JPS61151610A - Rotary device for polarization - Google Patents

Rotary device for polarization

Info

Publication number
JPS61151610A
JPS61151610A JP27952284A JP27952284A JPS61151610A JP S61151610 A JPS61151610 A JP S61151610A JP 27952284 A JP27952284 A JP 27952284A JP 27952284 A JP27952284 A JP 27952284A JP S61151610 A JPS61151610 A JP S61151610A
Authority
JP
Japan
Prior art keywords
polarizer
magnetic field
polarization
quartz
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27952284A
Other languages
Japanese (ja)
Inventor
Kenichi Ueda
憲一 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEKIEI GLASS KK
SHOWA KOKI SEIZO KK
Original Assignee
NIPPON SEKIEI GLASS KK
SHOWA KOKI SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEKIEI GLASS KK, SHOWA KOKI SEIZO KK filed Critical NIPPON SEKIEI GLASS KK
Priority to JP27952284A priority Critical patent/JPS61151610A/en
Publication of JPS61151610A publication Critical patent/JPS61151610A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a rotary device for polarization which is usable in a UV region as well by providing a polarizer coated with a thin dielectric film on a substrate consisting of quartz, etc. having the small absorption in the UV region and large Verdet's constant so as to incline at a prescribed angle with respect to the passage of light and providing a magnetic field generator to the periphery of the polarizer. CONSTITUTION:The thin dielectric film 3 consisting of TiO2, ZrO2, etc. is coated by a vapor deposition method, etc. on one surface of the substrate selected from the crystals of quartz, MgF2 and CaF2, by which the polarizer 1 is obtd. The magnetic field generator (coil) 4 is provided to the periphery of the polarizer 1 to permit the variable adjustment of the magnetic field intensity by a driving power source 5. Such polarizer 1 is disposed to incline at the prescribed angle with respect to the passage of the incident light L1 to constitute an optical isolator 6 and a variable mirror 7. The rotary device for polarization which is applicable particularly to a UV laser, etc. having a short wavelength without requiring Faraday glass and with which the required rotating angle, reflectivity or transmittivity of the plane of polarization is obtainable is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用公費) 本発明はレーザー光学系やその他一般の光学系における
ファラデー回転型アイソレーターあるいは反射率(又は
透過率)可変ミラー等に用いる偏光回転装置に関するも
のである。
Detailed Description of the Invention (Industrial Utilization Public Funds) The present invention relates to a polarization rotation device used in a Faraday rotation isolator or a variable reflectance (or transmittance) mirror in a laser optical system or other general optical system. be.

(従来の技術) 一般にこの覆の偏光回転装置は例えば第8図のように所
定角度に設定された偏光子101と、磁界発生コイル1
02を周辺に置いたファラデー硝子103によってファ
ラデー回転型アイソレーター104が構成され、入射光
は偏光子101を通って水平直線偏光(P偏光)となり
、ファラデー硝子103を通過する際に磁気発生コイル
102による印加磁界によって偏光面を45°回転せし
めるものである。該アイソレーター104の出力光は、
増巾−等を通過した後照射物体に照射されるが、その反
射光が逆進してきた場合にこのファラデー硝子103に
より更に451回転されて合・計90°回転する事で垂
直偏光(SIR光)となる。
(Prior Art) In general, this type of polarization rotation device includes a polarizer 101 set at a predetermined angle and a magnetic field generating coil 1, as shown in FIG.
A Faraday rotary isolator 104 is constructed by a Faraday glass 103 with 02 placed around it, and the incident light passes through a polarizer 101 and becomes horizontal linearly polarized light (P polarized light). The plane of polarization is rotated by 45° by the applied magnetic field. The output light of the isolator 104 is
After passing through an intensifier, etc., the irradiated object is irradiated, but when the reflected light travels backwards, it is further rotated by 451 degrees by this Faraday glass 103 and rotated by a total of 90 degrees, resulting in vertically polarized light (SIR light). ).

これにより逆進反射光を除去する機能を有する。This has the function of removing backward reflected light.

(発明が解決しようとする問題点) しかし乍ら前記した従来型のファラデー回転型アイソレ
ーター104では次の様な問題点があった。
(Problems to be Solved by the Invention) However, the conventional Faraday rotary isolator 104 described above has the following problems.

ファラデー回転型アイソレーターに用いられる偏光子1
07の母材として使用されるガラス基板や、ファラデー
ガラス108等の光学ガラスは、大口径で且つ高出力の
レーザー光に耐えうる大体積で均一なものの製作が困難
であり、特に紫外線レーザーの様に波長の短いものに対
しては吸収が多い為に、従来の光学ガラスでは使用可能
な母材は殆どなかった。
Polarizer 1 used in Faraday rotation type isolator
The glass substrate used as the base material for 07 and optical glass such as Faraday glass 108 are difficult to manufacture in a large volume and uniform size that can withstand large diameter and high power laser beams, especially when used with ultraviolet lasers. Because it absorbs a lot of light with short wavelengths, there were almost no base materials that could be used with conventional optical glasses.

そこで本発明は前記問題点を改善し、波長の短い紫外線
レーザー等に対しても充分適応でき且つ光学素子数を少
なくしたファラデー回転型アイソレーターや、連続的に
任意の反射率又は透過率を得る可変ミラー等に用いられ
る偏光回転装置の提供を目的とするものである。
Therefore, the present invention improves the above-mentioned problems, and provides a Faraday rotary isolator that is sufficiently applicable to ultraviolet lasers with short wavelengths and has a reduced number of optical elements, and a variable-speed isolator that can continuously obtain any desired reflectance or transmittance. The purpose of this invention is to provide a polarization rotation device used for mirrors and the like.

(問題点を解決する為の手段) 本発明では、前記レーザー光線やその他の光の通路に対
して傾斜状に配備される出力ミラーや入出力偏光子等の
基板の母材として、特に紫外領域でも吸収が少なくてヴ
エルデ常数の大きい石英等を使用し、該偏光子に外部か
ら磁界を印加する構成とし、該偏光子母材が有するファ
ラデー回転効果を利用して印加する磁界の強さを変化さ
せることによって、所望の偏光面の回転を得たり、自由
に反射率等を変化させるようにしたものである。
(Means for Solving the Problems) In the present invention, the base material of the substrate of the output mirror, input/output polarizer, etc., which is arranged obliquely with respect to the path of the laser beam and other light, is used especially in the ultraviolet region. Using quartz or the like with low absorption and a large Weerde constant, a magnetic field is applied to the polarizer from the outside, and the strength of the applied magnetic field is changed using the Faraday rotation effect of the polarizer base material. By doing so, the desired rotation of the plane of polarization can be obtained and the reflectance etc. can be freely changed.

これによって従来のファラデーガラス等は不用になる。This eliminates the need for conventional Faraday glasses.

(実施例) 以下に本発明の一実施例を図面に基づいて説明する。第
1実施例は偏光回転装置をファラデー回転型アイソレー
ターとして使用する場合であって、第1図のように偏光
子1は基板2を有し、該基板は石英やフッ化マグネシウ
ム結晶体あるいはフッ化カルシウム結晶体等のように紫
外線領域、例えば波長248011程度の紫外線領域に
おいても吸収が少(且大きなヴエルデ常数が得られる偏
光子母材が用いられる。
(Example) An example of the present invention will be described below based on the drawings. The first embodiment is a case where the polarization rotation device is used as a Faraday rotation type isolator, and as shown in FIG. A polarizer base material, such as calcium crystal, which has little absorption (and can obtain a large Werde constant) even in the ultraviolet region, for example, in the ultraviolet region with a wavelength of about 248,011, is used.

中でも石英母材は透明度及び均質性のよさ、複屈折のな
さ等の点でより、優れている。
Among these, quartz base material is superior in terms of transparency, good homogeneity, and lack of birefringence.

第2図は石英(Sin2)の波長に対するヴエルデ常数
の変化特性を示すが、該ヴエルデ常数は波長の二乗に反
比例して増大し、紫外領域での使用に適する事が判る。
FIG. 2 shows the change characteristics of the Weerde constant with respect to the wavelength of quartz (Sin2), and it can be seen that the Weerde constant increases in inverse proportion to the square of the wavelength, making it suitable for use in the ultraviolet region.

一般に偏光面の回転角度はθ=′vLHで定義され、ヴ
エルデ常数Vと偏光子の板厚りおよび磁界の強さHの積
で決定される。又ヴエルデ常数Vと波長λの関係ははゾ
V oo 1/λ2の関係にあり、紫外域のように波長
の短いものにおいてはヴエルデ常数が大きくなり、偏光
子母材の板厚が薄くても充分なので偏光子とファラデー
回転子を一体化する事が可能となる。
Generally, the rotation angle of the plane of polarization is defined by θ='vLH, and is determined by the product of Weerde's constant V, the thickness of the polarizer, and the strength H of the magnetic field. In addition, the relationship between the Weerde constant V and the wavelength λ is V oo 1/λ2, and the Weerde constant becomes large for short wavelengths such as in the ultraviolet region, even if the polarizer base material is thin. Since this is sufficient, it becomes possible to integrate a polarizer and a Faraday rotator.

尚、ヴエルデ常数が小さい場合には、偏光子の板厚を大
きくする牟若しくは大きな磁界を印加しなければならな
い。
Note that when the Werde constant is small, it is necessary to increase the thickness of the polarizer or apply a large magnetic field.

前記基板2の片面には、蒸着等によって例えば二酸化チ
タン、二酸化ジルコン、二酸化硅素等に16誘電体薄膜
3カ′°−テイゴグさ0・夫h′)@光方向に対し所望
の反射率及び透過率を得るようになっている(第3図参
照)0 前記偏光子1の周辺部には、隣接配備された磁界発生コ
イル4と、該コイルに通電して印加する磁界の強さを可
変調整できる駆動電源5とによる磁界発生器が設けられ
る。そして前記偏光子1は、レーザー光の通路X−xに
対して所定の傾斜角度で配備され、一体のファラデー回
転型光アイソレータ−6を構成する。
One side of the substrate 2 is coated with 3 dielectric thin films of titanium dioxide, zirconium dioxide, silicon dioxide, etc. by vapor deposition or the like to have the desired reflectance and transmittance in the light direction. (See Figure 3) 0 At the periphery of the polarizer 1, there is a magnetic field generating coil 4 disposed adjacent to the polarizer 1, and a magnetic field generating coil 4 that is arranged adjacent to the magnetic field generating coil 4, and a magnetic field generating coil 4 that is energized to variably adjust the strength of the applied magnetic field. A magnetic field generator is provided with a drive power source 5 that can be used. The polarizer 1 is arranged at a predetermined angle of inclination with respect to the path X-x of the laser beam, and constitutes an integrated Faraday rotation type optical isolator 6.

第3図は、前記誘電体薄膜コーティングの偏光面の回転
角θ=0° (磁界を印加していない時)における波長
λに対する分光透過率Tと反射率Rの特性曲線を表わす
FIG. 3 shows characteristic curves of spectral transmittance T and reflectance R with respect to wavelength λ at a rotation angle θ=0° (when no magnetic field is applied) of the polarization plane of the dielectric thin film coating.

また第4図は、印加磁界を変化させた場合の回転角θを
測定した実験データである。
Further, FIG. 4 shows experimental data obtained by measuring the rotation angle θ when the applied magnetic field was changed.

従って、偏光子1に外部から磁界を加えると、入力光り
、を所望角度回転させた出力光L2を得ることができる
Therefore, when a magnetic field is applied to the polarizer 1 from the outside, it is possible to obtain output light L2 in which the input light is rotated by a desired angle.

以上のように、本発明の偏光回転装置をファラデー回転
型アイソレーターとして使用すれば、従来使用されてい
たファラデーガラス103が省略され、石英等を母材と
した偏光子1に直接磁界を印加させると、ファラデー効
果による偏光面の回転を行うことができるのでシンプル
な構成となり、該石英母材等の使用によって紫外線レー
ザーにも適応できる。
As described above, if the polarization rotation device of the present invention is used as a Faraday rotation type isolator, the conventionally used Faraday glass 103 can be omitted, and a magnetic field can be applied directly to the polarizer 1 made of quartz or the like as a base material. Since the plane of polarization can be rotated by the Faraday effect, the structure is simple, and by using the quartz base material, it can also be applied to ultraviolet lasers.

次に本発明の第2実施例として、偏光回路を反射率(又
は透過率)可変ミラーとして使用する場合を図面に基づ
いて説明する。第5図の可変ミラー6は、第1図の偏光
子1を入射光に対して逆に(つまり誘電体薄膜3が入射
光側にくる。)配置したものである。この可変ミラー6
に任意の直線偏光が入射した場合、偏光子1への印加磁
界によって入射偏光面は回転し、この回転した偏光面の
垂直波Sと水平波Pの各偏光成分の光量Tsと’rpは
第6図で示すベクトル図のとおりである。また、誘電体
薄膜3(第3図の特性曲線を参照のこと。)に入射した
場合の偏光子1における最終的な反射率(R)又は透過
率(T)は、第3図および第6図によってR=1−T、
T=Tp=(ト)2θとなる。
Next, as a second embodiment of the present invention, a case where a polarizing circuit is used as a variable reflectance (or transmittance) mirror will be described based on the drawings. The variable mirror 6 shown in FIG. 5 has the polarizer 1 shown in FIG. 1 arranged in the opposite direction to the incident light (that is, the dielectric thin film 3 is on the incident light side). This variable mirror 6
When arbitrary linearly polarized light is incident on the polarizer 1, the incident polarization plane is rotated by the magnetic field applied to the polarizer 1, and the light quantities Ts and 'rp of each polarization component of the vertical wave S and horizontal wave P of this rotated polarization plane are This is as shown in the vector diagram shown in Figure 6. Furthermore, the final reflectance (R) or transmittance (T) of the polarizer 1 when the light enters the dielectric thin film 3 (see the characteristic curve in FIG. 3) is shown in FIGS. 3 and 6. According to the figure, R=1-T,
T=Tp=(g)2θ.

従って、偏光子1への印加磁界によって連続的に任意の
反射率又は透過率にすることができる反射率(又は透過
率)可変ミラーが得られる。尚、第7図はこの関係を表
した特性曲線図である。
Therefore, a variable reflectance (or transmittance) mirror is obtained that can continuously adjust the reflectance or transmittance to any desired value by applying a magnetic field to the polarizer 1. Incidentally, FIG. 7 is a characteristic curve diagram showing this relationship.

(発明の効果) 前記した実施例でも明らかなとおり、本発明による偏光
回転装置は基板の母材として石英等を使用したことによ
って、紫外線領域でも吸収がなく且必要な偏光面の回転
角度や反射率又は透過率を得ることが可能である。
(Effects of the Invention) As is clear from the embodiments described above, the polarization rotation device according to the present invention uses quartz or the like as the base material of the substrate, so that there is no absorption even in the ultraviolet region, and the necessary rotation angle of the polarization plane and reflection can be adjusted. It is possible to obtain the rate or transmittance.

更にファラデーガラス等が省略され全体の装置を簡略化
することができる。
Furthermore, the Faraday glass etc. can be omitted and the entire device can be simplified.

尚、前記実施例ではレーザー用光学系に付いて説明した
が、本発明の偏光回転装置はレーザー以外の光学系にも
使用することができる。
Although the above embodiments have been described with reference to a laser optical system, the polarization rotation device of the present invention can also be used in optical systems other than lasers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による偏光回転装置を光アイソレーター
として使用した第1実施例図、第2図乃至第4図は同装
置に関連する特性曲線図、第5図は同装置を反射率又は
透過率可変ミラーとして使用した第2実施例図、第6図
および第7図は同装置に関連する特性曲線図、第8図は
従来例による偏光回転装置の構成図である。 〔符号の説明〕 1・・・偏光子      2・・・基板3・・・誘電
体薄膜    4・・・磁界発生コイル5・・・駆動電
源     6・・・光アイソレータ−7・・・可変ミ
ラー 港夜 第4図 nm ml  xto’ Oe 第5図
FIG. 1 is a diagram showing a first embodiment of the polarization rotation device according to the present invention used as an optical isolator, FIGS. 2 to 4 are characteristic curve diagrams related to the device, and FIG. 6 and 7 are characteristic curve diagrams related to the device, and FIG. 8 is a configuration diagram of a conventional polarization rotation device. [Explanation of symbols] 1...Polarizer 2...Substrate 3...Dielectric thin film 4...Magnetic field generating coil 5...Drive power source 6...Optical isolator-7...Variable mirror port night figure 4 nm ml xto' Oe figure 5

Claims (1)

【特許請求の範囲】[Claims] 石英、フッ化マグネシウム結晶体、フッ化カルシウム結
晶体のうちから選ばれた一つを母材とする基板に、誘電
体薄膜をコーティングして偏光子が形成され、該偏光子
を光の通路に対して所定角度で傾斜状に配備すると共に
、前記偏光子の周辺部に磁界発生器(コイル)を隣接配
備させてなる偏光回転装置。
A polarizer is formed by coating a dielectric thin film on a substrate whose base material is one selected from quartz, magnesium fluoride crystal, and calcium fluoride crystal, and the polarizer is used as a light path. A polarization rotation device, which is arranged in an inclined manner at a predetermined angle with respect to the polarizer, and a magnetic field generator (coil) is arranged adjacent to the periphery of the polarizer.
JP27952284A 1984-12-26 1984-12-26 Rotary device for polarization Pending JPS61151610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27952284A JPS61151610A (en) 1984-12-26 1984-12-26 Rotary device for polarization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27952284A JPS61151610A (en) 1984-12-26 1984-12-26 Rotary device for polarization

Publications (1)

Publication Number Publication Date
JPS61151610A true JPS61151610A (en) 1986-07-10

Family

ID=17612196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27952284A Pending JPS61151610A (en) 1984-12-26 1984-12-26 Rotary device for polarization

Country Status (1)

Country Link
JP (1) JPS61151610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219113U (en) * 1988-07-25 1990-02-08

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553303A (en) * 1978-05-30 1980-01-11 Rafel Ind Group Ltd Ammonium production method
JPS58130316A (en) * 1982-01-29 1983-08-03 Toyo Commun Equip Co Ltd Optical isolator
JPS58207022A (en) * 1982-05-28 1983-12-02 Nec Corp Optical isolator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553303A (en) * 1978-05-30 1980-01-11 Rafel Ind Group Ltd Ammonium production method
JPS58130316A (en) * 1982-01-29 1983-08-03 Toyo Commun Equip Co Ltd Optical isolator
JPS58207022A (en) * 1982-05-28 1983-12-02 Nec Corp Optical isolator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219113U (en) * 1988-07-25 1990-02-08

Similar Documents

Publication Publication Date Title
JP2703930B2 (en) Birefringent diffraction grating polarizer
CA1070810A (en) Optical projection device and an optical reader incorporating this device
JPH01152401A (en) Light image rotator
US3436159A (en) Internal reflection element for spectroscopy with film optical cavity to enhance absorption
JP3122111B2 (en) Optical isolator
Hodgkinson et al. Birefringent thin-film polarizers for use at normal incidence and with planar technologies
US6717729B2 (en) Polarized light irradiation apparatus
US4900137A (en) Mirrors
CA2095019C (en) Optical mirror and optical device using the same
Taylor et al. High Contrast Polarizers For The Near Infrared.
JPS60203914A (en) Variable wavelength filter
GB2343525A (en) Light irradiating device
JPS61151610A (en) Rotary device for polarization
CA2689280C (en) Scanning apparatus
USH1911H (en) Curing optical material in a plane optical resonant cavity
KR940006340B1 (en) Linear polarizer
JPH07281140A (en) Electro-optic modulator
JPH01152781A (en) Laser light source
CN109870823B (en) Polarized light intensity shaping device
JPS61107215A (en) Optical attenuator
JP2769086B2 (en) Laser light polarization adjusting method and laser device
Zhao et al. A novel design for Glan-Taylor prism without interference effect
Epikhin et al. A double acousto-optic monochromator for the uv region with improved optical characteristics based on a KDP single crystal
JPH0339712A (en) Light beam coupler
JPH03196015A (en) Polarized light source device