JPS61151020A - Porous material consisting of synthetic fluorine mica - Google Patents

Porous material consisting of synthetic fluorine mica

Info

Publication number
JPS61151020A
JPS61151020A JP59273437A JP27343784A JPS61151020A JP S61151020 A JPS61151020 A JP S61151020A JP 59273437 A JP59273437 A JP 59273437A JP 27343784 A JP27343784 A JP 27343784A JP S61151020 A JPS61151020 A JP S61151020A
Authority
JP
Japan
Prior art keywords
mica
porous material
synthetic
metal ion
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59273437A
Other languages
Japanese (ja)
Inventor
Shigeo Ichise
市瀬 茂男
Takehiko Kiribayashi
桐林 武彦
Ikuo Horii
掘井 郁男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP59273437A priority Critical patent/JPS61151020A/en
Publication of JPS61151020A publication Critical patent/JPS61151020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To improve heat resistance of porous material, and to make control of pore diameter easy, by replacing an alkali ion of synthetic fluorine mica with an alkaline earth metal or another metal ion by ion exchange method and heat-treating the replaced material. CONSTITUTION:An alkali metal ion in layers of crystal unit of swelling synthetic fluorine mica is replaced with an alkali earth metal ion or another metal ion. The prepared replaced material is heat-treated to give a porous material. Mica of infinitely swelling system or limited swelling system is usable. Na or Li taeniolite, sodium tetrasilicon mica, etc. may be cited as the synthetic swelling mica. The synthetic mica is swelled in water to give suspension, which is replaced with the metal ion. Preferably the metal ion is processed into an aqueous solution in the form of a soluble salt, and added to the synthetic mica suspension.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、吸着材や触媒坦体等として有用な合成フッソ
雲母からなる多孔材に関するものである「従来の技術」 近年、層状構造物の層間化学の研究が進歩するに従い、
層間を一種の空間として利用する研究が次第に注目され
てきている。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a porous material made of synthetic fluoro mica useful as an adsorbent, a catalyst carrier, etc. "Prior Art" In recent years, layered structures have been developed. As research in interlayer chemistry progresses,
Research that utilizes the space between layers as a type of space is gradually attracting attention.

このように、粘土層状構造物の居間を反応の場として利
用する場合に、その反応空間は上下の結晶に挟まれてい
る限定された空間と考えられる。
In this way, when the living room of a clay layered structure is used as a reaction space, the reaction space is considered to be a limited space sandwiched between the upper and lower crystals.

そして、これら粘土層状構造物の結晶表面は、ケイ酸の
連続構造となっているから、無機酸化物の特性として親
水性を示すほか、結晶単位体の総電荷が陰電荷過剰型で
あるので、総電荷を中和安定化する為、結晶層間にアル
カリイオンを配位している特徴がある。この層間のアル
カリイオンは、水和力が強く湿潤状態で水分子を引込む
ので、これら粘土層状構造物は水を吸って膨張する性質
を示す、またこのアルカリイオンは、水分子の共存のも
とで、他の水中に溶存する陽イオンとイオン交換により
置換される性質を有する。
Since the crystal surface of these clay layered structures has a continuous structure of silicic acid, it exhibits hydrophilicity as a characteristic of inorganic oxides, and the total charge of the crystal units is of an excessively negative charge type. It is characterized by the coordination of alkali ions between the crystal layers in order to neutralize and stabilize the total charge. The alkali ions between these layers have a strong hydrating power and draw in water molecules in a wet state, so these clay layered structures exhibit the property of absorbing water and expanding. It has the property of replacing other cations dissolved in water through ion exchange.

従来、多くの研究者が、無機若しくは有機カチーオンを
使用し、これら粘土層状構造物のカチオン置換体を多種
類書ているが、これは主として上記特性を利用したもの
である。
In the past, many researchers have used inorganic or organic cations and have written many types of cation substitutes for these clay layered structures, which mainly take advantage of the above-mentioned properties.

一方、粘土層状構造物のほかの層状構造を成す無機物質
例えば黒鉛、リン酸ジルコニウム等を使用した複合物質
の開発も進められているが、いずれも層間利用の複合体
製造の原理は、(1)層間吸着、(2)イオン交換、(
3)層表面の修飾、(4)層間架橋、(5)層間反応、
(Q)電荷移動、(7)酸化還元等を利用する方法であ
った。
On the other hand, the development of composite materials using inorganic materials such as graphite and zirconium phosphate, which form layered structures other than clay layered structures, is also progressing, but the principle of manufacturing composites using interlayers is (1) ) interlayer adsorption, (2) ion exchange, (
3) layer surface modification, (4) interlayer crosslinking, (5) interlayer reaction,
These methods utilized (Q) charge transfer, (7) redox, and the like.

従来迄に於ける、有機物質の複合体や金属イオン複合体
の具体例としては、居間に硬化剤を複合させ、これをエ
ポキシ樹脂と混合し、加熱浸出により、硬化反応を起さ
せて樹脂で均一に強度改善を計った例、居間に複合させ
た無機イオンの触媒性能を利用した例、親油性の材料と
する為層間にアミン類を複合させた例、層間に有機化合
物をいれ、その有機化合物との合成条件をコントロール
することにより数種の異性体を選択合成する例、層間に
有機アミン物質を入れて加熱分解させ発泡材となす例等
、粘土鉱物の層間に無機イオンや有機物質を挿入した例
は多数知られている。
Conventional examples of organic substance composites and metal ion composites include composites of hardening agents in the living room, mixing this with epoxy resin, heating and leaching to cause a hardening reaction, and creating resins. Examples of uniform strength improvement, examples of utilizing the catalytic performance of inorganic ions combined in the living room, examples of combining amines between layers to make a lipophilic material, and adding organic compounds between layers to improve the organic Inorganic ions and organic substances are added between the layers of clay minerals, such as selectively synthesizing several types of isomers by controlling the synthesis conditions with compounds, and examples of placing organic amine substances between the layers and thermally decomposing them to create foam materials. Many examples of insertion are known.

「発明が解決しようとする問題点」 しかしながら、これら従来の方法では、孔径とか耐熱性
等に於いて限定された性質の多孔材しか得られず、それ
数便用目的によっては実用的にまだ充分満足すべきもの
ではなかった。
``Problems to be solved by the invention'' However, with these conventional methods, only porous materials with limited properties such as pore size and heat resistance can be obtained, and they are still insufficient for practical use depending on the purpose of use. It wasn't something to be satisfied with.

「問題点を解決するための手段」 本発明者等は、この点に着目し鋭意研究の結果、膨部性
合成雲母のアルカリイオンをイオン交換法により、アル
カリ土類若しくは金属イオンの置換体とした後、該置換
体を適正な条件で熱処理することにより、従来にない孔
径及び耐熱性を有する多孔材が得ら゛れることを見出し
、本発明を完成した。
"Means for Solving the Problem" The present inventors focused on this point and as a result of intensive research, the alkali ions of bulky synthetic mica were converted into alkaline earth or metal ion substitutes by an ion exchange method. The inventors discovered that by heat-treating the substituted material under appropriate conditions, a porous material having unprecedented pore size and heat resistance could be obtained, and the present invention was completed.

本発明は、居間に無機イオンで柱の役目をする化合物を
つくり、更にその柱の性質をコントロールして使用目的
に適した各種の性能を具備した多孔材とするものであり
、これは本発明者等による独自の全く新しい着想である
The present invention creates a compound that acts as a pillar using inorganic ions in the living room, and further controls the properties of the pillar to create a porous material with various performances suitable for the purpose of use. This is an original and completely new idea by the authors.

本発明に使用する合成膨潤雲母としては、公知の無限膨
潤系及び限定膨潤系の雲母を使用することが出来る。
As the synthetic swelling mica used in the present invention, known infinite swelling mica and limited swelling mica can be used.

このようなものとしては、例えばNa若しくはLiテニ
オライト、ナトリウム四ケイ素マイカ、Na若しくはL
iへクトライト等が挙げられる。
Examples of such materials include Na or Li teniolite, sodium tetrasilicon mica, Na or L
Examples include i-hectolite.

これら合成雲母は、水中でmuさせた懸濁液として、金
属イオンと置換される。
These synthetic micas are substituted with metal ions as a slurry in water.

金属イオンは、好ましくは可溶性塩類の形で水溶液とし
て合成雲母懸濁液に加えるのがよい。
The metal ions are preferably added to the synthetic mica suspension as an aqueous solution in the form of soluble salts.

金属イオンを置換させる手段としては、バッチ方式、カ
ラム通水方式、電解方式、隔膜電解方式等の公知の方法
を適用することが出来る。
As a means for replacing metal ions, known methods such as a batch method, a column water flow method, an electrolytic method, a diaphragm electrolytic method, etc. can be applied.

更に、混合イオン方式により、複数イオンを同時に組合
せて交換することも出来るし、また含浸、蒸発法も可能
である。
Furthermore, a mixed ion system allows multiple ions to be combined and exchanged at the same time, and impregnation and evaporation methods are also possible.

イオン交換後、層間外にある過剰のイオン分は、適正な
洗浄を施こして除去することも出来るし、或いは1r7
5発乾固法」により付着濃化することも出来る。
After ion exchange, excess ions outside the interlayer can be removed by proper cleaning, or 1r7
It is also possible to thicken the adhesion using the 5-shot drying method.

特記する点として、一旦金属イオンで交換処理を施こし
たものに再度陰イオンの塩例えばWi酸塩、燐酸塩、ま
たはこれらのアンモニウム塩などを溶解させた溶液で処
理し、居間に陽イオンと陰イオンとによる丈夫な化合物
を形成させることである。この方法は、層間ピラ=(柱
)の耐熱性を付与させる為や、耐酸性、耐アルカリ性を
強めるのに利用することが出来る。この場合、溶解度積
の極めて小さい沈澱を形成する陽イオンと陰イオンの組
合せを選択すれば、耐水性強化の面で大変好適である。
It should be noted that once the metal ion exchange treatment has been carried out, it is treated again with a solution containing an anion salt such as Wi salt, phosphate, or their ammonium salt, and the cation exchange treatment is carried out in the living room. The purpose is to form strong compounds with anions. This method can be used to impart heat resistance to interlayer pillars and to strengthen acid resistance and alkali resistance. In this case, selecting a combination of cations and anions that form a precipitate with an extremely small solubility product is very suitable for enhancing water resistance.

層間の置換に多核錯アコイオン(可溶性多核水酸化物イ
オン)を採用する場合は、PHの調節がキーポイントで
あるが、これは沈澱析出直前のpHを選定することによ
り好結果が得られる。このようにすれば、比較的容易に
ピラー効果を示すものが得られる。当然こうして得られ
る多核水酸化物イオン置換体に、再度陰イオンで処理す
る前記のピラー強化処理を組合せることも出来る。
When employing polynuclear complex acoion (soluble polynuclear hydroxide ion) for interlayer substitution, pH adjustment is the key point, and good results can be obtained by selecting the pH immediately before precipitation. In this way, one exhibiting a pillar effect can be obtained relatively easily. Naturally, the polynuclear hydroxide ion-substituted product obtained in this manner can be combined with the pillar strengthening treatment described above, in which the polynuclear hydroxide ion substituted product is treated again with anions.

交換率は、多孔体の意図する用途に応じて、広範囲に変
化させることが出来、必ずしも100%に近ずける必要
はない。
The exchange rate can vary over a wide range depending on the intended use of the porous body and does not necessarily have to approach 100%.

層間に置換した多くのイオンは水分子と共に層間に存在
するが、これに熱処理を施こす脱水工程でピラーそのも
のが触媒活性を示す温度領域が存在する。従って、本発
明によれば、単なる微細孔を有する多孔体ではなく、触
媒坦体若しくはそれ自身が触媒性能を発揮する多孔体が
得られる。活性化若しくは防活性成分としては、Pd、
Ag、Cu、Fe、Mn、Zn、AI、Ti、Zr、N
i、Mo、V、S b、Ca、Mg、La等触媒用とし
て使用される元素で陽イオンとなるものは殆ど使用する
ことが出来る。
Although many of the ions substituted between the layers exist between the layers together with water molecules, there is a temperature range in which the pillars themselves exhibit catalytic activity during the dehydration process in which they are subjected to heat treatment. Therefore, according to the present invention, it is possible to obtain a porous body in which the catalyst carrier or itself exhibits catalytic performance, rather than a porous body having mere micropores. The activating or antiactivating ingredients include Pd,
Ag, Cu, Fe, Mn, Zn, AI, Ti, Zr, N
Most of the elements used for catalysts, such as i, Mo, V, Sb, Ca, Mg, and La, which form cations can be used.

本発明の多孔体を、触媒坦体として使用する場合、イオ
ン種類の選定と合成フッ素雲母の種類の選定が重要とな
り、交換するイオン種類によって、活性化処理の温度条
件を選定する必要がある。
When using the porous body of the present invention as a catalyst carrier, it is important to select the type of ions and the type of synthetic fluorinated mica, and it is necessary to select the temperature conditions for the activation treatment depending on the type of ions to be exchanged.

また層間ピラーの大きさ、細孔の構造差、置換容量の大
小及び置換率の高低等により、活性付与以後の特性は異
なる。
Furthermore, the properties after activation vary depending on the size of the interlayer pillars, structural differences in pores, the magnitude of substitution capacity, the magnitude of substitution rate, etc.

多孔体を触媒として使用する場合、交換率は、必ずしも
100%に近ずける必要はなく、交換率25〜50%の
範囲でも選択性を有する活性を発揮するものが得られる
。即ち、酸化性触媒、脱水性触媒等の触媒の種類によっ
て、固体酸形成処理を完全に施こす場合と、固体酸形成
と見合ったアルカリバランスを必要とする場合があり、
必ずしも置換率の高い合成フッ素マイカが適するとは限
らない。
When a porous body is used as a catalyst, the exchange rate does not necessarily have to be close to 100%, and a catalyst exhibiting selectivity can be obtained even at an exchange rate of 25 to 50%. That is, depending on the type of catalyst such as an oxidizing catalyst or a dehydrating catalyst, there are cases where the solid acid formation treatment is completely performed, and cases where an alkaline balance commensurate with the solid acid formation is required.
Synthetic fluorine mica with a high substitution rate is not necessarily suitable.

触媒坦体として多用されているγ−A1203と同様な
性能を置換体にもたせるには、アルミ多核水酸化物によ
り層間に支柱を形成させる工程で、350℃〜600°
Cの間で適正な熱処理を施こし、活性化した支柱を得れ
ば、触媒坦体用としての合成マイカ多孔体が得られる。
In order to provide the substituent with the same performance as γ-A1203, which is often used as a catalyst carrier, a process of forming pillars between layers using aluminum polynuclear hydroxide is carried out at 350°C to 600°C.
If activated pillars are obtained by performing appropriate heat treatment between C and C, a synthetic mica porous body for use as a catalyst carrier can be obtained.

以上の手法の組合せは、任意に選択できるので、用途に
従って、無限に近い機能性を付与させた多孔材が得られ
る。
Combinations of the above methods can be selected arbitrarily, so that porous materials can be obtained with nearly unlimited functionality depending on the intended use.

例えば、有機物質の吸着には、Ga”、M g2 +、
A13+、Ti”、Zr”″等の水酸化物形アコイオン
による支柱形成多孔材が適している。
For example, for adsorption of organic substances, Ga'', M g2 +,
Support-forming porous materials using hydroxide-type acoions such as A13+, Ti", Zr"", etc. are suitable.

また選択性をねらう場合は、置換率に於いて、アルカリ
バランスを検討するとともに、物理的な支柱の大小の検
討、及び雲母種の選定が必要である。即ち、支柱の形成
密度が細孔の孔径の大小に影響するから、多核水酸化物
の大きさと密度とをコントロールして、適正性能を示す
多孔材を得ることが必要である0例えば、水中に溶存す
るロジンを吸着する目的には、AI”、Fe”、Ti”
、Zr”等が適している。この場合pH値は、A13+
で3〜4 、 Fe3+でく2、Ti若しくはZrテ1
.8付近が良い結果が得られる。 AI”の場合は、原
料の雲母と比較して、4〜7倍と飛躍的に吸着容積を増
大させることが可能である。
Furthermore, when aiming for selectivity, it is necessary to consider the alkaline balance in the substitution rate, as well as the size of the physical supports and the selection of the mica species. In other words, since the formation density of the struts influences the size of the pore diameter, it is necessary to control the size and density of the polynuclear hydroxide to obtain a porous material that exhibits appropriate performance. For the purpose of adsorbing dissolved rosin, AI", Fe", Ti"
, Zr” etc. In this case, the pH value is A13+
3~4, Fe3+2, Ti or Zrte1
.. Good results can be obtained around 8. In the case of "AI", it is possible to dramatically increase the adsorption capacity by 4 to 7 times compared to mica as a raw material.

また吸着剤として、選択性を重視する用途には、限定膨
潤性フッ素マイカや四ケイ素フッ素マイカが有効に働く
場合があるのは、物理的な空間サイズと共にアルカリバ
ランスも重要な条件となっているからである。
In addition, limited swelling fluorine mica and tetrasilicon fluorine mica may work effectively as adsorbents in applications where selectivity is important, but alkaline balance is also an important condition as well as physical space size. It is from.

Ca”、Mg”6非親木性溶媒の吸着用多孔材の形成に
適しているが、熱処理温度が重要である。 Ca21の
場合、100〜280℃と850℃付近が好適で、しか
も低い側の方が吸着容積の大きい多孔材が得られる。
It is suitable for forming a porous material for adsorption of Ca", Mg"6 non-wood-philic solvents, but the heat treatment temperature is important. In the case of Ca21, temperatures of 100 to 280°C and around 850°C are suitable, and a porous material with a larger adsorption capacity can be obtained on the lower side.

2+2− また、Ba  の置換体に804イオンを組合せると8
00℃に於いて、耐水性に優れた支柱を形成した多孔材
が得られる。
2+2- Also, when 804 ion is combined with the substituted product of Ba, 8
At 00°C, a porous material with struts having excellent water resistance can be obtained.

このように17て得られた本発明の多孔材は、孔径数A
〜数拾Aまたはそれ以上であり、空孔容積は約0.6〜
4.0ml/gであり、支柱形成後の耐熱特性は900
℃に達するものも得られる。
The porous material of the present invention obtained in this way has a pore size of A
~ several dozen A or more, and the pore volume is about 0.6 ~
4.0ml/g, and the heat resistance after forming the pillars is 900
It can also be obtained up to ℃.

本発明の多孔材で特に注目すべき性質は、微細得られる
0、従来得られている無機微細孔体のゼオライトが孔径
8A付近迄のものであり、それ以上の大きなものが出来
なかったことと、数拾λ以上得られるが、20λ以下の
多孔体を得るのは非常に困難であったことを考慮すれば
全く新しい多孔体である。
The particularly notable property of the porous material of the present invention is that it is possible to obtain a fine zeolite, and the inorganic microporous zeolite obtained conventionally has a pore diameter of around 8A, and larger zeolites could not be obtained. However, considering that it was extremely difficult to obtain a porous material with a diameter of 20 λ or less, this is a completely new porous material.

また、本発明の多孔材は、800〜900℃でも支柱を
安定に保つ耐熱性を有するが、これは天然粘土鉱物が5
00〜600℃で化合水を失なって分解する性質と異な
り、本発明の多孔材の優れた性質である0合成ゼオライ
トも700℃の耐熱性を有するが、空孔内の電荷特性が
得にくい為に触媒作用の優れた遷移金属を細孔内に固定
せしめるのは極めて困難であった。これに対し、本発明
の多孔材は陰電荷が規則的に並んでいるので、遷移金属
を細孔内に容易に固定することが出来る。
In addition, the porous material of the present invention has heat resistance that keeps the pillars stable even at 800 to 900 degrees Celsius, but this is due to the fact that natural clay minerals
Unlike the property of losing compound water and decomposing at 00 to 600°C, the 0 synthetic zeolite, which is an excellent property of the porous material of the present invention, also has heat resistance of 700°C, but it is difficult to obtain charge characteristics within the pores. Therefore, it has been extremely difficult to fix transition metals with excellent catalytic activity within the pores. In contrast, in the porous material of the present invention, the negative charges are regularly arranged, so the transition metal can be easily fixed within the pores.

本発明の多孔材は、粉体のままで液相系に使用すること
が出来るが、造粒体、成形体、薄膜体、積層体等に加工
して液相系並びに気相系に使用することも出来る。
The porous material of the present invention can be used in liquid phase systems as a powder, but it can also be processed into granules, molded bodies, thin films, laminates, etc. and used in liquid phase systems and gas phase systems. You can also do that.

「実施例」 次に実施例を挙げて本発明を更に説明するが、本発明は
これら実施例に限定されない。
"Examples" Next, the present invention will be further explained with reference to Examples, but the present invention is not limited to these Examples.

実施例 (1)合成雲母ゾルの調製 蒸留水6文中に、60メツシユ以下のナトリウムテニオ
ライト(以下Na−TNと略す)110gを、攪拌しな
がら徐々に添加した。添加後30分間攪拌をつづけ1合
成雲母をゾル状に分散させる。
Example (1) Preparation of synthetic mica sol 110 g of sodium taeniolite (hereinafter abbreviated as Na-TN) of 60 mesh or less was gradually added to 6 bottles of distilled water while stirring. After the addition, stirring was continued for 30 minutes to disperse 1 synthetic mica in the form of a sol.

このゾルのPHは約10.3〜10.8程度になる。The pH of this sol is about 10.3 to 10.8.

(2)イオン交換処理液の調製 次表1に示す塩類を、各々のイオンが約20mg / 
m lのイオンを含むように、蒸留水に溶解させてイオ
ン交換処理液を調製した。
(2) Preparation of ion exchange treatment solution The salts shown in Table 1 were mixed with each ion in an amount of about 20 mg/
An ion exchange treatment solution was prepared by dissolving it in distilled water so that it contained 1 ml of ions.

表  1 本草留水ではなく、(1+1)塩酸水溶液200mJL
に溶解させた後、蒸留水を用いて1文に稀釈する。
Table 1 200 mJL of (1+1) hydrochloric acid aqueous solution instead of genuine herbal distilled water
After dissolving in water, dilute to 1 volume with distilled water.

(3)M検体の製造 層間にピラーを形成させる置換体を得るには、マイカゾ
ルは、添力■直前に添加イオンの水酸化物の発生しない
pHに調整した後に、置換用イオン溶液を添加する。p
Hの調整及びイオン溶液の添加時には、攪拌機等を使用
して充分攪拌を行なう、またイオン溶液は、徐々に添加
するのが好ましい、イオン溶液の添加終了時のPHは、
イオン種2◆ により異なり、Zr  で約1.8 、 a13+テ3
〜e 、 Tiトで約1.8 、 Ga2”、M 、2
 +、Ba2+テ1o付近となるようにする。この値と
大差を生じた場合は、pHメーターを使用しながら、N
aOH,HCIの稀釈溶液を添加して再″Afr1する
。但し、稀塩酸でPHを調節しただけでは、一旦発生し
た水酸化物の沈澱は再溶解しない場合もあるから、イオ
ン溶液の添加終了時のpHには充分注意をする。
(3) Production of M sample To obtain a substituted product that forms pillars between layers, micasol is adjusted to a pH that does not generate hydroxide of added ions immediately before addition, and then a replacement ion solution is added. . p
When adjusting H and adding the ionic solution, use a stirrer or the like to stir thoroughly.It is also preferable to add the ionic solution gradually.The pH at the end of the addition of the ionic solution is as follows:
It varies depending on the ion type 2◆, about 1.8 for Zr, a13+Te3
~e, about 1.8 for Ti, Ga2”, M,2
+, Ba2+Te1o. If there is a large difference from this value, use a pH meter and
Add a diluted solution of aOH and HCI and repeat "Afr1". However, simply adjusting the pH with dilute hydrochloric acid may not re-dissolve the hydroxide precipitate that has formed, so when the addition of the ionic solution is finished, Pay close attention to the pH.

イオン溶液を添加終了後、更に15〜20分間攪拌を続
け、充分置換反応を進行させる0合成雲母のゾル状懸濁
体は、イオン置換反応により、凝集体となって、ゲル状
に懸濁する。攪拌を停止し、約10分間静置し、ゲル状
懸濁液の上澄部が生ついで、濾紙No、5Aを用いて吸
引濾過し、凝集した置換体をイオン液と分離する。
After adding the ion solution, continue stirring for another 15 to 20 minutes to allow the substitution reaction to proceed sufficiently.The sol-like suspension of synthetic mica becomes aggregates and becomes suspended in a gel-like state due to the ion substitution reaction. . Stirring is stopped and the mixture is allowed to stand for about 10 minutes to form a supernatant portion of the gel-like suspension, which is suction-filtered using filter paper No. 5A to separate the aggregated substituents from the ionic liquid.

分離したゲル状置換体は、再度最初の容器に戻し、水酸
化物沈澱の発生しない微酸性水で洗浄した後、共通イオ
ン効果を利用した洗浄水または脱イオン水等に再分散さ
せる方法等により、過剰の残留イオンを充分洗浄し、吸
引漣過等により置換体を水分から分離する。
The separated gel-like substituted product is returned to the original container, washed with slightly acidic water that does not cause hydroxide precipitation, and then redispersed in washing water using the common ion effect or deionized water, etc. Excess residual ions are thoroughly washed away, and the substituents are separated from water by suction filtration or the like.

洗浄を終了した置換体は、110〜120℃で一昼夜乾
燥した後、二次凝集状態をrはぐす1程度に粉砕する。
After washing, the substituted product is dried at 110 to 120° C. for a day and night, and then ground to about 1 to remove the secondary agglomeration state.

(4)多孔体化処理とピラー形成の確認置換体の多くは
乾燥しただけでは層間ピラー効果を発揮し得ないため、
これらに熱処理を施こして脱水し、多孔体としているが
、置換体の種類により柱の役目となる層間化合物を形成
する条件が異なる。即ち、単なるイオン置換体の脱水物
では、層間が収縮して柱の形成は成功しない。
(4) Porous treatment and confirmation of pillar formation Many substituted materials cannot exhibit the interlayer pillar effect just by drying.
These are subjected to heat treatment to dehydrate and form a porous body, but the conditions for forming intercalation compounds that serve as pillars vary depending on the type of substituent. That is, if the dehydrated product is simply an ion-substituted product, the interlayers will shrink and pillar formation will not be successful.

次に1代表的な置換体の熱処理条件によるピラー効果の
変化例を測定し、その結果を第2表及び第3表ならびに
第1図〜第8図に示す0図中、Oは未置換品容量を表わ
し、※は最大容量を表わし、木は次位容量を表わし、■
は活性出現を表わす、尚1表中A I−TSはアルミニ
ウム四ケイ素マイカを表す。
Next, we measured examples of changes in pillar effect due to heat treatment conditions of 1 typical substituted product, and the results are shown in Tables 2 and 3 and Figures 1 to 8. It represents the capacity, * represents the maximum capacity, the tree represents the next capacity, ■
In Table 1, A I-TS represents aluminum tetrasilicon mica.

ピラー効果の確認はr層間化合物が生成し、居間に細孔
による空間が出来ているか」を確認することであり、上
記試験に於いては、非水溶性溶媒トリブチルホスフェー
トの吸油量の変化を測定して求めた。尚、上記吸油量の
測定のほか、窒素ガス吸着量の測定(空孔容積の測定)
、水銀圧入法等の細孔分布状態や細孔内面積把握に有効
な測定方法が適用できる。しかしながら、細孔径が30
A以下の極微小径の測定の場合には、分子の大きさのわ
かっているものを使用した吸着性試験が効果的である。
To confirm the pillar effect, check whether interlayer compounds are generated and pore spaces are created in the living room.In the above test, changes in oil absorption of the water-insoluble solvent tributyl phosphate were measured. I asked. In addition to measuring the oil absorption amount mentioned above, measurement of nitrogen gas adsorption amount (measurement of pore volume)
Measurement methods that are effective for understanding the pore distribution state and pore internal area, such as mercury intrusion method, can be applied. However, the pore size is 30
When measuring extremely small diameters of A or less, an adsorption test using molecules of known size is effective.

「発明の効果」 以上述べた如く、本発明の多孔材は、支柱を形成してい
るので、耐熱性に優れ、しかもその支柱形成条件をコン
トロールして空孔容積や孔径を所望のものに調節出来る
等多くの利点を併有する。
"Effects of the Invention" As described above, the porous material of the present invention has struts, so it has excellent heat resistance, and the conditions for forming the struts can be controlled to adjust the pore volume and pore diameter to desired values. It has many advantages such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図 第2図 第3図 第4図 第5図 第6図 ′[ 第7図 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 ′[ Figure 7

Claims (4)

【特許請求の範囲】[Claims] (1)膨潤性合成フッソ雲母の結晶単位層間のアルカリ
金属イオンを、イオン交換処理によりアルカリ土類金属
若しくは他の金属イオンで置換し、これを熱処理してな
ることを特徴とする多孔材。
(1) A porous material characterized in that the alkali metal ions between the crystal unit layers of swellable synthetic fluorinated mica are replaced with alkaline earth metal or other metal ions through ion exchange treatment, and then heat treated.
(2)交換するイオンが、水中に溶解する状態で多核錯
アコイオン(可溶性多核水酸化物イオン)を形成するア
ルカリ土類金属若しくは他の金属イオンである特許請求
の範囲第1項記載の多孔材。
(2) The porous material according to claim 1, wherein the ions to be exchanged are alkaline earth metal or other metal ions that form polynuclear complex acoions (soluble polynuclear hydroxide ions) in water. .
(3)複数イオンでイオン交換させる特許請求の範囲第
1項または第2項に記載の多孔材。
(3) The porous material according to claim 1 or 2, which undergoes ion exchange with a plurality of ions.
(4)陽イオンでイオン交換させ、層間にこの陽イオン
と陰イオンの化合物を形成させる特許請求の範囲第3項
に記載の多孔材。
(4) The porous material according to claim 3, in which cation exchange is performed with cations to form a compound of the cations and anions between the layers.
JP59273437A 1984-12-26 1984-12-26 Porous material consisting of synthetic fluorine mica Pending JPS61151020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59273437A JPS61151020A (en) 1984-12-26 1984-12-26 Porous material consisting of synthetic fluorine mica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59273437A JPS61151020A (en) 1984-12-26 1984-12-26 Porous material consisting of synthetic fluorine mica

Publications (1)

Publication Number Publication Date
JPS61151020A true JPS61151020A (en) 1986-07-09

Family

ID=17527895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59273437A Pending JPS61151020A (en) 1984-12-26 1984-12-26 Porous material consisting of synthetic fluorine mica

Country Status (1)

Country Link
JP (1) JPS61151020A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363339A (en) * 1986-09-02 1988-03-19 Topy Ind Ltd Sheet material for keeping freshness of food
JP2006130358A (en) * 2004-11-02 2006-05-25 Masayoshi Mori Gas adsorbent production method and gas adsorbent
CN103769176A (en) * 2012-10-19 2014-05-07 中国科学院上海硅酸盐研究所 Mesoporous KF/CaxAl2O(x+3) solid alkali and synthetic method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545884A (en) * 1977-06-13 1979-01-17 Grace W R & Co Clay material inserted with middle layer useful as catalyst and adsorbent
JPS5416386A (en) * 1977-06-13 1979-02-06 Grace W R & Co Clay material inserted into columnar middle layer useful as catalyst and adsorbent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545884A (en) * 1977-06-13 1979-01-17 Grace W R & Co Clay material inserted with middle layer useful as catalyst and adsorbent
JPS5416386A (en) * 1977-06-13 1979-02-06 Grace W R & Co Clay material inserted into columnar middle layer useful as catalyst and adsorbent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363339A (en) * 1986-09-02 1988-03-19 Topy Ind Ltd Sheet material for keeping freshness of food
JP2006130358A (en) * 2004-11-02 2006-05-25 Masayoshi Mori Gas adsorbent production method and gas adsorbent
CN103769176A (en) * 2012-10-19 2014-05-07 中国科学院上海硅酸盐研究所 Mesoporous KF/CaxAl2O(x+3) solid alkali and synthetic method thereof

Similar Documents

Publication Publication Date Title
Mohammed et al. Fe-ZSM-5 zeolite for efficient removal of basic Fuchsin dye from aqueous solutions: Synthesis, characterization and adsorption process optimization using BBD-RSM modeling
Adeyemo et al. Adsorption of dyes using different types of clay: a review
Wan et al. Ionic liquid groups modified 3D porous cellulose microspheres for selective adsorption of AO7 dye
Qiusheng et al. Porous zirconium alginate beads adsorbent for fluoride adsorption from aqueous solutions
EP2744592B1 (en) Adsorbent precipitated on a carrier, method for producing said adsorbent, and use of said adsorbent
Deng et al. An efficient composite ion exchanger of silica matrix impregnated with ammonium molybdophosphate for cesium uptake from aqueous solution
Zhang et al. Facile control of zeolite NaA dispersion into xanthan gum–alginate binary biopolymer network in improving hybrid composites for adsorptive removal of Co2+ and Ni2+
US20050266984A1 (en) Process for production of macrostructures of a microporous material
Chattopadhyay et al. MOF and derived materials as aerogels: Structure, property, and performance relations
RU2336946C2 (en) Sorbent for heavy metals, method of its production and method of water purification
Najafi et al. Adsorption of chromium (VI) and crystal violet onto granular biopolymer-silica pillared clay composites from aqueous solutions
US4058483A (en) Adsorbent material
Yu et al. Removal of methylene blue over low-cost mesoporous silica nanoparticles prepared with naturally occurring diatomite
Mariyam et al. Adsorption behaviour of Chrysoidine R dye on a metal/halide-free variant of ordered mesoporous carbon
JPWO2003104148A1 (en) Method for the synthesis of mesoporous zeolite
CN112058235B (en) Copper organic framework-silicon oxide porous composite material and preparation method and application thereof
JPS61278590A (en) Catalytic cracking method
JP2015160208A (en) Adsorbent granulating method, and adsorbent granules produced thereby
Yesi et al. Adsorption of acid blue 129 from aqueous solutions onto raw and surfactant-modified bentonite: application of temperature-dependent forms of adsorption isotherms
Li et al. Adsorption of Congo red from water with spindle-like boehmite: the role of lattice plane (020)
Kul et al. An investigation of natural and modified diatomite performance for adsorption of Basic Blue 41: Isotherm, kinetic, and thermodynamic studies
Li et al. Preparation and regeneration of a thermo-sensitive adsorbent material: methyl cellulose/calcium alginate beads (MC/CABs)
He et al. Binder-free preparation of ZSM-5@ silica beads and their use for organic pollutant removal
JPS61151020A (en) Porous material consisting of synthetic fluorine mica
JPS60153940A (en) Adsorbent of dissolved fluorine ion