JPS61150678A - Electric signal/mechanical amount converter and method of use thereof - Google Patents

Electric signal/mechanical amount converter and method of use thereof

Info

Publication number
JPS61150678A
JPS61150678A JP27183184A JP27183184A JPS61150678A JP S61150678 A JPS61150678 A JP S61150678A JP 27183184 A JP27183184 A JP 27183184A JP 27183184 A JP27183184 A JP 27183184A JP S61150678 A JPS61150678 A JP S61150678A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
peltier effect
transformation temperature
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27183184A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujimura
藤村 浩史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27183184A priority Critical patent/JPS61150678A/en
Publication of JPS61150678A publication Critical patent/JPS61150678A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To equalize reciprocating forces by storing reverse states supplementarily above and below transformation temperature in a plurality of two types of bidirectional memory alloys, and inverting the direction of a current flow to a Peltier effect element interposed therebetween. CONSTITUTION:Peltier effect element 12a, 12b are interposed between a plurality of two types of memory alloys 11a and 11b, laminated to form a composite element 10. The shape is stored to vary the alloy 11a to vary bidirectionally above and below the transformation temperature. The alloy 11b is stored to vary the reverse shape to the alloy 11a in the bidirectionality above and below the temperature. A current is flowed through leads, not shown, to the elements 12a, 12b interposed between the alloys 11a and 11b, the direction is inverted to invert the bending direction as by an arrow A at the boundary of the transformation temperature to the element 10. Thus, the driving forces of reciprocation are equalize. This is adapted for an actuator.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、形状記憶合金を用いた電気信号機械量変換素
子及びその使用方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrical signal/mechanical quantity conversion element using a shape memory alloy and a method of using the same.

[従来の技術] 従来、電気信号で制御される機械装置のアクチュエータ
等に、形状記憶合金を利用した電気信号機械屋変換素子
が用いられている。
[Prior Art] Conventionally, electric signal converting elements using shape memory alloys have been used in actuators of mechanical devices controlled by electric signals.

この種の電気信号機減量変換素子の構成及び作用を第8
図及び第9図を参照して説明する。図中80は双方向性
形状記憶合金、83は保持枠、84は形状記憶合金80
を保持枠83に固定するための継手、85は形状記憶合
金80の自由端に回動自在に取付けられた差動桿、86
は差動桿85を保持する保持台、87はリード線、88
は電源、89はスイッチを示している。双方向性形状記
憶合金80は変態温度以下で第8図に示す形状で、変態
温度以上で第9図に示す形状の記憶処理が施されている
ものとする。故に、スイッチ89が開かれた変態温度以
下の温度では、第8図に示すように形状記憶合金80は
変形し、差動桿85は引込んだ状態になる。
The structure and operation of this type of electric traffic light weight reduction conversion element are explained in the eighth section.
This will be explained with reference to FIG. 9 and FIG. In the figure, 80 is a bidirectional shape memory alloy, 83 is a holding frame, and 84 is a shape memory alloy 80
85 is a differential rod rotatably attached to the free end of the shape memory alloy 80;
is a holding base that holds the differential rod 85, 87 is a lead wire, 88
indicates a power supply, and 89 indicates a switch. It is assumed that the bidirectional shape memory alloy 80 has been subjected to memory treatment to have a shape shown in FIG. 8 below the transformation temperature and a shape shown in FIG. 9 above the transformation temperature. Therefore, at a temperature below the transformation temperature at which the switch 89 is opened, the shape memory alloy 80 deforms as shown in FIG. 8, and the differential rod 85 becomes retracted.

一方、スイッチ89を閉じると、電vA88からリード
線87.スイッチ89及び電源88の回路が形成され、
形状記憶合金80に電流が流れ同合金80は抵抗発熱で
加熱される。そして、形状記憶合金80の温度が変態点
を越えると、形状記憶合金80は変態温度以上の形状に
なるため、第9図に示す如く差動桿85を押出す。また
、再びスイッチ89を開くと、電流が遮断され形状記憶
合金80は放冷により温度が下がり、変態点以下になる
と第8図に示す状態に戻る。
On the other hand, when the switch 89 is closed, the lead wire 87. A circuit of switch 89 and power supply 88 is formed,
A current flows through the shape memory alloy 80, and the alloy 80 is heated by resistance heat generation. Then, when the temperature of the shape memory alloy 80 exceeds the transformation point, the shape memory alloy 80 assumes a shape higher than the transformation temperature, so the differential rod 85 is pushed out as shown in FIG. When the switch 89 is opened again, the current is cut off and the temperature of the shape memory alloy 80 decreases by cooling, and when the temperature falls below the transformation point, it returns to the state shown in FIG.

このように、スイッチ89の開閉に応じて差動桿85が
差動するので、電気信号機減量変換素子の働きをするこ
とになる。
In this manner, the differential rod 85 operates differentially in accordance with the opening and closing of the switch 89, so that it functions as an electric signal reduction conversion element.

[発明が解決しようとする問題点] ′ しかしながら、この種の電気信号機減量変換素子に
あっては次のような問題があった。即ち、従来の形状記
憶合金を利用した電気信号機減量変換素子は抵抗発熱を
利用して第8図から第9図への差動を行わせているので
、電流量を増すことにより応答速度を速くすることはで
きるが、第9図から第8図への差動は自然放冷に頼らざ
るを得ないため、応答速度が極めて遅くタイミングのコ
ントa−ルも困難であった。また、双方向性形状記憶合
金の特性として、マルテンサイト変態時の力は逆変態に
より母相に戻るときの力に比べて著しく低り、゛荷重の
程度によっては゛、第8図から第9図の過程はスムーズ
でも、第9図から第8図の過程は不安定になる等、アク
チュ゛エータとして非常に不便で適′用範囲が制限され
て・いた。
[Problems to be Solved by the Invention] 'However, this type of electric signal reduction conversion element has the following problems. In other words, the conventional electric signal weight reduction conversion element using a shape memory alloy uses resistance heat generation to perform the differential from Fig. 8 to Fig. 9, so the response speed can be increased by increasing the amount of current. However, since the differential from FIG. 9 to FIG. 8 must rely on natural cooling, the response speed is extremely slow and timing control is difficult. In addition, as a characteristic of bidirectional shape memory alloys, the force during martensitic transformation is significantly lower than the force when returning to the parent phase through reverse transformation; Although the process shown in FIG. 9 is smooth, the process shown in FIGS. 9 to 8 becomes unstable, which is very inconvenient for actuators and limits their range of application.

本発明は上記の事情を考慮してな′されたもので、その
目的とするところは、双方向性形状記憶合金を用いた電
気信号機減量変換素子の応答特性の改善と、往時・[時
の力の均等イビをはかり得る電気信号機減量変換素子を
提供゛するごとにある。
The present invention has been made in consideration of the above-mentioned circumstances, and its objectives are to improve the response characteristics of an electrical signal weight reduction conversion element using a bidirectional shape memory alloy, and to An object of the present invention is to provide an electric signal weight reduction conversion element capable of measuring force uniformity.

また本発明の他の目的は、上記電気機械量変換素子を駆
動制御するための電気・信号機減量変換素子の使用方法
を提供することにある。    ゛[問題点を解決する
ための手段] 本発明の骨子は、ペルチェ効果素、子を用いて形状記憶
合金の加熱・冷却を行うことにある。
Another object of the present invention is to provide a method of using an electrical/traffic light reduction conversion element for driving and controlling the electromechanical quantity conversion element. [Means for Solving the Problems] The gist of the present invention is to heat and cool a shape memory alloy using a Peltier effect element.

LLで、ペルチェ効果素子について説明する。In LL, the Peltier effect element will be explained.

文献(金属便覧、改訂4版、丸善出版、 P4O10)
にあるように、自由電子の濃度や平均エネルギーが異な
る2種の金属を接触させると電子の移動が起こり、接触
部に電位差が生じる。この電位差に逆らって電流を流す
と、電子は低電位から高電位に移るため、不足のエネル
ギーを熱の形で周囲から奪い接触部の潟・度・が下がる
。この効果を利用したものがペルチェ効果素子である。
Literature (Metal Handbook, revised 4th edition, Maruzen Publishing, P4O10)
As shown in , when two metals with different free electron concentrations and average energies are brought into contact, electron movement occurs and a potential difference is created at the contact area. When a current flows against this potential difference, electrons move from a low potential to a high potential, which takes away the missing energy from the surroundings in the form of heat and lowers the temperature of the contact area. A Peltier effect element utilizes this effect.

さて、実際のペルチェ効果素子について、第4図及び第
5図を参照してさらに詳しく説明する。
Now, the actual Peltier effect element will be explained in more detail with reference to FIGS. 4 and 5.

第4図及び第5図は電流の流れが逆、な場合を示したも
ので、同一のものである。図中41(411゜412)
は電気絶縁体、42 (42),422。
Figures 4 and 5 show the case where the current flow is reversed, and are the same. 41 (411°412) in the diagram
is an electrical insulator, 42 (42), 422.

423.444 、・445)は電気伝導体電極、43
 (431,432)、44 (44t 、442 )
はいずれもビスマステルル化合物等を主成分とする半導
体であり、43はN型半導体、44はP型半導体である
。また、45 (451,452)はリード線、46は
直流電源、47は熱の流れを示す矢印である。
423.444,・445) is an electric conductor electrode, 43
(431,432), 44 (44t, 442)
All of them are semiconductors whose main component is a bismuth tellurium compound or the like, 43 is an N-type semiconductor, and 44 is a P-type semiconductor. Further, 45 (451, 452) is a lead wire, 46 is a DC power supply, and 47 is an arrow indicating the flow of heat.

第4図について、ペルチェ効果素子の作用を説明すると
、直流電源46からの電流は1)ード線451、電気伝
導体電極42).N型半導体431、電気伝導体電極4
22.P型半導体441、電気伝導体電極423.N型
半導体432.電気伝導体電極424.P型半導体44
2、電気伝導体425.リード線452の順に流れる。
Referring to FIG. 4, to explain the operation of the Peltier effect element, the current from the DC power source 46 is 1) the lead wire 451, the electric conductor electrode 42). N-type semiconductor 431, electrical conductor electrode 4
22. P-type semiconductor 441, electric conductor electrode 423. N-type semiconductor 432. Electrical conductor electrode 424. P-type semiconductor 44
2. Electric conductor 425. The lead wires 452 flow in this order.

このため、電流がN型半導体43からP型半導体44に
流れる電極、つまり第4図の上面側の電極422.42
4では吸熱が起こり、P型半導体44からN型半導体4
3に流れる下面側の電極42s 、423.42sでは
発熱が起こる。
Therefore, the electrode where the current flows from the N-type semiconductor 43 to the P-type semiconductor 44, that is, the electrode 422.42 on the upper surface side in FIG.
4, heat absorption occurs, and the P-type semiconductor 44 changes to the N-type semiconductor 4.
Heat generation occurs in the electrodes 42s and 423.42s on the lower surface side where the current flows through the current.

ところが、同じペルチェ効果素子に対し、直流?!源4
6の極性を変えると、第5図に示すように、P型半導体
44からN型半導体43に電流が流れる上面側の電極4
22,424で発熱し、下面側の電極42),423.
42sで吸熱が起こる。
However, for the same Peltier effect element, direct current? ! source 4
When the polarity of the electrode 6 is changed, as shown in FIG. 5, the current flows from the P type semiconductor 44 to the N type semiconductor 43.
22, 424 generate heat, and the lower electrodes 42), 423.
Endotherm occurs at 42s.

以上のように、ペルチェ効果素子は直流電流を流すこと
により吸熱・発熱するが、電流の流れを逆・転させると
、吸熱面・発熱面も逆転する特性を持っている。
As described above, the Peltier effect element absorbs heat and generates heat when a direct current is passed through it, but when the current flow is reversed or reversed, the heat absorption and heat generation sides also reverse.

また、本発明のもう一つの要素である双方向性形状記憶
合金について説明すると、本合金は可逆形状記憶効果に
よるもので二方向性形状記憶素子、全方位形状記憶合金
とも呼ばれ、通常の形状記憶合金が一方向性、つまり一
定の形状を記憶させた合金を低温で変形させた後加熱す
ると元の形状に戻るが、これを再び低温にしても加熱前
に低温で変形した時の形にはならないのに対し、双方向
性形状記憶合金は合金が高温側と低温側との形状をそれ
ぞれ記憶していて変態温度以上の温度では高温側の形状
、以下では低温側の形状を示す。なお、これらのことは
下記の文献■〜■にも記載されている。
Also, to explain the bidirectional shape memory alloy, which is another element of the present invention, this alloy has a reversible shape memory effect and is also called a bidirectional shape memory element or an omnidirectional shape memory alloy. Memory alloys are unidirectional; in other words, when an alloy that memorizes a certain shape is deformed at a low temperature and then heated, it returns to its original shape, but even if it is brought to a low temperature again, it retains the shape it had when it was deformed at a low temperature before heating. In contrast, in bidirectional shape memory alloys, the alloy memorizes the shape of the high temperature side and the low temperature side, and exhibits the shape of the high temperature side at temperatures above the transformation temperature, and the shape of the low temperature side at temperatures below the transformation temperature. Incidentally, these matters are also described in the following documents ① to ②.

■ 清水謙−1坂本英和、“形状記憶合金とその応用(
I)”、化学と工業、 VO155,No、10. P
2S5(1,981) ■ 山内溝、“形状記憶合金の応用と機能性について”
、 U D C、vo166、 Ha、9. P 93
3■ 鈴木雄−1“NiTi系形状記憶合金の用途開発
の現状”1日本金属学会会報、第22巻第8号 730
頁(1983) このような形状記憶合金に形状を記憶させる手段として
は、例えば文献(船久保照康、゛形状記憶合金”、 P
83.産業図書出版)にあるように、(1)  マルテ
ンサイト相に限界以上の変形を与える。
■ Ken Shimizu-1 Hidekazu Sakamoto, “Shape memory alloys and their applications”
I)”, Chemistry and Industry, VO155, No. 10. P
2S5 (1,981) ■ Mizo Yamauchi, “On the application and functionality of shape memory alloys”
, UDC, vol 166, Ha, 9. P93
3. Yu Suzuki-1 “Current status of application development of NiTi-based shape memory alloys” 1 Bulletin of the Japan Institute of Metals, Vol. 22, No. 8, 730
Page (1983) As a means to memorize shape in such a shape memory alloy, for example, the literature (Teruyasu Funakubo, "Shape Memory Alloy", P.
83. As stated in Sangyo Tosho Publishing), (1) Deformation beyond the limit is given to the martensitic phase.

(2応力誘起マルテンサイト変態で変形し得る以上の変
形を母相に与え、 (3)  母相で変形して、これを拘束下でMfai度
以下に冷却し、応力下で長時間保持する。
(2) Give the matrix a deformation greater than that which can be deformed by stress-induced martensitic transformation, (3) Deform in the matrix, cool it to below Mfai degrees under restraint, and hold it under stress for a long time.

(勾 マルテンサイト相で変形し、これを拘束下で加熱
し逆変態させる。
(Gradient deforms in the martensitic phase, which is heated under restraint and undergoes reverse transformation.

(5母相に微細な析出物を生じさせたのち変形する。(5 Deforms after forming fine precipitates in the matrix.

故に、本発明の要素である相方向性形状記憶合金A、B
に互いに異なる二種類の形状の一つを形状記憶合金Aに
は変態温度以下で、形状記憶合金Bには変態温度以下で
与え、ざらにもう一つの形状を形状記憶合金Aには変態
温度以下で、形状記憶合金Bには変態温度以上で与える
ことは可能である。
Therefore, the phase-oriented shape memory alloys A and B, which are elements of the present invention,
One of two different shapes is given to shape memory alloy A at a temperature below the transformation temperature, shape memory alloy B is given a temperature below the transformation temperature, and another shape is given to shape memory alloy A at a temperature below the transformation temperature. Therefore, it is possible to provide shape memory alloy B with a temperature higher than the transformation temperature.

また、本発明番才異なった二種類の形状を記憶した複数
枚の形状記憶合金A、Bとペルチェ効果素子Pとを、 ・・・、P、A、P、B、P、Aj  P、B、  ・
・・の順に積層し、カシメ、ボルト締め、溶接、−接着
In addition, according to the present invention, a plurality of shape memory alloys A and B that memorize two different shapes and a Peltier effect element P are..., P, A, P, B, P, Aj P, B , ・
Laminate in this order, caulk, bolt, weld, and -glue.

蒸着等の手段で接合した複合素子に対し、電流の極性に
より、第6図或いは第7図に示す構造にすることが可能
である。従って、例えば形状記憶合金Aは全て加熱、形
状記憶合金Bは全て冷却の状態、或いは逆の状態にする
ことが可能である。
A composite element bonded by means such as vapor deposition can have the structure shown in FIG. 6 or 7 depending on the polarity of the current. Therefore, for example, all shape memory alloys A can be heated and all shape memory alloys B can be cooled, or vice versa.

本発明はこのような点に着目してなされたもので、形状
記憶合金からなる電気信号機減量変換素子において、複
数枚の双方向性形状記憶合金Aと、変態温度以上で上記
形状記憶合金Aの変態温度以下の形状で且つ変態温度以
下で上記形状記憶合金Aの変態温度以上の形状に略等し
い形状の記憶処理を施した複数枚の双方向性形状記憶合
金Bと、複数枚のペルチェ効果素子Pとを用い、上記形
状記憶合金A、Bを交互に積層し、且つ各形状記憶合金
A、B間に上記ペルチェ効果素子を介在させると共に、
上記形状記憶合金A又はBを介して相対するペルチェ効
果素子の接合面が共に発熱若しくは吸熱を行うように該
ペルチェ効果素子を配列するようにしたものである。
The present invention has been made with attention to these points, and includes a plurality of bidirectional shape memory alloys A, and a shape memory alloy A having a shape memory alloy A at a temperature higher than the transformation temperature. A plurality of bidirectional shape memory alloys B that have been subjected to a memory treatment to have a shape that is below the transformation temperature and approximately equal to the shape that is above the transformation temperature of the shape memory alloy A above the transformation temperature, and a plurality of Peltier effect elements. P, the shape memory alloys A and B are alternately stacked, and the Peltier effect element is interposed between each shape memory alloy A and B, and
The Peltier effect elements are arranged so that the joint surfaces of the Peltier effect elements facing each other via the shape memory alloy A or B both generate heat or absorb heat.

また本発明は、上記構成の電気信号機減量変換素子を使
用するに際し、前記ペルチェ効果素子に流す電流の極性
を反転させることにより、発熱面及び吸熱面を反転させ
るようにした方法である。
Further, the present invention is a method in which, when using the electrical signal weight reduction conversion element having the above configuration, the polarity of the current flowing through the Peltier effect element is reversed, thereby reversing the heat-generating surface and the heat-absorbing surface.

[作用] 上記の構成であれば゛、ペルチェ効果素子に電流を流す
ことにより、一方の形状記憶合金Aを加熱、他方の形状
記憶合金Bを冷却することが可能となり、またペルチェ
効果素子に流す電流を逆にすることにより、上記加熱・
冷却の関係を逆にすることが可能である。これにより、
形状記憶合金A。
[Function] With the above configuration, it becomes possible to heat one shape memory alloy A and cool the other shape memory alloy B by flowing current through the Peltier effect element, and also to flow current through the Peltier effect element. By reversing the current, the above heating and
It is possible to reverse the cooling relationship. This results in
Shape memory alloy A.

B及びペルチェ効果素子からなる電気信号機減量変換素
子を電気的に駆動することが可能となる。
It becomes possible to electrically drive the electric signal reduction conversion element consisting of B and the Peltier effect element.

[発明の効果] 本発明によれば、形状記憶合金は両面から加熱又は冷却
されるので、電気信号機減量変換素子の応答速度を飛躍
的に向上させることができる。また、形状記憶合金Aが
加熱、形状記憶合金Bが冷却される過程では、形状記憶
合金Aの逆変態、形状記憶合金8のマルテンサイト変態
に伴う力の合計が出力される。そして、形状記憶合金A
が冷却、形状記憶合金Bが加熱される過程では、形状記
憶合金Aのマルテンサイト変態、形状記憶合金Bの逆変
態に伴う力の合計が出力される。このため、アクチュエ
ータとしての往時・復時の力を略等しくすることが可能
となる。
[Effects of the Invention] According to the present invention, since the shape memory alloy is heated or cooled from both sides, the response speed of the electric signal weight reduction conversion element can be dramatically improved. In addition, in the process of heating the shape memory alloy A and cooling the shape memory alloy B, the sum of the forces accompanying the reverse transformation of the shape memory alloy A and the martensitic transformation of the shape memory alloy 8 is output. And shape memory alloy A
In the process in which the shape memory alloy B is cooled and the shape memory alloy B is heated, the sum of the forces accompanying the martensitic transformation of the shape memory alloy A and the reverse transformation of the shape memory alloy B is output. Therefore, it is possible to make the forward and backward forces of the actuator substantially equal.

[実施例] 以下、本発明の詳細を図示の実施例によって説明する。[Example] Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図及び第2図は本発明の一実施例に係わる電気信号
機減量変換素子を用いたアクチュエータの概略構成を示
す斜視図である。図中10は、後述する如く2種類の異
なった形状を記憶した複数枚の双方向性形状記憶合金と
複数枚のペルチェ効果素子とを、層状に接合してなる複
合素子(電気信号機減量変換素子)である。また、13
は基板、14は複合素子10を基板13に固定するため
の固定金具、15は複合素子10の自由端に回動自在に
取付けられた差動桿、16は差動桿15を保持するため
の保持台、17は複合素子10のペルチェ効果素子に電
流を供給するためのリード線、18は直流電源、19は
切換えスイッチである。
FIGS. 1 and 2 are perspective views showing a schematic configuration of an actuator using an electric traffic light reduction conversion element according to an embodiment of the present invention. In the figure, reference numeral 10 denotes a composite element (electrical traffic light weight reduction conversion element) formed by bonding in layers a plurality of bidirectional shape memory alloys that memorize two different shapes and a plurality of Peltier effect elements, as described later. ). Also, 13
is a substrate, 14 is a fixture for fixing the composite element 10 to the substrate 13, 15 is a differential rod rotatably attached to the free end of the composite element 10, and 16 is a bracket for holding the differential rod 15. A holding stand, 17 a lead wire for supplying current to the Peltier effect element of the composite element 10, 18 a DC power supply, and 19 a changeover switch.

第3図は複合素子10の詳細を示したもので、11aは
変態温度以上で第1図に示す複合素子10の形状を、ま
た変態温度以下で第2図に示す複合素子10の形状を記
憶した双方向性記憶合金(形状記憶合金A)である。1
1bは変態温度以下で第2図に示す複合素子10の形状
を、また変態温度以下で第1図に示す複合素子10の形
状を記憶した双方向性形状記憶合金(形状記憶合金8)
である。また、12a、12bはペルチェ効果素子で、
第1図に示す結線状態で形状記憶合金118との接合面
で発熱、形状記憶合金11bとの接合面で吸熱が起こる
ように配列されている。
FIG. 3 shows details of the composite element 10, and 11a stores the shape of the composite element 10 shown in FIG. 1 above the transformation temperature, and the shape of the composite element 10 shown in FIG. 2 below the transformation temperature. This is a bidirectional memory alloy (shape memory alloy A). 1
1b is a bidirectional shape memory alloy (shape memory alloy 8) that memorizes the shape of the composite element 10 shown in FIG. 2 below the transformation temperature and the shape of the composite element 10 shown in FIG. 1 below the transformation temperature.
It is. Further, 12a and 12b are Peltier effect elements,
In the wire connection state shown in FIG. 1, they are arranged so that heat is generated at the joint surface with the shape memory alloy 118 and heat is absorbed at the joint surface with the shape memory alloy 11b.

このような構成において、前記第1図の状態では、ペル
チェ効果素子12a、12bにより形状記憶合金118
が加熱され、形状記憶合金11bが冷却されるため、形
状記憶合金118を変態点以上に、形状記憶合金11b
を変態点以下にすることが可能である。このため、形状
記憶合金11a、11bが記憶している第1図の形状が
現われ、差動桿15は引込まれることになる。
In such a configuration, in the state shown in FIG. 1, the shape memory alloy 118 is
is heated and the shape memory alloy 11b is cooled, so that the shape memory alloy 118 is heated to a temperature higher than the transformation point
It is possible to reduce the temperature below the transformation point. Therefore, the shape shown in FIG. 1 memorized by the shape memory alloys 11a and 11b appears, and the differential rod 15 is retracted.

次に、第2図に示すように切換えスイッチ19を切換え
ると、ペルチェ効果素子12a、12bを流れる電流の
極性が変わるため、発熱面と吸熱面とが逆転する。つま
り、形状記憶合金11aとの接合面で吸熱が起こり、形
状記憶合金11bとの接合面で発熱が起こる。このため
、形状記憶合金11aが変態点以下になり、形状記憶合
金11bが変態点以上になる。このため、形状記憶合金
11a、11bが記憶している第2図の形状が現われ、
差動桿15を押出すことになる。
Next, as shown in FIG. 2, when the changeover switch 19 is switched, the polarity of the current flowing through the Peltier effect elements 12a and 12b changes, so that the heat-generating surface and the heat-absorbing surface are reversed. That is, heat absorption occurs at the joint surface with the shape memory alloy 11a, and heat generation occurs at the joint surface with the shape memory alloy 11b. Therefore, the shape memory alloy 11a becomes below the transformation point, and the shape memory alloy 11b becomes above the transformation point. Therefore, the shape shown in FIG. 2 memorized by the shape memory alloys 11a and 11b appears,
The differential rod 15 will be pushed out.

以上のように、切換えスイッチ19を操作することによ
り、差動桿15を引込み・押出しすることができる。そ
してこの場合、複合素子10を形成する形状記憶合金1
18.11bは、加熱・吸熱共ペルチェ効果素子により
その両面から行われるため、ペルチェ効果素子12に流
す電流を制御することにより、応答速度を広範囲に選択
することができる。
As described above, by operating the changeover switch 19, the differential rod 15 can be pulled in or pushed out. In this case, the shape memory alloy 1 forming the composite element 10
18.11b is performed from both sides by the Peltier effect element, so by controlling the current flowing through the Peltier effect element 12, the response speed can be selected over a wide range.

また、本実施例に用いた電気信号機減量変換素子は、い
ずれの方向に変形する場合も力は逆変態とマルテンサイ
ト変態との合計となるため、いずれの方向も略同等の力
にすることができる。従って、アクチュエータとしての
往時・復時の力を略等しくすることができ、極めて有効
である。
In addition, in the electric traffic light reduction conversion element used in this example, when deforming in any direction, the force is the sum of the reverse transformation and martensitic transformation, so it is possible to make the force approximately equal in either direction. can. Therefore, the forward and backward forces of the actuator can be made substantially equal, which is extremely effective.

なお、本発明は上述した実施例に限定されるものではな
い。前記実施例では曲り変形を利用した場合を示したが
、同様にねじり変形、伸び変形及びこれらの組合わせ変
形を利用した電気信号機減量変換素子も可能である。ま
た、相方向性形状記憶合金A、Bとペルチェ効果素子と
の積層数は、必要な力及び応答速度等の条件に応じて定
めればよい。さらに、形状記憶合金の材料、形状等も、
仕様に応じて適宜窓めればよい。また、本発明の電気信
号機減量変換素子を用いた装置は前記第1図及び第2図
に何等限定されるものではなく、仕様に応じて適宜変更
可能である。その他、本発明の要旨を逸脱しない範囲で
、種々変形して実施することができる。
Note that the present invention is not limited to the embodiments described above. Although the above-mentioned embodiment shows a case where bending deformation is used, it is also possible to create an electric signal weight reduction conversion element using torsional deformation, elongation deformation, or a combination of these deformations. Further, the number of laminated layers of the phase-oriented shape memory alloys A and B and the Peltier effect element may be determined depending on conditions such as required force and response speed. Furthermore, the material, shape, etc. of shape memory alloys are
You can change the window as appropriate depending on the specifications. Further, the device using the electric signal weight reduction conversion element of the present invention is not limited to the above-mentioned FIGS. 1 and 2, and can be modified as appropriate according to the specifications. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明の一実施例に係わる
電気信号機減量変換素子を用いたアクチュエータの概略
構成を示す斜視図、第3図は上記素子の具体的構造を示
す断面図、第4図乃至第7図はそれぞれ本発明の詳細な
説明するためのもので第4図及び第5図はペルチェ効果
素子の作用を説明するための模式図、第6図及び第7図
は双方向性形状記憶合金とペルチェ効果素子との配列例
を示す模式図、第8図及び第9図はそれぞれ従来装置の
概略構成を示す斜視図である。 10・・・複合素子(電気信号機減量変換素子)、11
a、11b・・・双方向性形状記憶合金、12a。 12b・・・ペルチェ効果素子、13・・・基板、14
・・・固定金具、15・・・差動桿、16・・・保持台
、17・・・リード線、18・・・直流電源、19・・
・切換えスイッチ、41・・・電気絶縁体、42・・・
電気伝導体電極、43・・・N型半導体、44・−P型
半導体、45・・・リード線、46・・・直流電源、4
7−・・熱の流れ方向。 第3図 第4図 第5図 第6図 第7図 第8図 第9図
1 and 2 are respectively perspective views showing the schematic structure of an actuator using an electric signal reduction conversion element according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view showing the specific structure of the above element. Figures 4 to 7 are for explaining the present invention in detail, respectively. Figures 4 and 5 are schematic diagrams for explaining the action of the Peltier effect element, and Figures 6 and 7 are bidirectional diagrams. FIGS. 8 and 9 are perspective views showing a schematic structure of a conventional device, respectively. FIGS. 10... Composite element (electrical traffic light reduction conversion element), 11
a, 11b... Bidirectional shape memory alloy, 12a. 12b... Peltier effect element, 13... Substrate, 14
...Fixing bracket, 15...Differential rod, 16...Holding stand, 17...Lead wire, 18...DC power supply, 19...
・Selector switch, 41... Electrical insulator, 42...
Electric conductor electrode, 43... N type semiconductor, 44... P type semiconductor, 45... Lead wire, 46... DC power supply, 4
7- Direction of heat flow. Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)複数枚の双方向性形状記憶合金Aと、変態温度以
上で上記形状記憶合金Aの変態温度以下の形状で且つ上
記変態温度以下で上記形状記憶合金Aの変態温度以上の
形状に略等しい形状の記憶処理を施した複数枚の双方向
性形状記憶合金Bと、複数枚のペルチェ効果素子とを用
い、上記形状記憶合金A、Bを交互に積層し、且つ各形
状記憶合金A、B間に上記ペルチェ効果素子を介在させ
ると共に、上記形状記憶合金A又はBを介して相対する
ペルチェ効果素子の接合面が共に発熱若しくは吸熱を行
うように該ペルチェ効果素子を配列してなることを特徴
とする電気信号機械量変換素子。
(1) A plurality of bidirectional shape memory alloys A, and a shape approximately equal to or higher than the transformation temperature and equal to or lower than the transformation temperature of the shape memory alloy A, and approximately equal to or higher than the transformation temperature of the shape memory alloy A at or below the transformation temperature. Using a plurality of bidirectional shape memory alloys B subjected to the same shape memory treatment and a plurality of Peltier effect elements, the shape memory alloys A and B are alternately stacked, and each shape memory alloy A, The Peltier effect elements are interposed between B and the Peltier effect elements are arranged so that the joint surfaces of the Peltier effect elements facing each other through the shape memory alloy A or B both generate heat or absorb heat. Characteristic electrical signal/mechanical quantity conversion element.
(2)複数枚の双方向性形状記憶合金Aと、変態温度以
上で上記形状記憶合金Aの変態温度以下の形状で且つ上
記変態温度以下で上記形状記憶合金Aの変態温度以上の
形状に略等しい形状の記憶処理を施した複数枚の双方向
性形状記憶合金Bと、複数枚のペルチェ効果素子とを用
い、上記形状記憶合金A、Bを交互に積層し、且つ各形
状記憶合金A、B間に上記ペルチェ効果素子を介在させ
ると共に、上記形状記憶合金A又はBを介して相対する
ペルチェ効果素子の接合面が共に発熱若しくは吸熱を行
うように該ペルチェ効果素子を配列してなる電気信号機
械量変換素子を使用するに際し、前記ペルチェ効果素子
に流す電流の極性を反転させることにより、該ペルチェ
効果素子の発熱面及び吸熱面を反転させることを特徴と
する電子信号機械量変換素子の使用方法。
(2) A plurality of bidirectional shape memory alloys A, and a shape approximately equal to or higher than the transformation temperature and equal to or lower than the transformation temperature of the shape memory alloy A, and approximately equal to or higher than the transformation temperature of the shape memory alloy A at the transformation temperature or lower. Using a plurality of bidirectional shape memory alloys B subjected to the same shape memory treatment and a plurality of Peltier effect elements, the shape memory alloys A and B are alternately stacked, and each shape memory alloy A, An electrical signal obtained by interposing the Peltier effect element between B and arranging the Peltier effect elements such that the joint surfaces of the Peltier effect elements facing each other through the shape memory alloy A or B both generate heat or absorb heat. Use of an electronic signal mechanical quantity converting element characterized in that when using the mechanical quantity converting element, the polarity of the current flowing through the Peltier effect element is reversed, thereby reversing the heat generating surface and the heat absorbing surface of the Peltier effect element. Method.
JP27183184A 1984-12-25 1984-12-25 Electric signal/mechanical amount converter and method of use thereof Pending JPS61150678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27183184A JPS61150678A (en) 1984-12-25 1984-12-25 Electric signal/mechanical amount converter and method of use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27183184A JPS61150678A (en) 1984-12-25 1984-12-25 Electric signal/mechanical amount converter and method of use thereof

Publications (1)

Publication Number Publication Date
JPS61150678A true JPS61150678A (en) 1986-07-09

Family

ID=17505466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27183184A Pending JPS61150678A (en) 1984-12-25 1984-12-25 Electric signal/mechanical amount converter and method of use thereof

Country Status (1)

Country Link
JP (1) JPS61150678A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122381U (en) * 1985-01-18 1986-08-01
JPH02118171U (en) * 1989-03-08 1990-09-21
JP2007151221A (en) * 2005-11-24 2007-06-14 Sony Corp Actuator system and position adjusting unit of optical lens
DE102016108241A1 (en) * 2016-05-03 2017-11-09 Volkswagen Aktiengesellschaft Adjusting means with an actuating element of a shape memory alloy and a dedicated working method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122381U (en) * 1985-01-18 1986-08-01
JPH0332786Y2 (en) * 1985-01-18 1991-07-11
JPH02118171U (en) * 1989-03-08 1990-09-21
JP2007151221A (en) * 2005-11-24 2007-06-14 Sony Corp Actuator system and position adjusting unit of optical lens
DE102016108241A1 (en) * 2016-05-03 2017-11-09 Volkswagen Aktiengesellschaft Adjusting means with an actuating element of a shape memory alloy and a dedicated working method

Similar Documents

Publication Publication Date Title
Liu et al. Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module
Elsheikh et al. A review on thermoelectric renewable energy: Principle parameters that affect their performance
US4489742A (en) Thermoelectric device and method of making and using same
US6914343B2 (en) Thermoelectric power from environmental temperature cycles
US8841540B2 (en) High temperature thermoelectrics
EP1780811B1 (en) Thermoelectric conversion module
JPH0542838B2 (en)
JP6350817B2 (en) Module group consisting of a combination of a thermoelectric conversion element and a π-type module group consisting of a thermoelectric material, a thermoelectric conversion element and a thermoelectric material.
US20120305044A1 (en) Thermal transfer and power generation systems, devices and methods of making the same
JPH03155376A (en) Thermoelectric generating element
JPS61150678A (en) Electric signal/mechanical amount converter and method of use thereof
US9559280B2 (en) Thermoelectric conversion device
WO2014030264A1 (en) Thermoelectric conversion element including in thermoelectric material space or space in which connection is made such that heat transfer amounts are reduced and working substance flow is equal to or greater than that for original thermoelectric material
KR20190019767A (en) Thermoelectric module and thermoelectric generator
RU2604180C1 (en) Thermoelectric energy converter
JP5771852B2 (en) A thermoelectric conversion element that includes a space part or a connected space part that reduces the amount of heat transfer to the thermoelectric material and the working material flow is greater than the original thermoelectric material
JPS61171885A (en) Actuator
US3392439A (en) Method and materials for obtaining low-resistance bonds to telluride thermoelectric bodies
Li et al. Grain boundaries softening thermoelectric oxide BiCuSeO
JP2012178533A5 (en)
JPS6114771A (en) Electric signal/mechanical amount converter
Fuschillo et al. Flat plate solar thermoelectric generator for near-earth orbits
US3303058A (en) Thermoelectric module
JPS6122780A (en) Electric signal/mechanical amount converter and controlling method therefor
US3594237A (en) Thermoelectric device including tungsten granules for obtaining low resistance bonds