876767U (en) Intelligent air cryogenic separation device
JPH0253895B2 (en)
CN102689271A (en) Fluid control mechanism of automatic clamping device
JPS6222037Y2 (en)
JP3317534B2 (en) Hydraulic operation device for power switch
JPS62241219A (en) Liquid pressure operating apparatus for breaker
JPS61128431A (en) Fluidic operator for switchgear
JPH0160886B2 (en)
SU930413A1 (en) Pneumatic drive
CA1269024A (en) Hydraulic operating apparatus
JPS61128427A (en) Fluidic operator for switchgear
CN2251651Y (en) Stop valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees