JPS6115273B2 - - Google Patents

Info

Publication number
JPS6115273B2
JPS6115273B2 JP9426780A JP9426780A JPS6115273B2 JP S6115273 B2 JPS6115273 B2 JP S6115273B2 JP 9426780 A JP9426780 A JP 9426780A JP 9426780 A JP9426780 A JP 9426780A JP S6115273 B2 JPS6115273 B2 JP S6115273B2
Authority
JP
Japan
Prior art keywords
wind
blade
angle
hub
attack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9426780A
Other languages
Japanese (ja)
Other versions
JPS5718466A (en
Inventor
Taro Saito
Yasuo Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUBOTA TETSUKO KK
Original Assignee
KUBOTA TETSUKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUBOTA TETSUKO KK filed Critical KUBOTA TETSUKO KK
Priority to JP9426780A priority Critical patent/JPS5718466A/en
Publication of JPS5718466A publication Critical patent/JPS5718466A/en
Publication of JPS6115273B2 publication Critical patent/JPS6115273B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Description

【発明の詳細な説明】 本発明は風力利用に用いるべき風車に関するも
のであり、特に強風時に自動的に迎え角を変更し
且つ折畳まれ破損しないようにした風車に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wind turbine to be used for utilizing wind power, and in particular to a wind turbine that automatically changes the angle of attack during strong winds and prevents the wind turbine from collapsing and being damaged.

近来、省エネルギの目的で風力の利用が注目さ
れ、その為の風車も種々の構造のものが開発され
ている。しかるに、一般に風力の弱い時に充分な
力を出す風車は、少し風力が強くなると破損して
しまう。通常2〜40m/s程度までの広い風速範囲
で使用可能であることが望ましいが、この場合の
風の持つ圧力エネルギは400倍もの広い範囲にも
なる。従つて、風車としてこの使用範囲をカバー
するためには、当然何らかの受圧自動調整機構が
必要である。しかも、更に強い風が吹くこともあ
り、その場合にも破損しない為には一般に風車の
翼等の構造を著しく強化する必要があり、その為
の重量増加等により性能悪化及び価格の上昇等の
悪影響が生じる。
Recently, the use of wind power has attracted attention for the purpose of energy saving, and wind turbines with various structures have been developed for this purpose. However, wind turbines that produce sufficient power when the wind is weak generally break when the wind becomes slightly stronger. It is normally desirable to be able to use it in a wide wind speed range of about 2 to 40 m/s, but in this case the pressure energy of the wind can be as wide as 400 times wider. Therefore, in order to cover this usage range as a wind turbine, some kind of automatic pressure receiving adjustment mechanism is naturally required. Moreover, even stronger winds may blow, and in order to avoid damage even in such cases, it is generally necessary to significantly strengthen the structure of the wind turbine blades, etc. This increases the weight, etc., resulting in performance deterioration and price increases. Negative effects occur.

本発明は、このような従来装置の欠点に鑑み、
風圧が上昇すれば受圧を抑えるように翼の迎え角
を変更し、更に風圧が上昇すれば、受圧を更に抑
えるように翼を折畳んで風向に近ずけるように傾
倒可能に構成した風車を提供することを目的とす
る。
In view of the drawbacks of such conventional devices, the present invention
If the wind pressure increases, the angle of attack of the blades is changed to suppress the received pressure, and if the wind pressure increases further, the blades can be folded to further suppress the received pressure.The wind turbine is constructed so that it can be tilted closer to the direction of the wind. The purpose is to provide.

この目的を達成するための本発明の特徴は、風
向と平行に支持台に対して回転自在に支持された
回転軸と、この回転軸に対して回転力を伝達可能
に且つ軸方向摺動自在に支持されると共に風上方
向に付勢されているハブと、このハブに回転軸と
直交する第1の方向に回動自在に支持されてたホ
ルダと、このホルダにその支持部がホルダ回動方
向と直交する第2の方向に回動自在に支持されて
いて第2の回動方向とほぼ並行な翼面を有し且つ
風向と略直交する方向に延設されている翼と、風
圧の上昇による翼の受圧の増大を抑制すべく翼を
介して風下方向に移動するハブの移動に応じて翼
の迎え角を変更すべくホルダを第1の方向に回動
する迎え角調整機構と、風圧の大上昇による翼の
受圧の増大を抑制すべく翼を第2の方向に回転し
て風向きに近ずくべく傾倒可能であり且つ元姿勢
に復帰可能な折畳み機構とを有する点にある。
The features of the present invention for achieving this purpose include a rotary shaft rotatably supported on a support base parallel to the wind direction, and a rotary shaft capable of transmitting rotational force to the rotary shaft and slidable in the axial direction. a hub supported by the hub and biased in the windward direction; a holder supported by the hub so as to be rotatable in a first direction perpendicular to the axis of rotation; a wing that is rotatably supported in a second direction perpendicular to the direction of rotation, has a wing surface substantially parallel to the second direction of rotation, and extends in a direction substantially perpendicular to the direction of the wind; an angle of attack adjustment mechanism that rotates the holder in a first direction to change the angle of attack of the blade in accordance with movement of the hub that moves in the leeward direction via the blade in order to suppress an increase in the pressure received by the blade due to the rise of the blade; In order to suppress an increase in the pressure received by the blades due to a large increase in wind pressure, the blades can be rotated in a second direction and tilted to approach the wind direction, and have a folding mechanism that can return to the original position.

以下、本発明の実施例を図面に基いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図において、風車1は取付回転台に固定さ
れる支持台2に風向Aと平行な回転軸3が支持さ
れており、この回転軸3の一端には動力を外部に
取出すためのクランク軸4が設けられている。
In FIG. 1, a wind turbine 1 has a rotating shaft 3 parallel to the wind direction A supported by a support 2 fixed to a mounting rotating table, and one end of this rotating shaft 3 has a crankshaft for extracting power to the outside. 4 is provided.

前記回転軸3にはガイド枠6とハブ7とが設け
られており、ガイド枠6は回転軸3に固定の取付
部材8,9と、両部材8,9間に回転軸3と平行
に架設されたガイド杆10,11とを有し、ハブ
7は回転軸3及びガイド杆10,11に嵌合され
ていて軸方向摺動自在であり、且つガイド杆1
0,11によつて廻り止めが為されている。尚、
前記ガイド杆10,11を設けずに、ハブ7をス
ベリキーを介して回転軸3に設けても良い。いず
れの場合も後述する翼20による回転力はこのハ
ブ7を介して回転軸3に伝達することが出来る。
The rotating shaft 3 is provided with a guide frame 6 and a hub 7, and the guide frame 6 has mounting members 8 and 9 fixed to the rotating shaft 3, and is installed between both members 8 and 9 in parallel to the rotating shaft 3. The hub 7 is fitted into the rotary shaft 3 and the guide rods 10, 11 and is slidable in the axial direction.
Rotation is stopped by 0 and 11. still,
The hub 7 may be provided on the rotating shaft 3 via a sliding key without providing the guide rods 10 and 11. In either case, the rotational force by the blades 20, which will be described later, can be transmitted to the rotating shaft 3 via the hub 7.

12はコイルバネで、回転軸3に嵌合されてい
て、ハブ7を風向Aの風上方向に付勢している。
尚、コイルバネ12をガイド杆10,11に嵌装
して、取付部材8,9間の回転軸3を省略するこ
とも可能である。
A coil spring 12 is fitted onto the rotating shaft 3 and biases the hub 7 in the upwind direction of the wind direction A.
Incidentally, it is also possible to fit the coil spring 12 into the guide rods 10 and 11 and omit the rotating shaft 3 between the mounting members 8 and 9.

前記ハブ7の外端面には支軸15が回転軸3の
径方向に突設されており、この支軸15にホルダ
16が回転軸3と直交する第1の方向に回転可能
に支持されており、このホルダ16は支軸15に
嵌合した第1円筒部材16aと、第1円筒部材1
6aに直交して溶着されている第2円筒部材16
bとを有し、更に後述する迎え角調整機構25
(いわゆる可変ピツチ機構)のアーム26が固定
されている。
A support shaft 15 is provided on the outer end surface of the hub 7 to protrude in the radial direction of the rotation shaft 3, and a holder 16 is rotatably supported on the support shaft 15 in a first direction perpendicular to the rotation shaft 3. This holder 16 has a first cylindrical member 16a fitted to the support shaft 15, and a first cylindrical member 1.
A second cylindrical member 16 welded orthogonally to 6a
b, and further includes an angle of attack adjustment mechanism 25 to be described later.
(so-called variable pitch mechanism) arm 26 is fixed.

20は1枚の板を2つ折りにして形成した翼部
材21に芯棒22を取付けて形成した翼であり、
前記翼部材21は風を受け易いように形成されて
おり、また従来のものを使用することも可能であ
る。芯棒22はL字形に折曲されていて翼支持部
23を形成しており、この支持部23は前記ホル
ダ16の第2円筒部材16b内にホルダ回動方向
と直交する第2の方向に回動自在に挿入されてお
り且つ抜け止めが為されている。
20 is a wing formed by attaching a core rod 22 to a wing member 21 formed by folding one plate in half;
The wing member 21 is formed to easily catch wind, and a conventional one can also be used. The core rod 22 is bent into an L shape to form a wing support portion 23, and this support portion 23 is inserted into the second cylindrical member 16b of the holder 16 in a second direction perpendicular to the holder rotation direction. It is inserted rotatably and is prevented from coming off.

25は迎え角調整機構で、ホルダ16に固定さ
れたアーム26と、このアーム26の先端のピン
27が係合するカム溝28を有して取付部材8に
固定されたカム板29とを有し、ハブ7がバネ1
2を圧縮する方向に回転軸3上を摺動すると、ピ
ン27がカム溝28内を一端aから他端b側へ移
動し、これによつてアーム26及びホルダ16は
第1の方向、即ち矢印30方向に回動する。
Reference numeral 25 denotes an angle of attack adjustment mechanism, which includes an arm 26 fixed to the holder 16 and a cam plate 29 fixed to the mounting member 8 and having a cam groove 28 in which a pin 27 at the tip of the arm 26 engages. Then, hub 7 is connected to spring 1.
When the pin 27 slides on the rotating shaft 3 in the direction of compressing the arm 26, the pin 27 moves in the cam groove 28 from one end a to the other end b, thereby moving the arm 26 and the holder 16 in the first direction, i.e. Rotate in the direction of arrow 30.

33は折畳み機構で、芯棒22の支持部23を
ホルダ16に第2の方向に回動自在にした構成
と、翼部材21を風向Aと略直交する方向に保持
すべく芯棒22の一方向の回動を規制するストツ
パ34と、芯棒22をストツパ34に弾圧してい
るバネ35とから成る。
Reference numeral 33 denotes a folding mechanism, which has a configuration in which the supporting part 23 of the core rod 22 is mounted on the holder 16 so as to be freely rotatable in the second direction, and one part of the core rod 22 is configured to hold the wing member 21 in a direction substantially perpendicular to the wind direction A. It consists of a stopper 34 that restricts rotation in the direction, and a spring 35 that presses the core rod 22 against the stopper 34.

ストツパ34は第2円筒部材16bと平行に第
1円筒部材16aに溶着されていて、先端に芯棒
22と係合する凹面部34aを有し、バネ35は
芯棒22の支持部23に巻付けられていて、その
一端はストツパ34に、他端は芯棒22に係止さ
れていて、芯棒22をストツパ34に弾圧してい
て、芯棒22がストツパ34から離れる方向に約
90゜回動するのを許容し得、離れた芯棒22をス
トツパ34に当接するまで復帰させ得る。
The stopper 34 is welded to the first cylindrical member 16a in parallel with the second cylindrical member 16b, and has a concave portion 34a at its tip that engages with the core rod 22, and the spring 35 is wound around the support portion 23 of the core rod 22. One end is locked to the stopper 34 and the other end is locked to the core rod 22, pressing the core rod 22 against the stopper 34, and moving the core rod 22 away from the stopper 34 approximately.
It is possible to allow the core rod 22 to rotate 90 degrees and return the separated core rod 22 until it abuts against the stopper 34.

尚、本発明の風車1は1個のハブ7に2枚の翼
20を設けており、迎え角調整機構25及び折畳
み機構33も2組設けられており、この翼20は
3枚以上設けて構成することも可能である。
The wind turbine 1 of the present invention includes two blades 20 on one hub 7, and also includes two sets of attack angle adjustment mechanisms 25 and folding mechanisms 33, and three or more blades 20 are provided. It is also possible to configure

次に、本発明風車における動作を説明する。 Next, the operation of the wind turbine of the present invention will be explained.

第2図及び第3図は風圧が弱い時を示してお
り、翼20は迎え角θ1で、弱い風圧を十分に受
ける姿勢であり、アーム26のピン27はカム溝
28の(a)端側に位置し、コイルバネ12はほとん
ど圧縮されない状態で、翼20、ハブ7及びガイ
ド枠6は矢印37方向に回転し、クランク軸4よ
り動力が取出される。
2 and 3 show when the wind pressure is weak, the blade 20 is at an angle of attack θ1 and is in a position to fully receive the weak wind pressure, and the pin 27 of the arm 26 is on the (a) end side of the cam groove 28. The blade 20, hub 7, and guide frame 6 rotate in the direction of arrow 37 with the coil spring 12 hardly compressed, and power is extracted from the crankshaft 4.

風速が15〜40m/s程度となり風圧が上昇してく
ると、風車1は第4図及び第5図の状態となる。
When the wind speed reaches about 15 to 40 m/s and the wind pressure increases, the wind turbine 1 enters the state shown in FIGS. 4 and 5.

即ち、翼20の受圧が大きくなると回転方向の
力(浮力)が大きくなると共に軸方向の力(抗
力)も大きくなり、その翼20の軸方向の力がコ
イルバネ12の伸張力より大きくなると、コイル
バネ12を圧縮するようにハブ7は風下方向に移
動する。これによりアーム26のピン27はカム
溝28内を(a)端から(b)端方向へ移動し、アーム2
6及びホルダ16は支軸15の廻りを第1の方向
にピン27がカム溝28に案内された角度だけ回
動する。
That is, when the pressure received by the blade 20 increases, the force in the rotational direction (buoyancy) increases, and the force in the axial direction (drag force) also increases, and when the force in the axial direction of the blade 20 becomes larger than the tension force of the coil spring 12, the coil spring The hub 7 moves in the leeward direction so as to compress the air force 12. As a result, the pin 27 of the arm 26 moves within the cam groove 28 from the (a) end to the (b) end, and the arm 26 moves from the (a) end to the (b) end.
6 and the holder 16 rotate in the first direction around the support shaft 15 by an angle at which the pin 27 is guided by the cam groove 28.

従つて、翼20も支軸15を中心に第1の方向
に回動し、受圧を抑えるような迎え角θ2とな
る。この状態で翼20が受ける軸方向の圧力とコ
イルバネ12の伸張力と釣合い且つ略一定に保た
れる。また回転トルクも略一定となる。この状態
から風圧が下がるとハブ7はコイルバネ12の作
用により風上方向に移動し、常に、翼20の受圧
の大きさに対してハブ7が前後移動し、迎え角調
整機構25を介して翼20にフイードバツクし、
翼20には一定以上の風圧が加わらないようにし
ている。風速40m/s以内では、翼20に働く浮力
と抗力の合成力は、折畳み機構33の支持部23
の軸線方向を向いている為、翼20は折畳まれる
ことはない。
Therefore, the blade 20 also rotates in the first direction about the support shaft 15, and the angle of attack θ2 becomes such that the pressure received is suppressed. In this state, the axial pressure applied to the blade 20 and the tension force of the coil spring 12 are balanced and maintained substantially constant. Further, the rotational torque is also approximately constant. When the wind pressure decreases from this state, the hub 7 moves upwind due to the action of the coil spring 12, and the hub 7 always moves back and forth in response to the magnitude of the pressure received by the blades 20. Feedback to 20,
Wind pressure above a certain level is prevented from being applied to the blades 20. At a wind speed of 40 m/s or less, the combined force of buoyancy and drag acting on the wing 20 is the support part 23 of the folding mechanism 33.
Since the wing 20 is oriented in the axial direction, the wing 20 will not be folded.

風速が更に上昇して、40〜60m/s程度の大強風
又は突風になると、翼20は迎え角が最小になつ
て回転方向の力が増大しなくとも、風から受ける
軸方向の圧力は極めて大きくなり、その圧力がバ
ネ35の弾性力により大きくなると、バネ35に
抗して翼20は支持部23を中心に回動して風下
側へ倒れる。
When the wind speed increases further and becomes a strong wind or gust of about 40 to 60 m/s, the angle of attack of the blade 20 becomes the minimum and even though the rotational force does not increase, the axial pressure received from the wind becomes extremely large. When the pressure increases due to the elastic force of the spring 35, the blade 20 rotates around the support portion 23 against the spring 35 and falls down to the leeward side.

即ち、強い風速の時、迎え角調整機構25が充
分に働いて、迎え角θがほとんど0になると、浮
力は極めて小さくなりほとんど抗力のみとなるの
で、その合成力の方向が折畳み機構33の作動方
向と合致して、翼20が折り畳まれる。
That is, when the angle of attack adjustment mechanism 25 works sufficiently and the angle of attack θ becomes almost 0 when the wind speed is strong, the buoyant force becomes extremely small and there is almost only a drag force, so the direction of the resultant force is the direction in which the folding mechanism 33 operates. Consistent with the direction, the wings 20 are folded.

第6図及び第7図は翼20が略完全に倒れた状
態を示しており、翼20は第2の方向に回動する
ことにより、回転中心軸に対して径方向姿勢から
軸方向姿勢まで風圧の大きさに応じて傾倒可能で
あり、風圧が低下すれば、バネ35の復元力によ
つて元の姿勢、即ち、径方向姿勢に復帰する。
尚、前記翼20が傾倒するときの第2の方向は、
第1の方向と直角であると共に、回転軸3に対し
て直角に近い交差方向である。
6 and 7 show a state in which the blade 20 is almost completely collapsed, and the blade 20 changes from a radial attitude to an axial attitude with respect to the central axis of rotation by rotating in the second direction. It can be tilted according to the magnitude of the wind pressure, and when the wind pressure decreases, the restoring force of the spring 35 returns to the original posture, that is, the radial direction posture.
Incidentally, the second direction when the wing 20 is tilted is as follows:
This is a direction that is perpendicular to the first direction and a cross direction that is nearly perpendicular to the rotation axis 3 .

翼20の径方向姿勢では風向Aに対して略直交
する状態であり、軸方向姿勢では風向Aに近ずく
状態となる。
In the radial direction of the blade 20, it is substantially perpendicular to the wind direction A, and in the axial direction, it approaches the wind direction A.

尚、本発明においては、翼20が回転している
と、その遠心力により、折畳み機構33のスプリ
ング35と相俟つて、翼20がうまく折り畳まれ
なく、従つて実際には、翼20は迎え角θが0に
なつて回転がほとんど停止してから、折り畳まれ
る。またバネ35折り畳まれた翼20がそれ自体
の自重に抗して再び展開するに必要な強さを持つ
ていれば良く、特に大強風に対抗し得る強さを必
要とするものではない。
In the present invention, when the blade 20 is rotating, the centrifugal force of the blade 20, together with the spring 35 of the folding mechanism 33, prevents the blade 20 from being folded properly. After the angle θ becomes 0 and the rotation almost stops, it is folded. Further, it is sufficient that the spring 35 has the strength necessary for the folded wing 20 to unfold again against its own weight, and does not need to be particularly strong enough to withstand strong winds.

以上、詳述した本発明においては、弱風及び中
風時に十分な風圧を受け得る翼は、強風時に風圧
によつてハブの軸方向摺動により迎え角調整機構
が作動して、自動的に迎え角が変更するので、翼
に加わる遠心力と無関係に作用し、破損すること
がなく、また、大強風及び突風時には、翼は迎え
角が変更された状態から、風圧によつて折畳み機
構が作動してホルダに対し更に風向に近ずくよう
に傾倒するので、破損が防止され、比較的簡単な
構成で、どんな強風があろうとも有効に風力を利
用することができる。更に、過強風にも破損しな
いことにより、最良風速時に最も効率の良いよう
に、風車を設計することができる。
In the present invention described in detail above, the blade that can receive sufficient wind pressure in weak winds and medium winds is automatically attacked by the angle of attack adjustment mechanism activated by the axial sliding of the hub due to the wind pressure in strong winds. Since the angle changes, the blade acts independently of the centrifugal force applied to the blade and will not be damaged. Also, in the event of strong winds or gusts, the blade's folding mechanism will be activated by the wind pressure from the state where the angle of attack has been changed. Since the holder is tilted closer to the wind direction than the holder, damage is prevented, and with a relatively simple configuration, wind power can be effectively utilized no matter how strong the wind is. Furthermore, by not being damaged by extremely strong winds, the wind turbine can be designed to be most efficient at the best wind speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す斜視図、第2図
乃至第7図は翼の動作を示しており、第2図及び
第3図は弱風中風時の翼の状態を示す夫々正面図
及び平面図、第4図及び第5図は強風時の翼の状
態を示す夫々正面図及び平面図、第6図及び第7
図は過大強風時の翼の状態を示す夫々正面図及び
平面図である。 1……風車、3……回転軸、6……ガイド枠、
7……ハブ、12……コイルバネ、15……支
軸、16……ホルダ、20……翼、21……翼部
材、22……芯棒、25……迎え角調整機構、2
6……アーム、27……ピン、28……カム溝、
29……カム板、33……折畳み機構、34……
ストツパ、35……バネ、A……風向、θ……迎
え角。
Fig. 1 is a perspective view showing an embodiment of the present invention, Figs. 2 to 7 show the operation of the blade, and Figs. Fig. 4 and Fig. 5 are a front view and plan view, Fig. 6 and Fig. 7 respectively showing the condition of the blade during strong winds.
The figures are a front view and a plan view, respectively, showing the state of the blade during excessively strong winds. 1...Windmill, 3...Rotating shaft, 6...Guide frame,
7... Hub, 12... Coil spring, 15... Support shaft, 16... Holder, 20... Wing, 21... Wing member, 22... Core rod, 25... Angle of attack adjustment mechanism, 2
6... Arm, 27... Pin, 28... Cam groove,
29...Cam plate, 33...Folding mechanism, 34...
Stopper, 35... Spring, A... Wind direction, θ... Angle of attack.

Claims (1)

【特許請求の範囲】[Claims] 1 風向と平行に支持台に対して回転自在に支持
された回転軸と、この回転軸に対して回転力を伝
達可能に且つ軸方向摺動自在に支持されると共に
風上方向に付勢されているハブと、このハブに回
転軸と直交する第1の方向に回動自在に支持され
てたホルダと、このホルダにその支持部がホルダ
回動方向と直交する第2の方向に回動自在に支持
されていて第2の回動方向とほぼ並行な翼面を有
し且つ風向と略直交する方向に延設されている翼
と、風圧の上昇による翼の受圧の増大を抑制すべ
く翼を介して風下方向に移動するハブの移動に応
じて翼の迎え角を変更すべくホルダを第1の方向
に回動する迎え角調整機構と、風圧の大上昇によ
る翼の受圧の増大を抑制すべく翼を第2の方向に
回転して風向きに近ずくべく傾倒可能であり且つ
元姿勢に復帰可能な折畳み機構とを有することを
特徴とする風車。
1. A rotating shaft that is rotatably supported on a support base in parallel with the wind direction, and a rotating shaft that is supported to be capable of transmitting rotational force and slidable in the axial direction, and is biased in the windward direction. a holder supported by the hub so as to be rotatable in a first direction perpendicular to the rotational axis; A blade that is freely supported, has a blade surface that is substantially parallel to the second rotation direction, and extends in a direction that is substantially perpendicular to the wind direction, and is designed to suppress an increase in the pressure received by the blade due to an increase in wind pressure. An angle of attack adjustment mechanism that rotates the holder in a first direction to change the angle of attack of the blade in accordance with the movement of the hub that moves in the leeward direction via the blade, and an angle of attack adjustment mechanism that rotates the holder in a first direction to change the angle of attack of the blade in accordance with the movement of the hub that moves in the leeward direction through the blade, and A wind turbine characterized by having a folding mechanism capable of rotating the blades in a second direction to approach the wind direction and tilting the blades to approach the direction of the wind, and returning to the original position.
JP9426780A 1980-07-08 1980-07-08 Windmill Granted JPS5718466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9426780A JPS5718466A (en) 1980-07-08 1980-07-08 Windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9426780A JPS5718466A (en) 1980-07-08 1980-07-08 Windmill

Publications (2)

Publication Number Publication Date
JPS5718466A JPS5718466A (en) 1982-01-30
JPS6115273B2 true JPS6115273B2 (en) 1986-04-23

Family

ID=14105498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9426780A Granted JPS5718466A (en) 1980-07-08 1980-07-08 Windmill

Country Status (1)

Country Link
JP (1) JPS5718466A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993948B2 (en) * 2011-08-23 2015-03-31 Raytheon Company Rolling vehicle having collar with passively controlled ailerons

Also Published As

Publication number Publication date
JPS5718466A (en) 1982-01-30

Similar Documents

Publication Publication Date Title
US7258527B2 (en) Vertical axis wind engine
US6548913B2 (en) Apparatus for generating power using wind energy
US4310284A (en) Automatically controlled wind propeller and tower shadow eliminator
JPH08128385A (en) Wind power generator
KR100720287B1 (en) Wind power generator
US4435646A (en) Wind turbine rotor control system
WO2006095396A1 (en) Blade for vertical shaft windmill and lift type vertical shaft windmill
US6749394B2 (en) Rotating display apparatus
JP2006336505A (en) Horizontal shaft windmill
US7014416B2 (en) Control vane for a wind turbine
CA1238582A (en) Wind turbine
JPS6115273B2 (en)
JPS6128767A (en) Expanded blade type windmill
JP2001165034A (en) Movable blade windmill with safety valve
US11473557B2 (en) Sail device
KR200212988Y1 (en) Wind power energy generating device
JPS5936705Y2 (en) vertical axis windmill
JP3833193B2 (en) Automatic rotation adjustment device for wind turbines for wind power generation
GB2304826A (en) A wind-or water-powered machine
JPS58119976A (en) Horizontal rotary windmill
JP4361063B2 (en) Wind power generator
RU2161266C2 (en) Windwheel
JP5248285B2 (en) Propeller type turbine equipment for wind power generation
KR20190071150A (en) Variable Blade Wind Turbine
US20100003137A1 (en) Fixed horizontal axis-mounted wind turbine blade with an independently rotating pressure cambered fin