JPS61151617A - Liquid crystal light valve - Google Patents

Liquid crystal light valve

Info

Publication number
JPS61151617A
JPS61151617A JP27998084A JP27998084A JPS61151617A JP S61151617 A JPS61151617 A JP S61151617A JP 27998084 A JP27998084 A JP 27998084A JP 27998084 A JP27998084 A JP 27998084A JP S61151617 A JPS61151617 A JP S61151617A
Authority
JP
Japan
Prior art keywords
liquid crystal
light valve
glass substrate
alignment film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27998084A
Other languages
Japanese (ja)
Inventor
Jun Nakanowatari
旬 中野渡
Mitsuru Kano
満 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP27998084A priority Critical patent/JPS61151617A/en
Publication of JPS61151617A publication Critical patent/JPS61151617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide a liquid crystal light valve which has a uniform and stable orientation state and can be driven by a DC electric field by coating a mixture composed of an org. metallic compd. which decomposes at <=350 deg.C and polyimide resin on a glass substrate then baking the coating and forming a directionally oriented film thereon. CONSTITUTION:The mixture composed of the org. metallic compd. which decomposes at <=350 deg.C and the polyimide resin in which the metallic oxide exists at 0.1-5% ratio after baking is coated on the transparent electrode 4 on the glass substrate 1 and is baked, then the film 5 directionally oriented by an orientation treatment is further formed, thereon. A transparent electrode 3 and a horizontally oriented film 6 are formed on another substrate 2 and a ferroelectric liquid crystal 12 is packed into the gap 11 formed by disposing the substrates to face each other and adhering the same. The hardness of the oriented films is increased by the baking of the metallic compd. The generation of flawing and exfoliation of the films after the injection of the liquid crystal is obviated and the liquid crystal is uniformly arranged. The driving of the valve with the DC electric field is made possible by the use of the ferroelectric liquid crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶ライトバルブに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a liquid crystal light valve.

特に高速応答のプリンターヘッド用液晶ライトバルブに
関する@ 〔従来技術〕 情報処理の高速化、大容量化にともない、プリジターも
高速、高印字品質のものが必要とされてきている。
Particularly related to high-speed response liquid crystal light valves for printer heads @ [Prior art] As information processing speeds up and capacity increases, there is a need for high-speed printers with high print quality.

このような目的のプリンターとして、レーザープリンタ
ー、LEDプリンター及び液晶プリンターなどが開発さ
れている。特に液晶ライトバルブを光信号発生部に用い
電子写真技術を応用した液晶プリンターは、光源を別に
設けるため、光源の梯類に制約がなく波長も自由に選歌
できる。そのため液晶プリンターは、LEDプリンター
などに比べ感光ドラム等の設計が楽になりシステムのト
ータルコストを低くすることができる。
Laser printers, LED printers, liquid crystal printers, and the like have been developed as printers for this purpose. In particular, liquid crystal printers that use liquid crystal light valves as optical signal generators and apply electrophotographic technology have a separate light source, so there are no restrictions on the ladder of light sources and wavelengths can be selected freely. Therefore, in a liquid crystal printer, the design of photosensitive drums and the like is easier than in an LED printer, and the total cost of the system can be lowered.

従来の液晶プリンターは、第3図に示すような2枚のガ
ラス基鈑1,2内面に透明電極3,4を形成し、その上
に水平配向膜5,6を形成し、前記2枚のガラス基板1
,2を水平配向膜を内側にしてスペーサー7により適当
な間隙をたもって対向させてセルを形成し、そのセルに
ネマチック液晶13を充した液晶ライトバルブを使用し
ており、08時とOFF時にそれぞれ低周波と高周波を
切りかえて印加する二周波駆動方式を採用している。
In a conventional liquid crystal printer, transparent electrodes 3 and 4 are formed on the inner surfaces of two glass substrates 1 and 2 as shown in FIG. 3, and horizontal alignment films 5 and 6 are formed thereon. Glass substrate 1
, 2 are placed facing each other with a suitable gap between them with the horizontal alignment film inside to form a cell, and a liquid crystal light valve filled with nematic liquid crystal 13 is used in the cell. A dual-frequency drive system is adopted in which low frequency and high frequency are applied selectively.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記ネマチック液晶を使用した液晶ライトバルブは簡単
な駆動方式である直流電界による駆動ができない。
The liquid crystal light valve using the nematic liquid crystal cannot be driven by a DC electric field, which is a simple driving method.

そこで、直流電界で駆動することができる強誘電性液晶
を使用する液晶ライトバルブが量近開発されつつある。
Therefore, liquid crystal light valves using ferroelectric liquid crystals that can be driven by a direct current electric field are being developed.

前記強誘雷、性液晶を使用した液晶ライトバルブは、高
速応答性も優ねている。
The liquid crystal light valve using the ferromagnetic liquid crystal has excellent high-speed response.

しかし、上記強誘電性液晶を使用し、配向膜を一般的な
ポリイミドや’PVAを使用した場合、液晶の配列が均
一とならない。
However, when the above-mentioned ferroelectric liquid crystal is used and a general polyimide or PVA is used as an alignment film, the alignment of the liquid crystal is not uniform.

従って本考案は、強誘電性液晶に改良を加ズて均一でな
おかつ安定した液晶の配向状卯を持ち、直流電界により
駆動可能な液晶ライトバルブを掃供することを目的とす
る。
Therefore, an object of the present invention is to provide a liquid crystal light valve which has a uniform and stable alignment of the liquid crystal by improving the ferroelectric liquid crystal and can be driven by a direct current electric field.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題を解決する為に本発明の液晶ライトバルブは第
1図に示した様に透明電極4を内面に形成し、その上に
ポリイミドに350℃以下で分解するシリコン、アルミ
ニウム等の金属の少なくとも1種類を含む有様金属化合
物を、焼成捗にポリイミド中の該金属の酸化物が重量比
0.1ないし5.0パーセント含まれる割合で混合した
混合物を塗布焼成し、更に配向処理を施して方位づけを
した配向膜5を形成した第1のガラス基″a、1と、透
明電極3を内面に形成し、その上に水平配向膜6を形成
した第2のガラス基板2とを、互いに配向膜を内側にし
て空隙11をもたせて対向させ、該空隙11に強誘1性
液晶12を充たした。
In order to solve the above problems, the liquid crystal light valve of the present invention has a transparent electrode 4 formed on the inner surface as shown in FIG. A mixture of a specific metal compound containing one type of metal in a proportion of 0.1 to 5.0% by weight of the oxide of the metal in the polyimide is applied and fired, and further an orientation treatment is applied. A first glass substrate "a, 1" on which an oriented alignment film 5 is formed and a second glass substrate 2 on which a transparent electrode 3 is formed on the inner surface and a horizontal alignment film 6 formed thereon are mutually bonded. They were placed facing each other with a gap 11 between them, with the alignment film on the inside, and the gap 11 was filled with a ferro-monostatic liquid crystal 12.

本発明に用いられる第1、第2のガラス基板及び透明電
極としては、従来公知のものを用い得る。
As the first and second glass substrates and transparent electrodes used in the present invention, conventionally known ones can be used.

透明電極は、各ガラス基板にパターンニングすることに
より形成される。
The transparent electrodes are formed by patterning each glass substrate.

第1ガラス基板の配向膜を主として構成するポリイミド
としては、 晶分子の長袖方向を配向膜に平行に、かつ方位づけされ
た方向に沿りて1列させる役1F11を持つ。
Polyimide, which mainly constitutes the alignment film of the first glass substrate, has the role of aligning the long-sleeved direction of crystal molecules parallel to the alignment film and along the oriented direction.

さらにポリイミドに混合する有機金厚化合物としては3
50℃以下で熱分解する、例えばビニルトリス(2−メ
トキシ・エトキシ)シランやアルミニウム・トリ・アセ
チルアセトナートを用いることが出来、又これらの有機
金厚化合物は1種類のみを用いたり、効果を確認して2
種類以上を併用できる。これらの有機金属化合物は焼成
することによりポリイミド中で金属酸化物、例えばSi
n、。
Furthermore, as an organic gold thick compound to be mixed with polyimide, 3
For example, vinyl tris (2-methoxy ethoxy) silane or aluminum triacetylacetonate, which thermally decomposes below 50°C, can be used, and only one type of these organic gold thick compounds can be used or the effectiveness can be confirmed. then 2
More than one type can be used together. These organometallic compounds form metal oxides, such as Si, in polyimide by firing.
n.

AI、0.となり、配向膜の硬度を適度に上げ、配向処
理時に配向膜にキズやハガレが発生することを抑え、液
晶注入後において液晶の配向の欠陥の発生や透過光量の
ムラ等を防止し、配向の均一性を向上する役割を持つ。
AI, 0. This increases the hardness of the alignment film to an appropriate level, suppresses scratches and peeling of the alignment film during alignment processing, prevents defects in liquid crystal alignment and unevenness in the amount of transmitted light after liquid crystal injection, and improves alignment. It has the role of improving uniformity.

有機金属化合物のポリイミドに対する混合割合は、焼成
後にポリイミド中の該金属酸化物の含有量が0.1〜5
.0重量パーセントになる範囲である。この範囲におい
て、上記配向の均一性を向上させる効果が得られた。ポ
リイミド中の金属酸化物の含有量が01%未満では配向
膜の硬度が充分に上らず、前記効果は得られず、5.0
チを上まわると配向膜が固くなりすぎ、配向処理による
方位づけが充分に行われず、セル内の液晶が一様に配向
せずにセル内で液面分子の向きが一方向にそろわず配向
が不i−,t−なる。
The mixing ratio of the organometallic compound to the polyimide is such that the content of the metal oxide in the polyimide after firing is 0.1 to 5.
.. The range is 0 weight percent. Within this range, the effect of improving the uniformity of the alignment was obtained. If the content of metal oxide in the polyimide is less than 0.1%, the hardness of the alignment film will not increase sufficiently, the above effect will not be obtained, and 5.0%.
If the temperature exceeds 1, the alignment film becomes too hard, and orientation treatment is not performed sufficiently, causing the liquid crystals in the cell to not be aligned uniformly and the molecules on the liquid surface to be oriented in one direction. becomes i-, t-.

この配向膜は、伊達する実施例の如く、まずポリアミッ
ク酸と有機金属化合物を所定の溶媒に溶解した溶液を第
1のガラス基板上に塗布し、乾燥後、所定のエツチング
処理を行ない、更に350℃(9)分間位焼成して、有
機金属化合物を分解して金属酸化物を生成すると同時に
ポリアミック酸を架橋重合させポリイミド配向膜を形成
する。
This alignment film is made by first applying a solution of polyamic acid and an organometallic compound dissolved in a predetermined solvent onto the first glass substrate, and then performing a predetermined etching treatment after drying, and then applying a 350% etching treatment. C. (9) minutes to decompose the organometallic compound to produce a metal oxide, and at the same time cross-link and polymerize the polyamic acid to form a polyimide alignment film.

配向処理前の配向膜の膜厚としては、SOOλ程度形成
するのが配向膜の着色をおさえ、均一な配向状態の信頼
性を確保する上で望ましい。
The thickness of the alignment film before alignment treatment is desirably approximately SOOλ in order to suppress coloring of the alignment film and ensure reliability of a uniform alignment state.

第2のガラス基板の水平配向膜は、液晶分子の長軸方向
をガラス基板に平行に配列させるものであり、その材質
としては、特にシランカッ1リング剤や金属酸化物を用
いる。
The horizontal alignment film of the second glass substrate aligns the long axis direction of the liquid crystal molecules in parallel to the glass substrate, and is made of a material such as a silane cutting agent or a metal oxide.

シランカップリング剤としては、γ−(2−アミノエチ
/L/)アミノプロピルトリメトキシシランやγ−グリ
シドキシ・プロピルトリメトキシランなどを用いること
ができ、特にγ−(2−アミノエチル)アミノプロピル
トリメトキシランが望才しい。
As the silane coupling agent, γ-(2-aminoethyl/L/)aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxylane, etc. can be used, especially γ-(2-aminoethyl)aminopropyltrimethoxylane. Methoxylan is promising.

また金属酸化物としては、シリコン・チタン・亜鉛・ジ
ルコニウムの酸化物を用いることができ、特に二酸化シ
リコンが望ましい。
Further, as the metal oxide, oxides of silicon, titanium, zinc, and zirconium can be used, and silicon dioxide is particularly desirable.

この水平配向膜は、後述する実施例の如くシランカップ
リング斉1を基板表面に吸着させ、単分子膜を形成する
かヌは金属酸化物の薄膜を基板表面に成膜することによ
り形成する。膜厚としては200X〜20001程度形
成するのが配向の信頼性、及び電気特性の点から望まし
い。
This horizontal alignment film is formed by adsorbing silane coupling agent 1 onto the substrate surface to form a monomolecular film or by depositing a thin film of metal oxide on the substrate surface as in the embodiments described later. It is desirable to form a film with a thickness of about 200× to 20,001× in terms of alignment reliability and electrical characteristics.

本発明で用いる強誘電解性液晶は、例えばP−(M−オ
クチルオキシ)フェノキシ−P−M−オクチルオキシベ
ンゾエートと不整炭素を有する光学活性な、P−アミロ
キシ・フェノキシ−P−M−ヘキシルオキシベンゾエー
ト、及びP−アミロキシ・フェノキシ−P−M−オクチ
ルオキシベンゾエートの3成分を重量比で1:1:1の
比率で混合したものである。この液晶は、室温及び比較
的低温の温を節囲内で強誘電的性質をもつカイラルスメ
クティックC相を示す。
The ferroelectrolytic liquid crystal used in the present invention is, for example, P-(M-octyloxy)phenoxy-P-M-octyloxybenzoate and an optically active P-amyloxy phenoxy-P-M-hexyloxy having an asymmetric carbon. It is a mixture of three components, benzoate and P-amyloxy phenoxy-PM-octyloxybenzoate, in a weight ratio of 1:1:1. This liquid crystal exhibits a chiral smectic C phase with ferroelectric properties at room temperature and within a relatively low temperature range.

発明実施例 〔第1実施例〕 第1図に示す様に、ガラス基板1上に透明tV14を形
成し、所望のバターニングをした後、その上にポリアミ
ド酸溶液(商品名、PIQ、、  日立化成社製)に、
シリコンの有機化合物、ビニルトリス(2−メトキシ・
エトキシ)シラン(商品名、V−5000チッソ社製)
を0.5ii量チ混合した溶液を、有機溶剤N−メチル
−2−ピロリドンにて10倍に希釈し、スピンナーにて
基板に塗布した。
Invention Examples [First Example] As shown in FIG. 1, a transparent tV 14 is formed on a glass substrate 1, and after desired patterning, a polyamic acid solution (trade name, PIQ, Hitachi (manufactured by Kasei-sha),
Silicon organic compound, vinyltris (2-methoxy)
ethoxy) silane (trade name, V-5000 manufactured by Chisso Corporation)
A solution prepared by mixing 0.5II of the above was diluted 10 times with an organic solvent N-methyl-2-pyrrolidone and applied to a substrate using a spinner.

150’Cにて20分間乾燥した後、ポジタイプの7オ
トレジスト(商品名、0FPR−800、東京応化社製
)を塗布し、紫外線露光機(製品名、 M3LDミカサ
社製)にて露光後、0FPR専用アルカリ現像液に浸漬
し、レジストの現像と同時にポリアミド酸膜のエツチン
グをおこない、表示部以外の配向膜を除去した。
After drying at 150'C for 20 minutes, a positive type 7 photoresist (trade name, 0FPR-800, manufactured by Tokyo Ohka Co., Ltd.) was applied, and after exposure with an ultraviolet exposure machine (product name, M3LD, manufactured by Mikasa Co., Ltd.), 0FPR was applied. The polyamide acid film was etched by immersing it in a special alkaline developer to develop the resist and remove the alignment film other than the display area.

フォトレジストを剥離した後、350℃で30分間焼成
して、ビニルトリス(2−メトキシ・エトキシ)シラン
を分解すると共にポリアミド酸を架橋重合させ、ポリイ
ミド膜を形放し配向膜とした。
After the photoresist was peeled off, it was baked at 350° C. for 30 minutes to decompose the vinyltris(2-methoxy-ethoxy)silane and crosslink polymerize the polyamic acid, leaving the polyimide film as an alignment film.

この配向膜をラビング処理により一方向へ方位づけをお
こなりて方位づけがなされた配向W5を形成した。成膜
後のポリイミド樹脂中に含才れるSin、濃度はPIQ
の不押発分含有率が14.2 mであり、ビニルトリス
(2−メトキシ−エトキシ)シラン、の分子量が280
.8i0.の分子量がωであるので、以下の式により求
められ、0.75%の濃度となる。
This alignment film was oriented in one direction by rubbing treatment to form an oriented orientation W5. Sin contained in polyimide resin after film formation, concentration is PIQ
The unextruded content of vinyltris(2-methoxy-ethoxy)silane is 14.2 m, and the molecular weight of vinyltris(2-methoxy-ethoxy)silane is 280 m.
.. 8i0. Since the molecular weight of is ω, it is determined by the following formula, resulting in a concentration of 0.75%.

14.2  280 対向する側の第2ガラス基板2上には感光性ポリアミド
酸溶液(商品名、フォトニース、UR−3100、東し
社製)を、2tuILの膜厚となるようスピンナーにて
塗布した後、露光・現像して図には示されていないスペ
ーサーを形jlた。
14.2 280 On the second glass substrate 2 on the opposite side, apply a photosensitive polyamic acid solution (trade name: Photonice, UR-3100, manufactured by Toshisha Co., Ltd.) using a spinner to a film thickness of 2tuIL. After that, it was exposed and developed to form spacers (not shown in the figure).

さらにその上から、ポリアミド酸溶液(商品名PIQ、
日立化成社#)を塗布し、乾燥後350℃にて焼成して
ポリアミド酸を架11重合させ、ポリイミド膜を形成し
配向膜とした。この基板にはラビングによる方位づけは
おこなわなかった。
Furthermore, from above, polyamic acid solution (product name PIQ,
Hitachi Chemical Co., Ltd. #) was applied, and after drying, it was baked at 350° C. to cross-polymerize polyamic acid to form a polyimide film, which was used as an alignment film. This substrate was not oriented by rubbing.

この2枚の基板を対向させ、周辺部を接着剤7にてシー
ルし、液晶セルを形成した。液晶セルにP−(M−オク
チルオキシ)フェノキシ、P−M−オクチルオキシベン
ゾエートと不整炭素を有する光学活性なP−アミロキシ
、フェノキシ−P−M−へキシルオキシベンゾエート及
びP−アミロキシフェノキシP−M−オクチルオキシベ
ンゾエートの3成分を1:1:1の重量比率で混合した
液晶を注入した。
These two substrates were placed facing each other and their peripheral portions were sealed with adhesive 7 to form a liquid crystal cell. In the liquid crystal cell, P-(M-octyloxy)phenoxy, PM-octyloxybenzoate and optically active P-amyloxy having asymmetric carbon, phenoxy-PM-hexyloxybenzoate and P-amyloxyphenoxy P- A liquid crystal mixture of three components of M-octyloxybenzoate in a weight ratio of 1:1:1 was injected.

この液晶は2f Cから36.5℃の間で、カイラルス
メクティックC相を示した。
This liquid crystal exhibited a chiral smectic C phase between 2f C and 36.5°C.

これにより液晶ライトバルブが形成された。This formed a liquid crystal light valve.

この液晶ライトバルブはセル全体において、ラビング化
より方位づけされた方向化液晶分子の長軸方向、すなわ
ち光軸が配列し、偏光顕微鋺で観察してみたところ欠陥
は無く、肉眼で判別できるような液晶分子の配向のむら
は存存しなかった。
In this liquid crystal light valve, the long axes of the oriented liquid crystal molecules, that is, the optical axes, are aligned in the entire cell through rubbing, and when observed with a polarized light microscope, there were no defects, which could be discerned with the naked eye. There was no unevenness in the orientation of liquid crystal molecules.

この液晶ライトバルブを偏光顕微鐘のステージ上におき
、+8vと一8■の方形波を加えて動作させ、その光軸
の傾きを測定したところ、34°の変化を示した。
This liquid crystal light valve was placed on the stage of a polarizing microscope and operated by applying a square wave of +8V and 18V.The inclination of the optical axis was measured and showed a change of 34 degrees.

さらに偏光板8,9(商品名、LC−81−18、王立
電気社製)を、片側の偏光板の優先軸方向を一8V印加
した状態での液晶分子の光軸の方向に平行に、もう片側
の備交板の偏光軸は、それと直角になるよう配置し、L
C−2液晶用輝度計(キャノン社#)にて透過光強度を
測定したところ、+8v印加と一8v印加の状態では3
2の高いコントラスト比かえられた。第2図にこのライ
トバルブの印加電圧−光透過特性を示す。第2図の横軸
は印加電圧(至)を示し縦軸は透過光量を示している。
Furthermore, polarizing plates 8 and 9 (trade name, LC-81-18, manufactured by Royal Electric Co., Ltd.) were arranged so that the preferential axis direction of one polarizing plate was parallel to the optical axis direction of the liquid crystal molecules when -8V was applied. Place the polarization axis of the polarization plate on the other side at right angles to it, and
When the transmitted light intensity was measured using a C-2 LCD luminance meter (Canon #), it was 3 when +8V and -8V were applied.
The high contrast ratio of 2 was changed. FIG. 2 shows the applied voltage-light transmission characteristics of this light valve. The horizontal axis in FIG. 2 represents the applied voltage (to), and the vertical axis represents the amount of transmitted light.

才たこの液晶ライトバルブに2nV方形波を加え、LC
−2液晶用輝度計にて33℃にて応答速度を測定したと
ころ、立ちあがり立ちさがりとも約300μSecであ
った。
Adding a 2nV square wave to this liquid crystal light valve, the LC
When the response speed was measured at 33° C. using a -2 liquid crystal luminance meter, it was approximately 300 μSec for both rising and falling times.

このライトバルブを80’C,500時間、及び60℃
澤度95%で200時間の試験後も、液晶の転移温度、
及び配向状儒、動作特性に変化はなく、高い信頼性を示
した。
This light bulb was heated at 80'C for 500 hours and at 60°C.
Even after 200 hours of testing at 95% solidity, the transition temperature of liquid crystal,
There was no change in the orientation and operating characteristics, indicating high reliability.

〔第2実施例〕 ガラス基板上に透明電極を形成し、所望のバターニング
をした後、その上にポリアミド酸溶液(商品名、8F−
510、東し社#)にアルミニウムの有機化合物である
アルミニウム・トリ・アセチルアセトナート(商品名、
ドータイトAI(1) −AA、同位化学研究所社製)
を0,5重量qlIf#合した後に、有機溶剤であるN
−メチル−2−ピロリ 。
[Second Example] After forming a transparent electrode on a glass substrate and performing desired patterning, a polyamic acid solution (trade name, 8F-
510, Toshisha #), which is an organic compound of aluminum, aluminum triacetylacetonate (trade name,
Dotite AI (1) -AA, manufactured by Isotope Kagaku Kenkyusho Co., Ltd.)
After combining 0.5 weight qlIf# of the organic solvent N
-Methyl-2-pyrroli.

トン、にて10倍に希釈し、スピンナーにて基板に塗布
した。
The diluted solution was diluted 10 times with a ton of water and applied to a substrate using a spinner.

150”Cにて四分間乾燥した後、第1実施例と同様の
工程により、表示部以外の配向膜を除去し、フォトレジ
ストを剥離した後、350℃1加分間焼成して、アルミ
ニウム・トリ・アセチルアセトナートを分解すると共に
ポリアミド酸膜を架橋重合させ、ポリイミド膜を形成し
、配向膜とした。
After drying at 150"C for 4 minutes, the alignment film other than the display area was removed by the same process as in the first embodiment, and the photoresist was peeled off. After that, it was baked at 350"C for 1 additional minute to form an aluminum trim. - Acetylacetonate was decomposed and the polyamic acid film was cross-linked and polymerized to form a polyimide film, which was used as an alignment film.

この配向膜をラビング処理により一方向へ方位づけをお
こなって方位づけがなされた配向膜を形成した。
This alignment film was oriented in one direction by rubbing treatment to form an oriented alignment film.

成膜後のポリイシド樹脂中に含才れるAt、O,濃度は
8 P −510の不揮発分含有率が15.9 %であ
り、アルミニウム・トリ・アセチルアセトナートの分子
量が324. AI、O,の分子量カ月02、アルミニ
ウム原子1個あたりの分子量は102÷2=51である
ので以下の式により求められ、0.49%の濃度となる
The concentration of At and O contained in the polyamide resin after film formation is such that the nonvolatile content of 8P-510 is 15.9%, and the molecular weight of aluminum triacetylacetonate is 324. Since the molecular weight of AI, O, is 02, and the molecular weight per aluminum atom is 102÷2=51, it is determined by the following formula, resulting in a concentration of 0.49%.

15.9  324 対向する側の第2ガラス基板上には、第1実施例と同様
に感光性ポリアミド酸によりスペーサーを形成し、さら
にシランカップリング剤、r −(2−アミノエチル)
アミノプロピルトリメトキシシラン(商品名、8860
20、東しシリコーン社製)のエタノール溶液中に5分
間浸漬した後120℃%(資)分間乾燥して、水平配向
膜を形成した。
15.9 324 On the second glass substrate on the opposite side, a spacer was formed using photosensitive polyamic acid as in the first example, and a silane coupling agent, r-(2-aminoethyl)
Aminopropyltrimethoxysilane (trade name, 8860
No. 20 (manufactured by Toshi Silicone Co., Ltd.) for 5 minutes in an ethanol solution and then dried at 120°C for 10 minutes to form a horizontal alignment film.

この基板にはラビングによる方位つけは態位なわなかり
た。
Orientation by rubbing did not work on this board.

この2枚の基板を対向させ、周辺部を接着剤にてシール
し液晶セルを形成した。
These two substrates were placed facing each other and their peripheral portions were sealed with an adhesive to form a liquid crystal cell.

このセルに第1実施例と同様の液晶を注入し、ライトバ
ルブを形成した。液晶分子の配向むらは肉眼では観察さ
れず、偏光顕微鏡観察においてもその欠陥は無かった。
The same liquid crystal as in the first example was injected into this cell to form a light valve. Uneven alignment of liquid crystal molecules was not observed with the naked eye, and no defects were found when observed under a polarizing microscope.

この液晶ライトバルブを第1実施例と同様の測定方法に
より測定したところ、光軸の傾きは39°の変化を示し
た。
When this liquid crystal light valve was measured using the same measuring method as in the first example, the inclination of the optical axis showed a change of 39°.

また、コントラスト比、応答速度は、第1実施例のライ
トバルブと同様の特性を示した。soOC。
Further, the contrast ratio and response speed exhibited characteristics similar to those of the light valve of the first example. soOC.

500時間、及ヒ60℃1湿度95 % テ200時間
(7)試験後も、液晶の転移温度、及び配向状態、動作
特性に変化はなく、高い信頼性を示した。
Even after testing for 500 hours and 200 hours at 60° C. and 95% humidity (7), there was no change in the transition temperature, alignment state, or operating characteristics of the liquid crystal, indicating high reliability.

〔第3実施例〕 ガラス基板上に透明電極を形成し、所望のパターニング
をした後、その上にポリアミド酸溶液(商品名、PIQ
、日立化成社製)にシリコンの有機化合物、ビニルトリ
ス(2−メトキシニドキシ)シラン(商品名、■500
0、チッソ社製)を0.3重量%さらにアルミニウム・
トリ・アセチルアセトナート (商品名、ドータイトA
I(組−AA同同化化学研究所社製を03重4#%混合
した移に、有機溶剤であるN−メチル−2−ピロリドン
にて10倍に希釈しスピンナーにて基板に塗布した。
[Third Example] After forming a transparent electrode on a glass substrate and performing desired patterning, a polyamic acid solution (trade name, PIQ) was placed on top of the transparent electrode.
, manufactured by Hitachi Chemical Co., Ltd.), an organic compound of silicon, vinyltris(2-methoxynidoxy)silane (trade name, ■500)
0.0, manufactured by Chisso Corporation) and 0.3% by weight of aluminum.
Tri-acetylacetonate (trade name, dotite A)
I (Group-AA manufactured by Dokka Kagaku Kenkyusho Co., Ltd.) was mixed with 4 #% of 03 weight, diluted 10 times with N-methyl-2-pyrrolidone, which is an organic solvent, and applied to the substrate using a spinner.

150℃にて、20分間乾燥後、第1実施例と同様の工
程により表示部以外の配向膜を除去し、フォトレジスト
を剥離した後、350℃,ao分間焼成してシリコン及
びアルミニウムの有機化合物を熱分解して、酸化物とす
ると共に、ポリアミド酸膜を架橋重合させ、ポリイミド
膜を形成し、配向膜とした。
After drying at 150°C for 20 minutes, the alignment film other than the display area was removed by the same process as in the first example, the photoresist was peeled off, and then the organic compound of silicon and aluminum was baked at 350°C for 10 minutes. was thermally decomposed to form an oxide, and the polyamic acid film was cross-linked and polymerized to form a polyimide film, which was used as an alignment film.

この配向膜をラビング処理により一方向へ方位づけをお
こなりて方位づけがなされた配向膜を形成した。
This alignment film was oriented in one direction by rubbing treatment to form an oriented alignment film.

この配向膜中に含まれるシリコン、及びアルミニウムの
酸化物の濃度は、第1、及び第2実施例と同様に以下の
式により求められ、0.45%と0.33チとなりた。
The concentrations of silicon and aluminum oxides contained in this alignment film were determined by the following equations as in the first and second embodiments, and were 0.45% and 0.33%.

シリコン濃度 14.2   280 アルミニウム濃度 14.2  324 対向する側の第2ガラス基板上番ζは第1実施例と同様
に感光性ポリアミド酸によりスペーサーを形成し、さら
に第2実施例と同様にシランカップリング剤により水平
配向膜を形成した。この基板にはラビングによる方位づ
けはおこなわなかった。
Silicon concentration: 14.2 280 Aluminum concentration: 14.2 324 On the second glass substrate upper number ζ on the opposite side, spacers are formed of photosensitive polyamic acid as in the first embodiment, and silane is further formed as in the second embodiment. A horizontal alignment film was formed using a coupling agent. This substrate was not oriented by rubbing.

この2枚の基板を対向させ、周辺部を接着剤にてシール
し液晶セルを形成した。液晶分子の配向むらは肉眼では
観察されず、偏光顕微鏡―察においてもその欠陥は無か
った。この液晶ライトバルブを第1実施例と同様の測定
方法により測定したところ、光軸の傾きは36°の変化
を示した。
These two substrates were placed facing each other and their peripheral portions were sealed with an adhesive to form a liquid crystal cell. No uneven alignment of liquid crystal molecules was observed with the naked eye, and no defects were found when observed under a polarizing microscope. When this liquid crystal light valve was measured using the same measuring method as in the first example, the inclination of the optical axis showed a change of 36°.

またコントラスト比、応答速度は、第1実施例のライト
バルブと同様の特性を示した。80°0500時間、及
び60℃湿度95チで200時間の試験後も液晶の転移
温度及び配向状態動作特性に変化はなく高い信頼性を示
した。
Further, the contrast ratio and response speed exhibited characteristics similar to those of the light valve of the first example. Even after testing for 200 hours at 80°C and 95°C humidity, there was no change in the liquid crystal transition temperature and alignment state operating characteristics, indicating high reliability.

〔効果〕〔effect〕

以上訝明したように、本発明によれば、透明電極を内面
化形成し、その上にポリアミド酸に3506C以下で分
解するシリコン、アルミニウム等の金属の少なくとも1
種類を含む有機金属化合物を、焼成後にポリイミド膜中
に該金属の酸化物が01ないし5.0重量パーセント含
まれる比率で混合した混合物を塗布焼成し、更に紀行処
理を施して方位づけをした 配向膜を形成した第1のガラス基板と、透明電極を内面
に形成し、その上に水平配向膜を形成した第2のガラス
基板とを、互いに配向膜を内側にして空隙をもたせて対
向させ、該空隙に強誘電性液晶を充たしたので、配向膜
の硬度が適度に上がり配向処理工程で、配向膜にキズや
ハガレが発生しないので、液晶の配列が均一となる。強
誘電性液晶を使用したので、直流電界による駆動ができ
る。
As mentioned above, according to the present invention, a transparent electrode is formed on the inside, and at least one of metals such as silicon and aluminum, which decomposes into polyamic acid at 3506C or less, is formed on the transparent electrode.
After firing, a mixture of organometallic compounds containing metals in a ratio such that the oxide of the metal is contained in the polyimide film at a ratio of 01 to 5.0% by weight is coated and fired, and then a travel treatment is applied to give orientation. A first glass substrate on which a film is formed and a second glass substrate on which a transparent electrode is formed on the inner surface and a horizontal alignment film formed thereon are opposed to each other with the alignment film on the inside and a gap therebetween, Since the void is filled with ferroelectric liquid crystal, the hardness of the alignment film is appropriately increased, and the alignment film is not scratched or peeled off during the alignment treatment process, so that the alignment of the liquid crystal becomes uniform. Since ferroelectric liquid crystal is used, it can be driven by a DC electric field.

又、液晶の配列が均一なので、液晶面にムラが無いし、
コントラストが良く、同一条件で作成した異なるセル間
でも透過光量のバラツキが無い。
In addition, since the liquid crystal alignment is uniform, there is no unevenness on the liquid crystal surface,
The contrast is good, and there is no variation in the amount of transmitted light even between different cells created under the same conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液晶ライトバルブの構造の一例を示す
断面図、第2図は本発明の実施例1に優るライトバルブ
の印加電圧と光透過特性との関係を示すグラフである。 1・・・第1のガラス基板 2・・・第2のガラス基板 3.4・・・透明電極 5・・・方位づけされた配向膜 6・・・水平配向膜 7・・・シール接着剤 8.9・・・偏光板 特許出願人 アルプス電気株式会社 第 I Z
FIG. 1 is a cross-sectional view showing an example of the structure of a liquid crystal light valve of the present invention, and FIG. 2 is a graph showing the relationship between applied voltage and light transmission characteristics of a light valve superior to Example 1 of the present invention. 1... First glass substrate 2... Second glass substrate 3.4... Transparent electrode 5... Oriented alignment film 6... Horizontal alignment film 7... Seal adhesive 8.9...Polarizing plate patent applicant Alps Electric Co., Ltd. No. IZ

Claims (4)

【特許請求の範囲】[Claims] (1)透明電極を第1のガラス基板の内面に形成し、そ
の透明電極の上にシリコン、アルミニウム等の金属のう
ち少なくとも1種類を含み、かつ350℃以下で分解す
る有機金属化合物をポリアミド酸焼成後にポリイミド膜
中に前記金属の酸化物が01ないし5.0重量パーセン
ト含まれる割合で混合した混合物を塗布し焼成し更に配
向処理を施して方位づけをした配向膜を形成し、透明電
極を内面に形成し、その上に水平配向膜を形成した第2
のガラス基板と前記第1のガラス基板を、互いに配向膜
を内側にして空隙をもたせて対向させ、該空隙に強誘電
性液晶を充たしてなることを特徴とする液晶ライトバル
ブ。
(1) A transparent electrode is formed on the inner surface of the first glass substrate, and an organometallic compound containing at least one metal such as silicon or aluminum and decomposing at 350°C or less is coated on the transparent electrode with polyamic acid. After firing, a mixture containing 0.1 to 5.0% by weight of the metal oxides is applied to the polyimide film, fired, and further subjected to orientation treatment to form an oriented film, and a transparent electrode is formed. A second layer is formed on the inner surface and a horizontal alignment film is formed thereon.
A liquid crystal light valve comprising: a glass substrate and a first glass substrate facing each other with a gap between them with the alignment film inside, and the gap is filled with ferroelectric liquid crystal.
(2)前記有機金属化合物が有機シリコン化合物である
ことを特徴とする特許請求範囲第1項記載の液晶ライト
バルブ。
(2) The liquid crystal light valve according to claim 1, wherein the organometallic compound is an organosilicon compound.
(3)前記有機金属化合物が有機アルミニウム化合物で
あることを特徴とする特許請求範囲第1項記載の液晶ラ
イトバルブ。
(3) The liquid crystal light valve according to claim 1, wherein the organometallic compound is an organoaluminum compound.
(4)前記有機金属化合物が、有機シリコン化合物と有
機アルミニウム化合物の混合物であることを特徴とする
特許請求範囲第1項記載の液晶ライトバルブ。
(4) The liquid crystal light valve according to claim 1, wherein the organometallic compound is a mixture of an organosilicon compound and an organoaluminium compound.
JP27998084A 1984-12-26 1984-12-26 Liquid crystal light valve Pending JPS61151617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27998084A JPS61151617A (en) 1984-12-26 1984-12-26 Liquid crystal light valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27998084A JPS61151617A (en) 1984-12-26 1984-12-26 Liquid crystal light valve

Publications (1)

Publication Number Publication Date
JPS61151617A true JPS61151617A (en) 1986-07-10

Family

ID=17618626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27998084A Pending JPS61151617A (en) 1984-12-26 1984-12-26 Liquid crystal light valve

Country Status (1)

Country Link
JP (1) JPS61151617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695594A (en) * 1996-01-05 1997-12-09 Raychem Corporation Method of making a liquid crystal light valve
JP2020052263A (en) * 2018-09-27 2020-04-02 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, optical film, liquid crystal element, and polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695594A (en) * 1996-01-05 1997-12-09 Raychem Corporation Method of making a liquid crystal light valve
JP2020052263A (en) * 2018-09-27 2020-04-02 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, optical film, liquid crystal element, and polymer

Similar Documents

Publication Publication Date Title
JPH11231326A (en) Multidomain stn liquid crystal display device having polyimide fluoride alignment layer
JP2003186054A (en) Liquid crystal display cell
JPS61151617A (en) Liquid crystal light valve
JPH1081821A (en) Heat-resistant polymer composition, aligning film formed therefrom, and liquid crystal display device equipped with said aligning film
JPS62209415A (en) Liquid crystal cell and its production
JPH0457025A (en) Oriented film and liquid crystal element
JPH0618898A (en) Liquid crystal element
JPH046926B2 (en)
JP2001226674A (en) Monostable ferroelectric liquid crystal display device
JPS5872923A (en) Liquid crystal display element
JPS61151616A (en) Liquid crystal light valve
JPS62111236A (en) Liquid crystal element
JP3083477B2 (en) Liquid crystal alignment film, method of manufacturing the same, and liquid crystal display device using the same
JPH04323603A (en) Production of color filter with protective film and liquid crystal display element
JP3153281B2 (en) Vertical alignment treatment method for liquid crystal molecules
JPS6262328B2 (en)
JPH05134244A (en) Liquid crystal display element
JPS58123519A (en) Liquid crystal display
JPS6378130A (en) Liquid crystal display element
JPS60162224A (en) Liquid crystal display device
JPH02293718A (en) Liquid crystal electrooptical element
JPS6349735A (en) Substrate for liquid crystal panel
JPH04318812A (en) Display element
JPS5888723A (en) Liquid crystal display element
JPH02293717A (en) Liquid crystal electrooptical element