JPS61153526A - Measuring method of flow rate of fine particle - Google Patents

Measuring method of flow rate of fine particle

Info

Publication number
JPS61153526A
JPS61153526A JP27957484A JP27957484A JPS61153526A JP S61153526 A JPS61153526 A JP S61153526A JP 27957484 A JP27957484 A JP 27957484A JP 27957484 A JP27957484 A JP 27957484A JP S61153526 A JPS61153526 A JP S61153526A
Authority
JP
Japan
Prior art keywords
flow rate
powder
transport
microcomputer
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27957484A
Other languages
Japanese (ja)
Inventor
Yuunosuke Maki
牧 勇之輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27957484A priority Critical patent/JPS61153526A/en
Publication of JPS61153526A publication Critical patent/JPS61153526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure flow rates of various kinds of pneumatically carried fine particles with high precision by correcting a measured flow rate while using the ratio of the weight variation rate of a transport tank and the sum of flow rate outputs of respective detectors of a transport tube as a coefficient of calibration, and obtaining the absolute mass flow rate of fine particles. CONSTITUTION:An electrostatic capacity type correlation type fine particle flow meter 3 consists of detectors 3 and converters 3b, and outputs of the converters 3b are inputted to a microcomputer 4. A load cell 5 is installed in the transport tank 1 and a weight value is processed by a load cell converter 6 and inputted to a microcomputer 4 to calculate a weight variation rate rho. The microcomputer 4 calculates the ratio K=SIGMAfi/rho to the sum SIGMAfi of the flow rate meter at constant intervals and calculates and outputs Fj=fj/K as a flow rate value. Consequently, even if the kinds of fine particles change, the constant K of conversion is calculated successively, so the accurately absolute mass flow rate is measured successively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固気2相流用粉体流量の測定方法に関するも
ので、特に製鉄業の分野において粉・粒体・例えば鉱石
粉やコークス粉等を貯蔵タンクから空気輸送する際にお
ける、その固気2相流体中に含まれる粉体の流量を連続
的に測定する技術について提案する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for measuring the flow rate of powder for solid-gas two-phase flow. We propose a technology to continuously measure the flow rate of powder contained in a solid-gas two-phase fluid when it is pneumatically transported from a storage tank.

(従来の技術) 近年製鉄所などで高炉への微粉炭吹込み、転炉への成分
調整剤吹込み、あるいは高炉鋳床での脱硅済吹込み添加
等に見られるように、粉・流体を扱うプロセスが急増し
ており、その扱う粉体の種類も各目的に応じて使い分る
など多様化の一途をたどっている。このような設備では
、粉体を貯蔵、輸送するタンクを高圧にして供給先との
圧力差を°作り、さらに搬送用気体を利用して配管中に
固気2相流を形成させながら輸送(気送)するという方
法が一般的な手段である。
(Prior art) As seen in recent years in steel plants, etc., powder and fluid The number of processes that handle powders is rapidly increasing, and the types of powders used are also becoming more diverse, with different types of powder being used depending on the purpose. In such equipment, the tanks used to store and transport the powder are pressurized to create a pressure difference with the supply destination, and the transport gas is used to form a solid-gas two-phase flow in the piping while transporting the powder. A common method is pneumatic delivery.

例えば、第3図に示すものは、高炉への粉体吹込み設備
に採用しているシステムの例であるが、一般に各輸送配
管中を気送される固気2相流中の粉体のみの流量を測定
することは、その測定対象が固気2相流という性格上非
常に困難な面があり、実際に実用化されているものは少
ない。
For example, the system shown in Figure 3 is an example of a system used for powder injection equipment into blast furnaces, but generally only powder in a solid-gas two-phase flow is pneumatically blown through each transport pipe. It is extremely difficult to measure the flow rate due to the nature of the object to be measured being a solid-gas two-phase flow, and there are few methods that have actually been put into practical use.

第4図に示すものは、そうした少ない実用化されたもの
のうちの1つであって、静電容量型センサを使った相関
式粉体流量計である。この粉体流量計は、セラミックパ
イプ11に一対の薄い金属板を溶着し、静電容量の変化
から粉体濃度の測定部Aと一定距離だけ離した2つのセ
ンサで粉体の静電容量のゆらぎをε相互相関関数を用い
て検出する)求めて得られる粉体流速の測定部Bとから
構成されたものを用いて気送粉体の質量流量を測定する
方式である。
The one shown in FIG. 4 is one of the few that has been put into practical use, and is a correlation type powder flowmeter using a capacitance type sensor. This powder flow meter has a pair of thin metal plates welded to a ceramic pipe 11, and measures the capacitance of the powder using part A, which measures the powder concentration, and two sensors spaced a certain distance apart, based on changes in capacitance. In this method, the mass flow rate of the pneumatically blown powder is measured using a measuring section B that measures the powder flow velocity obtained by detecting fluctuations using the ε cross-correlation function.

ところが、このような既知粉体流量計は粉体の実濃度と
濃度計出力との関係が粉流体の誘電率等によって影響を
受けるので、実際、には第5図に示すように計量タンク
を輸送ライン中に設置してバイパスさせ、ロードセル出
力と粉体流量計出力を比較することによって流量校正し
なければならなかった。したがって、この意味において
流量計自体は相対質量流量の測定はできるものの絶対質
量流量を測定するには何らかの補助手段が不可決となり
、しかも粉体の種類が変わった場合には濃度計出力の特
性が変わってしまうために対応できなくなるという問題
点もあった。また、第5図に示すような校正用の計量タ
ンクを設置するには、著しく設備費が嵩むという問題点
もあった。
However, in such a known powder flow meter, the relationship between the actual concentration of the powder and the concentration meter output is affected by the dielectric constant of the powder fluid, etc., so in reality, the metering tank is used as shown in Figure 5. It was necessary to install it in the transportation line and bypass it, and to calibrate the flow rate by comparing the output of the load cell and the output of the powder flow meter. Therefore, in this sense, although the flowmeter itself can measure the relative mass flow rate, some kind of auxiliary means is not required to measure the absolute mass flow rate, and if the type of powder changes, the characteristics of the concentration meter output will change. There was also the problem of not being able to respond to changes due to changes. Additionally, installing a measuring tank for calibration as shown in FIG. 5 has the problem of significantly increasing equipment costs.

(発明が解決しようとする問題点) 本発明の目的は、上記従来技術の欠点、即ち多種類の粉
体を気送する場合に生じる粉体の絶対質量流量を測定で
きないという点を克服することにあり、併せ、て校正用
の計量タンクを設置しなければならない不便を解消し、
従来は困難とされていた多種類の粉体気送に際しての精
度の高い流量制御を可能にすることである。
(Problems to be Solved by the Invention) An object of the present invention is to overcome the drawback of the prior art described above, that is, the inability to measure the absolute mass flow rate of powder that occurs when pneumatically conveying many types of powder. At the same time, it eliminates the inconvenience of having to install a measuring tank for calibration.
The purpose of this invention is to enable highly accurate flow rate control when pneumatically transporting many types of powder, which has been considered difficult in the past.

(問題点を解決するための手段) 本発明は、従来技術が抱える上述したような問題点を克
服するために、気送する粉体の種類が変わったような場
合でも測定ができ、常時校正しながら測定することによ
って、該気送粉体の絶対質量流量を直接出力できる方法
について提案する。
(Means for Solving the Problems) In order to overcome the above-mentioned problems of the prior art, the present invention enables measurement even when the type of powder to be air-fed changes, and constantly calibrates the powder. We propose a method that can directly output the absolute mass flow rate of the pneumatically blown powder by measuring the amount of powder.

すなわち、 輸送タンク内に貯蔵した粉体を各供給先へ輸送配管を通
じて気送する際、その気送する固気2相流中における粉
体流量を静電容量型相関式流量計により測定する方法に
おいて、前記輸送タンクから各供給先に向う輸送配管に
それぞれ上記流量針の検出器を設置して流量を測定し、
同時に輸送タンクの重量変化率と各検出器の流量出力の
総和との比を求め、この比を校正定数として測定流量を
補正して粉体の絶対質量流量とすることを特徴とする粉
体流量測定方法、を本発明の課題解決手段とする。
That is, when powder stored in a transport tank is pneumatically transported to each supply destination through transport piping, the powder flow rate in the pneumatic solid-gas two-phase flow is measured using a capacitance type correlation flowmeter. , the flow rate is measured by installing the flow rate needle detector in each transport pipe from the transport tank to each supply destination,
At the same time, the ratio of the weight change rate of the transport tank to the sum of the flow rate outputs of each detector is determined, and the measured flow rate is corrected using this ratio as a calibration constant to determine the absolute mass flow rate of the powder. A measuring method is an object of the present invention.

(作 用) 本発明においては、相関式粉体流量計を各輸送配管(ラ
イン)中に設置するが、それらの各粉体流量計出力をf
l+fi+・・・f7とし、粉体輸送タンクlに取付け
たロードセルの重量をWとし、そして各ラインの実粉体
流量をPl+F!+・・・Fイとすると、輸送タンク中
の粉体が同一種類の場合、前記流量計出力と粉体の実濃
度との関係は第2図示すように一定の直線的な相関関係
があるため、次式が成立する。
(Function) In the present invention, a correlation type powder flowmeter is installed in each transportation pipe (line), and the output of each powder flowmeter is f
l+fi+...f7, the weight of the load cell attached to the powder transport tank l is W, and the actual powder flow rate of each line is Pl+F! +...Fi, if the powder in the transport tank is of the same type, the relationship between the flow meter output and the actual concentration of the powder has a certain linear correlation as shown in Figure 2. Therefore, the following equation holds.

i=1       dt fi=KjPj                  
(3)(j =1.2.・・・+n) 上式(3)でKjは各ラインの流量計出力−実流量の変
換定数であり、(2) (31式より、(4)のように
整理できる。
i=1 dt fi=KjPj
(3) (j = 1.2...+n) In the above equation (3), Kj is the conversion constant of flow meter output - actual flow rate for each line, (2) (From equation 31, (4) You can organize it like this.

dt すなわち、変換定数Kjは各ライン固有のものではなく
粉体の種類のみで決まるものであることがわかる。
dt That is, it can be seen that the conversion constant Kj is not unique to each line but is determined only by the type of powder.

一 と輸送タンク重量変化率□を求めて前記変換定数Kj 
(ここより、jによらない数値のためKと呼ぶ)を算出
すれば、各ラインの絶対質量流量Fjは、(21(41
式より、 ■ で容易に求めることができる。
1 and the transport tank weight change rate □ and the conversion constant Kj
(From here, it is called K because it is a value that does not depend on j.) By calculating the absolute mass flow rate Fj of each line, the absolute mass flow rate Fj of each line is (21 (41
From the formula, it can be easily determined by ■.

なお、こうした原理は、貯蔵、輸送用のタンクから複数
個所の供給先に各配管を通じて送る場合の種類の粉体輸
送設備へそのまま適用できる。
Note that these principles can be directly applied to the type of powder transportation equipment in which powder is sent from a storage or transportation tank to multiple supply destinations through each piping.

(実施例) 本発明測定方法以下に具体的に説明する。まず第1図に
示すように、輸送タンクlから各供給先へ向う各輸送配
管2a、2b、2cに静電容量型センサを使った相関式
粉体流量計3を設置する。粉体流量計3は、それぞれ検
出器3aと変換器3bとから構成されており、変換器3
bの出力は、流量補正演算用マイクロコンピュータ4に
入力されるシステム構成としである。前記輸送タンク1
にはロードセル5が設置してあり、重量値がロードセル
変換器6で処理されてマイクロコンピュータ4に入力す
れ重量変化率を演算する。そして該マイクロコンピュー
タ4では、一定間隔で定数Kjを演算し、流量値として
(41f51式に従ってFjを算出、出力するように構
成しである。従って、このような計器構成にすれば、前
述のように粉体の種類が変わっても、変換定数Kを逐次
に算出していくため、正確な絶対質量流量を順次測定す
ることができる。
(Example) The measuring method of the present invention will be specifically explained below. First, as shown in FIG. 1, a correlation powder flowmeter 3 using a capacitance type sensor is installed in each transport pipe 2a, 2b, 2c leading from a transport tank l to each supply destination. The powder flowmeter 3 is composed of a detector 3a and a converter 3b, and the converter 3
The output of b is input to the microcomputer 4 for flow correction calculation according to the system configuration. Said transport tank 1
A load cell 5 is installed at , and a weight value is processed by a load cell converter 6 and inputted to a microcomputer 4 to calculate a weight change rate. The microcomputer 4 is configured to calculate a constant Kj at regular intervals, and calculate and output Fj as a flow rate value (according to formula 41f51). Therefore, with this instrument configuration, the above-mentioned Even if the type of powder changes, the conversion constant K is calculated sequentially, so accurate absolute mass flow rates can be measured sequentially.

(発明の効果) 以上説明したように本発明は、従来は単一種の粉体での
吹込み流量制御はできるものの多種類の粉体ではその絶
対質量の吹込み流量制御ができないという問題が解決で
き、また流量計の用途を広げ、校正用計量タンクの設置
が不要になるので設計費が削除できるといった効果も期
待できる。
(Effects of the Invention) As explained above, the present invention solves the problem that conventionally it was possible to control the blowing flow rate for a single type of powder, but it was not possible to control the blowing flow rate for the absolute mass of multiple types of powder. It can also be expected to have the effect of expanding the uses of the flowmeter and eliminating the need for a measuring tank for calibration, thereby reducing design costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の粉体流量測定装置の路線図、第2図
は、相関式流量計出力と実流量の関係を示すグラフ、 第3図は、粉体輸送設備の1例を示す路線図、第4図は
、静電容量センサを用いた相関式流量計自体の路線図、 第5図は、校正用計量タンクと流量計組合わせを示す路
線図である。 ■・・・輸送タンク   2・・・輸送配管3・・・粉
体流量計   3a・・・検出器3b・・・変換器 4・・・マイクロコンピュータ 5・・・ロードセル 6・・・ロードセル変換器 第2図
Figure 1 is a route map of the powder flow rate measuring device of the present invention, Figure 2 is a graph showing the relationship between the output of a correlation type flowmeter and the actual flow rate, and Figure 3 is an example of powder transportation equipment. The route map, Figure 4, is a route map of the correlation type flowmeter itself using a capacitance sensor, and Figure 5 is a route map showing the combination of a calibration metering tank and a flowmeter. ■...Transport tank 2...Transport piping 3...Powder flow meter 3a...Detector 3b...Converter 4...Microcomputer 5...Load cell 6...Load cell converter Figure 2

Claims (1)

【特許請求の範囲】 1、輸送タンク内に貯蔵した粉体を各供給先へ輸送配管
を通じて気送する際、その気送する固気2相流中におけ
る粉体流量を静電容量型相関式流量計により測定する方
法において、前記輸送タンクから各供給先に向う輸送配 管にそれぞれ上記流量計の検出器を設置して流量を測定
し、同時に輸送タンクの重量変化率と各検出器の流量出
力の総和との比を求め、この比を校正定数として測定流
量を補正して粉体の絶対質量流量とすることを特徴とす
る粉体流量測定方法。
[Claims] 1. When the powder stored in the transport tank is pneumatically transported to each supply destination through the transport piping, the powder flow rate in the pneumatic solid-gas two-phase flow is calculated using a capacitance type correlation formula. In the method of measuring with a flowmeter, a detector of the flowmeter is installed in each transport pipe from the transport tank to each supply destination to measure the flow rate, and at the same time the weight change rate of the transport tank and the flow rate output of each detector are measured. A method for measuring a powder flow rate, characterized in that the ratio of the measured flow rate to the sum of the above is calculated, and the measured flow rate is corrected using this ratio as a calibration constant to obtain the absolute mass flow rate of the powder.
JP27957484A 1984-12-26 1984-12-26 Measuring method of flow rate of fine particle Pending JPS61153526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27957484A JPS61153526A (en) 1984-12-26 1984-12-26 Measuring method of flow rate of fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27957484A JPS61153526A (en) 1984-12-26 1984-12-26 Measuring method of flow rate of fine particle

Publications (1)

Publication Number Publication Date
JPS61153526A true JPS61153526A (en) 1986-07-12

Family

ID=17612876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27957484A Pending JPS61153526A (en) 1984-12-26 1984-12-26 Measuring method of flow rate of fine particle

Country Status (1)

Country Link
JP (1) JPS61153526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077267A (en) * 2004-09-07 2006-03-23 Nippon Steel Corp Facility for injecting powdery material
JP2012025799A (en) * 2010-07-20 2012-02-09 Electric Power Dev Co Ltd Coal gasification furnace system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077267A (en) * 2004-09-07 2006-03-23 Nippon Steel Corp Facility for injecting powdery material
JP2012025799A (en) * 2010-07-20 2012-02-09 Electric Power Dev Co Ltd Coal gasification furnace system

Similar Documents

Publication Publication Date Title
US5944048A (en) Method and apparatus for detecting and controlling mass flow
KR100740914B1 (en) Differential pressure type flowmeter and differential pressure type flowmeter controller
CA2000029C (en) Flowmeter fluid composition correction
US20050205774A1 (en) System and method for mass flow detection device calibration
RU2010123979A (en) SOLID PARTICULAR INJECTION SYSTEM
JP6209054B2 (en) Air micrometer
US5927321A (en) System for measuring and controlling gas mass flow
CN111024170B (en) Orifice flowmeter
CN102252722B (en) Three-differential-pressure gas liquid two-phase fluid flow metering device
JPS61153526A (en) Measuring method of flow rate of fine particle
Mason et al. A novel experimental technique for the investigation of gas–solids flow in pipes
JPH07509069A (en) Fluid flow measurement
KR20200136029A (en) How to compensate mass flow using a known density
WO1991003713A1 (en) Apparatus and method for measuring mass flow and density
US3034352A (en) Means for the measurement of the flow of a gas
Ishibashi et al. Methods to calibrate a critical nozzle and flowmeter using reference critical nozzles
JPH0419489Y2 (en)
JPS601522A (en) Method for measuring flow rate of powder fluid
Rivetti et al. Metrological performances of Venturi flowmeters in normal, supercritical and superfluid helium
CA2240484C (en) Method and apparatus for detecting and controlling mass flow
JP3396281B2 (en) Particle flow meter
SU1196320A1 (en) Method of determining hermetic sealing of main line section
JPH01224626A (en) Method and device for measuring flow rate of solid-vapor two-phase flow
JPH0544607B2 (en)
Qiao et al. Finite element analysis on frequency characteristic of elastic tube containing fluid flow