JPS61149572A - Contactless ignition device for magnetogenerator type internal-combustion engine - Google Patents

Contactless ignition device for magnetogenerator type internal-combustion engine

Info

Publication number
JPS61149572A
JPS61149572A JP59270282A JP27028284A JPS61149572A JP S61149572 A JPS61149572 A JP S61149572A JP 59270282 A JP59270282 A JP 59270282A JP 27028284 A JP27028284 A JP 27028284A JP S61149572 A JPS61149572 A JP S61149572A
Authority
JP
Japan
Prior art keywords
circuit
output
voltage
signal
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59270282A
Other languages
Japanese (ja)
Inventor
Takamichi Nakase
中瀬 隆道
Toshihiro Saga
嵯峨 敏裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP59270282A priority Critical patent/JPS61149572A/en
Priority to US06/713,681 priority patent/US4624234A/en
Publication of JPS61149572A publication Critical patent/JPS61149572A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P11/00Safety means for electric spark ignition, not otherwise provided for
    • F02P11/02Preventing damage to engines or engine-driven gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits
    • F02P1/086Layout of circuits for generating sparks by discharging a capacitor into a coil circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P11/00Safety means for electric spark ignition, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/008Reserve ignition systems; Redundancy of some ignition devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To prevent over-spark advance and reliably ignite at a low-speed, fixed position by controlling the input of a spark advance calculating circuit until the power voltage becomes preset value and preventing a spark advance signal from occurring in the rising process of the power voltage of a power circuit during the engine start or the like. CONSTITUTION:This ignition device has an ignition timing control circuit 11 fed with the output voltage VIN of a power circuit receiving the output from a magnetogenerator. The said circuit 11 has a reference angle signal generating circuit 60, a spark advance control circuit 70, and a spark advance calculating circuit 30 fed with the constant voltage V<+> from a voltage stabilizer 50 stabilizing the voltage VIN. The spark advance calculating circuit 30 determines the spark advance value according to the average engine rotating speed determined based on the output of the said circuit 60 generating a reference angle signal according to the output of a sensor 2. The spark advance control circuit 70 has an input control circuit 62 controlling the output of the said calculating circuit 30 so as to use, as a spark advance signal, only the output signal calculated based on the average rotating speed after a power voltage detecting circuit 71 detects the preset voltage value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁石発電機を電源とする内燃機関用無接点点火
装置に関し、特に始動時等の回路用電源電圧の上昇過程
においても安定した点火動作を行なう電子式内燃機関用
無接点点火装置に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a non-contact ignition device for an internal combustion engine that uses a magnet generator as a power source, and is capable of providing stable ignition even in the process of increasing the power supply voltage for the circuit, such as during starting. The present invention relates to a non-contact ignition device for an electronic internal combustion engine that operates.

(従来の技術) 従来は、機関の回転に同期して、機関の1回転に付き1
回の正・負の信号電圧を発生するセンサを設け、このセ
ンサ信号の正方向電圧を第1の固定角度信号SIとして
用いると共に、この第1の固定角度信号S+の立ち上が
り位置θヤを高速固定位置と一致させ、また負方向電圧
を第2の固定角度信号S2として用いると共に、この第
2の固定角度信号S2の立ち下がり位置θ、を低速固定
位置と一致させ、進角演算回路は、前記第2の固定角度
信号Stの立ち下がり位置θ、から、定電流で演算用コ
ンデンサを充電し、第1の固定角度信号S1の立ち上が
り位置θ8からは、定電流で放電させることにより三角
波を発生させ、この三角波の下降部が、基準電圧Vsと
一致する位置を点火時期とする。また、始動時等のアイ
ドリング状態の低速時は、回路用電源電圧が十分に得ら
れない為、第2の固定角度信号Stであるセンサ信号の
負方向電圧で直接点火用サイリスタを駆動して、低速固
定位置θ、を点火時期とし、中速の進角途上の回転数に
おいては、進角演算回路の三角波の下降部が基準電圧V
sと交差する位置を点火時期とし、そして三角波の上昇
部が基準電圧Vsに達しない高速時は、高速固定位置θ
、を点火時期とする電子式の内燃機関用無接点点火装置
が提案されている。
(Prior art) Conventionally, in synchronization with the rotation of the engine, the
A sensor that generates positive and negative signal voltages is provided, and the positive direction voltage of this sensor signal is used as the first fixed angle signal SI, and the rising position θ of this first fixed angle signal S+ is fixed at high speed. The advance angle calculation circuit uses the negative direction voltage as the second fixed angle signal S2, and makes the falling position θ of the second fixed angle signal S2 coincide with the low speed fixed position. A calculation capacitor is charged with a constant current from the falling position θ of the second fixed angle signal St, and a triangular wave is generated by discharging with a constant current from the rising position θ8 of the first fixed angle signal S1. , the position where the falling part of this triangular wave coincides with the reference voltage Vs is defined as the ignition timing. In addition, at low speeds such as when starting or idling, the power supply voltage for the circuit cannot be obtained sufficiently, so the ignition thyristor is directly driven by the negative direction voltage of the sensor signal, which is the second fixed angle signal St. The ignition timing is set at the low-speed fixed position θ, and at a middle-speed rotation speed in the middle of advancing, the descending part of the triangular wave of the advance calculation circuit corresponds to the reference voltage V.
The ignition timing is set at the position where it intersects s, and at high speed when the rising part of the triangular wave does not reach the reference voltage Vs, the high speed fixed position θ is set.
An electronic non-contact ignition device for an internal combustion engine has been proposed that uses ignition timing as .

しかし、この装置では、始動時、回路用電源電圧の上昇
過程では過進角となり、機関が圧縮を乗り越えられずに
上死点手前で逆転し、ケッチンが発生したり、あるいは
機関が破損することがある。
However, with this device, during the process of increasing the power supply voltage for the circuit when starting, the engine becomes overadvanced, and the engine cannot overcome compression and reverses just before top dead center, causing engine failure or damage to the engine. There is.

この原因は第3図に示すごとく、例えば回路用電源電圧
が一定値(飽和値)の場合(第3図(A)中、破線で示
す)、演算用コンデンサ電圧の三角波(第3図(C)の
破線で示す)の下降部は基準電圧Vsと交差せず、点火
位置は低速固定位置θLI+  θ、であるが、それに
対し、始動時等の回路用電源電圧の上昇過程(第3図(
A)の実線で示す)では、三角波の電圧値は低くなる(
第3図(C)の実線で示す)ため、低速固定位置θLI
+θ、よりも大きく進んだθ1.θF2の位置で三角波
の下降部は基準電圧Vsに達し、この位置が点火時期と
なることによる。ここでθ、の位置は、三角波の上昇開
始位置から、下降部のVsと交差する位置までの、電源
電圧上昇分が大きい程、進角側となる。この過進角によ
り、前記問題が発生する。また、コンデンサと、このコ
ンデンサの定電流充電回路、及び比較器から成る回転数
検出回路を備え、設定回転数以下では点火信号を消す回
路が公知となっている(例えば特開昭57−20559
号公報)。
The reason for this is as shown in Figure 3. For example, when the circuit power supply voltage is a constant value (saturation value) (indicated by the broken line in Figure 3 (A)), the triangular wave of the calculation capacitor voltage (Figure 3 (C) ) does not intersect with the reference voltage Vs, and the ignition position is at the low-speed fixed position θLI+θ, but on the other hand, the rising process of the circuit power supply voltage at the time of starting etc.
(shown by the solid line in A)), the voltage value of the triangular wave becomes low (
(shown by the solid line in Figure 3(C)), the low speed fixed position θLI
+θ, θ1. which has advanced more than +θ. The falling part of the triangular wave reaches the reference voltage Vs at the position θF2, and this position becomes the ignition timing. Here, the position of θ becomes more advanced as the increase in the power supply voltage from the rising start position of the triangular wave to the falling part intersects with Vs increases. This overadvanced angle causes the aforementioned problem. Furthermore, a circuit is known that includes a rotation speed detection circuit consisting of a capacitor, a constant current charging circuit for the capacitor, and a comparator, and turns off the ignition signal when the rotation speed is below a set value (for example, Japanese Patent Laid-Open No. 57-20559
Publication No.).

(発明が解決しようとする問題点) しかし、この回路を応用した場合でも、前述と同様始動
時等の回路用電源電圧が上昇過程ではコンデンサ電圧が
低くなる為、設定回転数以上と判定し、禁止回路として
の正常な機能をはたすことができないという問題がある
(Problem to be Solved by the Invention) However, even when this circuit is applied, the capacitor voltage becomes low when the circuit power supply voltage increases, such as during startup, so it is determined that the rotation speed is higher than the set rotation speed. There is a problem in that it cannot function normally as a prohibited circuit.

そこで本発明は、回路用電源電圧上昇過程においても過
進角することなく、低速固定位置で確実に点火できるよ
うにするものである。
Therefore, the present invention is intended to ensure ignition at a low speed fixed position without over-advance even in the process of increasing the circuit power supply voltage.

(問題点を解決するための手段) そのため本発明は、内燃機関により駆動される磁石発電
機と、内燃機関の回転と同期して、機関の所定クランク
位置に対応した第1の基準角度位置およびこの第1の基
準角度位置よりも所定角度遅れたクランク位置に対応し
た第2の基準角度位置を検出するセンサと、このセンナ
の出力により基準角度信号を発生する基準角度信号発生
回路と、演算用コンデンサ含み、前記基準角度信号発生
回路からの出力信号に基づき、機関の平均回転数を求め
、この回転数に基づき進角値を決定する進角演算回路と
、前記磁石発電機の発生出力を電源として前記進角演算
回路に供給するための電源回路と、この電源回路の電源
電圧を検出する電源電圧検出回路およびこの電源電圧検
出回路が設定電圧値を検出したのちの平均回転数に基づ
いて進角演算された出力信号のみを進角信号とする様に
前記進角演算回路の入力を制御するための入力制御回路
を含む進角制御回路とを備え°る磁石発電機式内燃機関
用無接点点火装置を提供するものである。
(Means for Solving the Problems) Therefore, the present invention provides a magnet generator driven by an internal combustion engine, a first reference angular position corresponding to a predetermined crank position of the engine, and a magnet generator driven by an internal combustion engine. a sensor for detecting a second reference angular position corresponding to a crank position delayed by a predetermined angle from the first reference angular position; a reference angle signal generation circuit for generating a reference angle signal from the output of the sensor; A lead angle calculation circuit includes a capacitor, calculates the average rotational speed of the engine based on the output signal from the reference angle signal generation circuit, and determines the lead angle value based on this rotational speed, and a lead angle calculation circuit that uses the generated output of the magnet generator as a power source. A power supply circuit for supplying the lead angle calculation circuit, a power supply voltage detection circuit for detecting the power supply voltage of this power supply circuit, and a power supply voltage detection circuit that detects the set voltage value and then advances based on the average rotation speed. A non-contact point for a magnet generator type internal combustion engine, comprising an advance angle control circuit including an input control circuit for controlling the input of the advance angle calculation circuit so that only the angle-calculated output signal is used as an advance angle signal. It provides an ignition device.

(作 用) これにより、始動時、回路用電源電圧の上昇過程では、
電源電圧検出回路により、略飽和値を検出して入力制御
回路により進角演算回路の入力を制御し、その後演算用
コンデンサに充電される電圧により平均回転数を求め進
角演算された出力のみを進角信号とする為、過進角信号
が出力されることなく、低速固定位置が点火時期となる
(Function) As a result, during startup and the process of increasing the circuit power supply voltage,
The power supply voltage detection circuit detects a nearly saturated value, and the input control circuit controls the input of the advance angle calculation circuit.Then, the average rotational speed is determined by the voltage charged in the calculation capacitor, and only the lead angle calculation output is output. Since the advanced angle signal is used, no over-advanced angle signal is output, and the ignition timing is set at the low speed fixed position.

(実施例) 以下、本発明による磁石発電機式内燃機関用無接点点火
装置を実施例に従って詳細に説明する。
(Example) Hereinafter, the non-contact ignition device for a magnet generator type internal combustion engine according to the present invention will be described in detail according to an example.

磁石発電機を用いた単気筒4サイクル内燃機関用電子式
無接点点火装置に本発明を適用した場合について説明す
る。第2図は本発明による磁石発電機式内燃機関用無接
点点火装置の第1実施例を示す。
A case will be described in which the present invention is applied to an electronic non-contact ignition device for a single-cylinder four-stroke internal combustion engine using a magnet generator. FIG. 2 shows a first embodiment of a non-contact ignition device for a magnet generator type internal combustion engine according to the present invention.

第2図において、磁石発電機のコンデンサ充電コイル1
の正方向出力(図中矢印方向)は、第1の電源回路40
を構成する、ダイオード41.抵抗42を介して、電源
用コンデンサ43を充電し、このコンデンサ43の充電
々圧のピーク値を、ツェナーダイオード44によって一
定値に抑えている。前記コンデンサ43の充電々荷を第
1の直流電源とする。
In Figure 2, the capacitor charging coil 1 of the magnet generator
The positive direction output (in the direction of the arrow in the figure) is the first power supply circuit 40
A diode 41. A power supply capacitor 43 is charged through a resistor 42, and the peak value of the charging voltage of this capacitor 43 is suppressed to a constant value by a Zener diode 44. The charge of the capacitor 43 is used as a first DC power source.

2はセンサ、3,4はダイオード、7はサイリスク、8
は主コンデンサ、9は点火コイル、9 a +9bは、
点火コイル9の1次コイルと2次コイル、10は点火栓
でこれらにより公知のコンデンサ放電式点火回路を構成
する。
2 is a sensor, 3 and 4 are diodes, 7 is a cyrisk, 8
is the main capacitor, 9 is the ignition coil, 9a + 9b is,
The primary and secondary coils of the ignition coil 9 and the ignition plug 10 constitute a known capacitor discharge type ignition circuit.

点火時期制御回路11にはコンデンサ23の充電電圧、
及びセンサ2の信号電圧が入力として加わり、サイリス
タ7をトリガする信号電圧を出力するものである。また
、ダイオード5.6.12は、サイリスタフのトリガ信
号としての、点火時期制御回路11の出力信号とセンサ
2の負方向の出力信号とのOR回路を構成する。
The ignition timing control circuit 11 has a charging voltage of the capacitor 23,
The signal voltage of the sensor 2 and the sensor 2 are added as inputs, and a signal voltage that triggers the thyristor 7 is output. Further, the diode 5.6.12 constitutes an OR circuit of the output signal of the ignition timing control circuit 11 and the negative direction output signal of the sensor 2 as a trigger signal of the thyristorph.

第4図は第2図に示されるセンサ2の構成図である。FIG. 4 is a configuration diagram of the sensor 2 shown in FIG. 2.

第4図において磁石発電機の磁性体製ロータ20の外周
には、必要進角幅だけの機械角をもった幅の広い突起2
1が設けられており、ロータ20の外周に配置した永久
磁石23と信号コイル24とを有する電磁ピックアップ
よりなるセンサ2にはロータ20の1回転につきlサイ
クルの信号電圧が必要進角幅丈ずれて正、負に発生する
In Fig. 4, on the outer periphery of the magnetic rotor 20 of the magnet generator, there is a wide protrusion 2 with a mechanical angle equal to the required advance angle width.
The sensor 2, which is an electromagnetic pickup having a permanent magnet 23 and a signal coil 24 arranged around the outer periphery of the rotor 20, is provided with a signal voltage of 1 cycle per rotation of the rotor 20. It occurs both positively and negatively.

第1図は第2図に示される点火時期制御回路11の内部
回路図を示す。第1図においてコンデンサ43の電圧は
脈流となるため、これを定電圧回路50により安定化し
、定電圧V゛を得る。この定電圧V゛は比較器、論理回
路、フリップフロップ等で構成される進角演算回路30
、基準角度信号発生回路60.進角制御回路70の電源
として用いられる。センサ2の出力は抵抗101,10
2.103により適当な値でバイアスされた後、比較器
100.200の入力とする。比較器100の他の一方
の入力は、抵抗104と抵抗105の接続点に接続され
、また比較器200の他の一方の入力は接地されている
。そして、これら比較器100.200および抵抗10
1〜105により基準角度信号発生回路60を構成する
。そして、比較器100の出力は進角制御回路70を通
してフリップフロップ300のセット信号とし、また、
比較器200の出力はフリップフロップ300のリセッ
ト信号とする。
FIG. 1 shows an internal circuit diagram of the ignition timing control circuit 11 shown in FIG. In FIG. 1, since the voltage across the capacitor 43 is a pulsating current, this is stabilized by the constant voltage circuit 50 to obtain a constant voltage V'. This constant voltage V' is applied to a lead angle calculation circuit 30 consisting of a comparator, a logic circuit, a flip-flop, etc.
, reference angle signal generation circuit 60. It is used as a power source for the advance angle control circuit 70. The output of sensor 2 is resistor 101, 10
After being biased with an appropriate value by 2.103, it is input to comparator 100.200. The other input of the comparator 100 is connected to the connection point between the resistors 104 and 105, and the other input of the comparator 200 is grounded. And these comparators 100, 200 and resistors 10
1 to 105 constitute a reference angle signal generation circuit 60. The output of the comparator 100 is passed through the lead angle control circuit 70 as a set signal for the flip-flop 300, and
The output of the comparator 200 is used as a reset signal for the flip-flop 300.

進角制御回路70は、抵抗921,922,923.9
24.)ランリスク925,926で構成される電源電
圧検出回路71と、AND回路930.950.および
、セット回路940で構成される入力制御回路72とに
よって構成されている。前記電源電圧検出回路71は定
電圧回路50の出力電圧V゛が設定検出電圧以上になる
と“1”レベルとなる。該出力はAND回路930およ
びセット回路940のリセット解除端子Vに接続され、
AND回路930の出力は、セット回路940のセット
入力端子に接続される。このセット回路940の回路構
成は第9図に示す通りであって、フリップフロップ94
1と、このフリップフロップ941のリセット端子と定
電圧V゛との間に接続した抵抗942と、フリップフロ
ップ941のリセット端子と接地との間に挿入したアナ
ログスイッチ943とより構成される。そして、このス
イッチ943は電源電圧検出回路71の出力が“1”レ
ベルのとき閉じてフリップフロップ941のリセット信
号を短絡する。そして、フリップフロップ941のセッ
ト端子がセント回路940のセット入力端子となり、フ
リップフロップ941のQ出力がセント回路940の出
力となる。これにより、セット回路940は、セット入
力端子に1”レベル信号が人力されると、この入力信号
の立上り時に同期して出力が“1”レベルになり、以後
“l”レベルを保持する。また、セット回路940の出
力はAND回路950に接続され、該AND回路950
の出力は進角制御回路70の出力信号として、前記進角
演算回路30のフリップフロップ300のセット信号と
する。ここで、フリップフロップ300のセット信号の
立上り位置は高速固定進角位置θ工と一致させ、リセッ
ト信号の立上り位置は低速固定進角位置θ、と一致させ
ている。
The advance angle control circuit 70 includes resistors 921, 922, 923.9.
24. ) A power supply voltage detection circuit 71 composed of run risks 925, 926, and AND circuits 930, 950. and an input control circuit 72 including a set circuit 940. The power supply voltage detection circuit 71 attains the "1" level when the output voltage V' of the constant voltage circuit 50 exceeds the set detection voltage. The output is connected to the reset release terminal V of the AND circuit 930 and the set circuit 940,
The output of AND circuit 930 is connected to a set input terminal of set circuit 940. The circuit configuration of this set circuit 940 is as shown in FIG.
1, a resistor 942 connected between the reset terminal of this flip-flop 941 and a constant voltage V', and an analog switch 943 inserted between the reset terminal of the flip-flop 941 and ground. This switch 943 is closed when the output of the power supply voltage detection circuit 71 is at the "1" level, and short-circuits the reset signal of the flip-flop 941. The set terminal of the flip-flop 941 becomes the set input terminal of the cent circuit 940, and the Q output of the flip-flop 941 becomes the output of the cent circuit 940. As a result, when a 1" level signal is input to the set input terminal, the set circuit 940 outputs a "1" level in synchronization with the rise of this input signal, and thereafter maintains the "l" level. , the output of the set circuit 940 is connected to an AND circuit 950.
The output of is used as the output signal of the advance angle control circuit 70 and the set signal of the flip-flop 300 of the advance angle calculation circuit 30. Here, the rising position of the set signal of the flip-flop 300 is made to match the high-speed fixed advance angle position θ, and the rising position of the reset signal is made to match the low-speed fixed advance angle position θ.

また、進角演算回路30において、演算用コンデンサ1
0Bは、このコンデンサ108と共に積分器を構成する
演算増幅器40αの出力端子と一端子間に接続され、該
コンデンサ10日の両端にリセット用のアナログスイッ
チ700が並列接続されている。前記演算増幅器400
の一端子は抵抗106,107と接続され、抵抗106
の他端はアナログスイッチ600を介して定電圧V゛に
接続され、抵抗107の他端は接地されている。
In addition, in the advance angle calculation circuit 30, the calculation capacitor 1
0B is connected between one terminal and the output terminal of an operational amplifier 40α which together with this capacitor 108 constitutes an integrator, and an analog switch 700 for resetting is connected in parallel to both ends of the capacitor 10. The operational amplifier 400
One terminal of the resistor 106 is connected to the resistors 106 and 107.
The other end of the resistor 107 is connected to a constant voltage V' via an analog switch 600, and the other end of the resistor 107 is grounded.

演算増幅器400の子端子には基準電圧■2を入力する
。演算用コンデンサ108はアナログスイッチ600お
よび700が共に開いている状態では、演算増幅器40
0により、抵抗107を介して定電流icで充電され、
スイッチ600が閉じ、スイッチ700が開いている状
態では、演算用コンデンサ108の電荷は抵抗106介
して定電流idで放電し、スイッチ700が閉じた瞬間
演算用コンデンサ108の電荷は放電する。スイッチ6
00はフリップフロップ300のQ出力が“1″レベル
のとき閉じる様に構成されており、スイッチ700はO
R回路910の出力が″1″レベルのとき閉じる様に構
成されている。定電圧V゛は抵抗109,110,11
1の直列回路により分圧され、基準電圧Vs、V、を発
生する。即ち、抵抗111の両端電圧を演算増幅器40
0の基準電圧vPとし、抵抗109,110の接続点電
圧を基準電圧Vsとし、この基準電圧Vsと演算用コン
デンサ108の電圧とを比較器8000Å力とし、比較
器800の出力とフリップフロップ300のQ出力とは
AND回路900の2つの入力に接続され、AND回路
900の出力とフリップフロップ300のリセット信号
とはOR回路91Oの2つの入力に接続されている。そ
して、OR回路910の出力を進角信号としての点火信
号とすると共に、OR回路910の出力が1”レベルの
とき、スイッチ700を閉じ、演算用コンデンサ108
の電荷を瞬時に放電させる。
A reference voltage (2) is input to a child terminal of the operational amplifier 400. Operational capacitor 108 is connected to operational amplifier 40 when analog switches 600 and 700 are both open.
0, it is charged with a constant current IC through the resistor 107,
When the switch 600 is closed and the switch 700 is open, the charge in the calculation capacitor 108 is discharged via the resistor 106 with a constant current id, and the moment the switch 700 is closed, the charge in the calculation capacitor 108 is discharged. switch 6
00 is configured to close when the Q output of the flip-flop 300 is at the "1" level, and the switch 700 is closed when the Q output of the flip-flop 300 is at the "1" level.
It is configured to close when the output of the R circuit 910 is at the "1" level. Constant voltage V' is resistor 109, 110, 11
The voltage is divided by one series circuit to generate reference voltages Vs and V. That is, the voltage across the resistor 111 is applied to the operational amplifier 40.
0 reference voltage vP, the voltage at the connection point of the resistors 109 and 110 is the reference voltage Vs, this reference voltage Vs and the voltage of the calculation capacitor 108 are used as a comparator 8000 Å, and the output of the comparator 800 and the voltage of the flip-flop 300 are The Q output is connected to two inputs of an AND circuit 900, and the output of the AND circuit 900 and the reset signal of the flip-flop 300 are connected to two inputs of an OR circuit 91O. Then, the output of the OR circuit 910 is used as an ignition signal as an advance angle signal, and when the output of the OR circuit 910 is at the 1" level, the switch 700 is closed and the calculation capacitor 108 is closed.
instantly discharges the electric charge.

以上に記載された如く構成された点火時期制御回路11
の動作を第5図に示される波形図で説明するが、初めに
定電圧回路50の出力電圧が一定飽和値に達した後の安
定した進角途上の中速領域で説明する。センサ2には第
5図(A)の如く、ロータ20の1回転につき1サイク
ルの信号電圧が発生する。この信号電圧の正方向電圧と
同期して比較器100の出力に第5図(B)の如く、パ
ルス信号が発生し、また負方向電圧と同期して比較器2
00の出力に第5図(C)の如く、パルス信号が発生す
る。定電圧回路50の出力電圧が一定飽和値に達してい
るため、比較器100の出力はフリップフロップ300
のセント信号となり、比較器200の出力はフリップフ
ロップ300のリセット信号となる。セット信号の立ち
上がり位置は高速固定進角位置θ□と、リセット信号の
立ち上がり位置は低速固定進角位置θ、とそれぞれ一致
させているので、フリップフロップ300のQ出力は第
5図(D)の如く、高速固定進角位置θ肘で“1”レベ
ルに立ち上がり、低速固定進角位置θ、で“O”レベル
に立ち下がる。フリップフロップ300のQ出力が″1
″レベルのときスイッチ600は閉じるため、定電流i
cにより充電されていた演算用コンデンサ108の電荷
はセット信号の立ち上がり位置(高速固定進角位置θH
)より定電流idで放電し始め、演算用コンデンサ10
8の電圧は低下し始める。そして、この電圧と抵抗器1
09〜111により設定された基準電圧Vsとを比較器
800の入力とし〔演算用コンデンサ108の電圧〈基
準電圧Vs)の時、比較器800の出力は“1”レベル
となる(第5図(F))。第5図(F)は中速の進角時
の状態を表わすものであり、低速固定進角時、及び高速
固定進角時の状態については後述する。比較器800の
出力とフリップフロップ300のQ出力とはAND回路
900を介し、AND回路900の出力は、第5図CG
)の如くになる。そして、AND回路900の出力とフ
リップフロップ300のリセット信号とはOR回路91
0を介し、02回910の出力(第5図(H))がサイ
リスタ7をトリガさせるための点火信号となると共に、
点火信号が“l”レベルとなると、スイッチ700は閉
じるので、演算用コンデンサ108の電荷は点火信号の
立ち上がり位置で瞬時に放電する。そして、スイッチ6
00および700が共に開く位置、すなわち点火信号の
立ち下がり位置より演算用コンデンサ108は再び定電
流icで充電が開始され、演算用コンデンサ108の電
圧は第5図(E)の如く変化する。
Ignition timing control circuit 11 configured as described above
The operation will be explained with reference to the waveform diagram shown in FIG. 5. First, the explanation will be given in the middle speed region in the middle of a stable advance after the output voltage of the constant voltage circuit 50 reaches a certain saturation value. As shown in FIG. 5(A), a signal voltage of one cycle is generated in the sensor 2 for each rotation of the rotor 20. In synchronization with the positive direction voltage of this signal voltage, a pulse signal is generated at the output of the comparator 100 as shown in FIG.
A pulse signal is generated at the output of 00 as shown in FIG. 5(C). Since the output voltage of the constant voltage circuit 50 has reached a certain saturation value, the output of the comparator 100 is output from the flip-flop 300.
The output of the comparator 200 becomes the reset signal of the flip-flop 300. The rising position of the set signal coincides with the high-speed fixed advance angle position θ□, and the rising position of the reset signal coincides with the low-speed fixed advance angle position θ, so the Q output of the flip-flop 300 is as shown in FIG. 5(D). As shown, it rises to the "1" level at the high speed fixed advance angle position θ, and falls to the "O" level at the low speed fixed advance angle position θ. Q output of flip-flop 300 is "1"
'' level, the switch 600 closes, so the constant current i
The electric charge of the calculation capacitor 108 charged by c is at the rising position of the set signal (high-speed fixed advance angle position
) starts discharging at a constant current id, and the calculation capacitor 10
The voltage at 8 begins to drop. And this voltage and resistor 1
When the reference voltage Vs set by 09 to 111 is input to the comparator 800 [voltage of the calculation capacitor 108 (reference voltage Vs)], the output of the comparator 800 becomes "1" level (see Fig. 5). F)). FIG. 5(F) shows the state during medium speed advance angle, and the states during low speed fixed advance angle and high speed fixed advance angle will be described later. The output of the comparator 800 and the Q output of the flip-flop 300 are passed through an AND circuit 900, and the output of the AND circuit 900 is as shown in FIG.
). The output of the AND circuit 900 and the reset signal of the flip-flop 300 are combined with the OR circuit 91.
0, the output of 02 times 910 (FIG. 5 (H)) becomes an ignition signal for triggering the thyristor 7, and
When the ignition signal reaches the "L" level, the switch 700 closes, so that the charge in the calculation capacitor 108 is instantly discharged at the rising position of the ignition signal. And switch 6
From the position where both 00 and 700 open, that is, the falling position of the ignition signal, the calculation capacitor 108 starts charging again with the constant current IC, and the voltage of the calculation capacitor 108 changes as shown in FIG. 5(E).

第6図は第1図に示される演算用コンデンサ108の波
形図を示す。低速固定進角時、中速進角時、高速固定進
角時の各状態での演算用コンデンサ108の電圧は第6
図NI、’NM 、Noの如くになる。すなわち、演算
用コンデンサ108の高速固定進角位置θ□での電圧は
機関回転数に反比例し、低速固定進角時は演算用コンデ
ンサ108の充電時間が長いため、第6図のN、の如く
高速固定進角位置8つでの電圧が高くなり、基準電圧V
sまで電圧が低下する位置は低速固定進角位置θ、より
遅れるが、センサ2の負方向信号電圧により低速固定進
角位置θ、で点火が行われる。そして、回転が上昇する
と充電時間が短くなるため、θオでの演算用コンデンサ
10Bの電圧は低くなり、このため、基準電圧Vsまで
低下する位置も徐々に進角側に移行し、やがてθLより
進みとなる。つまり、ある回転数まで上昇すると、低速
固定進角位置θ、より進角し始める。この状態が第6図
のNMである。更に回転が上昇すると、点火時期は高速
回転進角位置θ8に近づいていき、やがて演算用コンデ
ンサ108の電圧は第6図のN。の如く、θ□でも基準
電圧Vsより低くなる。
FIG. 6 shows a waveform diagram of the calculation capacitor 108 shown in FIG. The voltage of the calculation capacitor 108 in each state during low speed fixed advance angle, medium speed advance angle, and high speed fixed advance angle is 6th.
It will look like Figure NI, 'NM, No. In other words, the voltage of the calculation capacitor 108 at the high-speed fixed advance angle position θ□ is inversely proportional to the engine speed, and since the charging time of the calculation capacitor 108 is long during low-speed fixed advance angle, the voltage is as shown by N in FIG. The voltage at 8 high-speed fixed advance angle positions increases, and the reference voltage V
The position where the voltage drops to s is delayed from the low speed fixed advance angle position θ, but ignition is performed at the low speed fixed advance angle position θ due to the negative direction signal voltage of the sensor 2. As the rotation increases, the charging time becomes shorter, so the voltage of the calculation capacitor 10B at θO becomes lower, and therefore the position where it drops to the reference voltage Vs gradually shifts to the advance side, and eventually becomes lower than θL. It will be advanced. In other words, when the rotational speed increases to a certain level, the angle starts to advance further to the low speed fixed advance angle position θ. This state is NM in FIG. As the rotation further increases, the ignition timing approaches the high-speed rotation advance position θ8, and eventually the voltage of the calculation capacitor 108 reaches N in FIG. As shown, even θ□ is lower than the reference voltage Vs.

この状態では比較器800の出力は常に“1”となり、
点火時期はフリップフロップ300のQ出力が“1”に
立ち上がる位置、すなわち高速固定進角位置θ8となる
。つまり回転がこれ以上上昇しても点火時期はθ工で固
定となる。
In this state, the output of the comparator 800 is always "1",
The ignition timing is at the position where the Q output of the flip-flop 300 rises to "1", that is, the high speed fixed advance angle position θ8. In other words, even if the rotation increases further, the ignition timing will be fixed at θ.

次に始動時の回路用電源電圧の上昇過程における動作を
、第7図を用いて説明する。
Next, the operation in the process of increasing the power supply voltage for the circuit at the time of starting will be explained using FIG. 7.

第7図において、(A)は回路用電源電圧■゛の始動時
の立上り波形、(B)はセンサ2の出力信号波形、(C
)は比較器100の出力信号波形、(D)は比較器20
0の出力信号波形、(E)は電源電圧検出回路71の出
力信号波形、(F)はセント回路940の出力信号波形
、(G)はAND回路950の出力信号波形、(H)は
フリップフロップ300出力信号波形、(1)は演算用
コンデンサ108の出力電圧波形、(J)は比較器80
0の出力信号波形、(K)はAND回路900の出力信
号波形、(L)はOR回路910の出力信号波形をそれ
ぞれ示す。
In Fig. 7, (A) is the rising waveform of the circuit power supply voltage ゛ at the time of starting, (B) is the output signal waveform of sensor 2, and (C
) is the output signal waveform of the comparator 100, (D) is the comparator 20
0, (E) is the output signal waveform of the power supply voltage detection circuit 71, (F) is the output signal waveform of the cent circuit 940, (G) is the output signal waveform of the AND circuit 950, (H) is the flip-flop 300 output signal waveform, (1) is the output voltage waveform of the calculation capacitor 108, (J) is the comparator 80
0, (K) shows the output signal waveform of the AND circuit 900, and (L) shows the output signal waveform of the OR circuit 910.

そして、始動時、回路用電源電圧V”  (第7図(A
))の上昇過程において、電源電圧■°が設定検出電圧
V、に達しない期間、電源電圧検出回路71の出力(第
7図(E))は“0”レベルになっており、セット回路
940の出力(第7図(F))も0”レベルとなり、A
ND回路950の出力は“0”レベ°ルを維持する。従
って、この状態において高速固定進角位置θ□で比較器
100の出力信号(第7図(C))が“1”レベルにな
っても、フリップフロップ300のセット入力端子には
セント信号が入力されない為、演算用コンデンサ10B
は放電せず、そのまま低速固定進角位置θLlまで充電
を継続し、この低速固定進角位置θ、にてリセットされ
る。
Then, at the time of starting, the circuit power supply voltage V" (Fig. 7 (A
)), during the period when the power supply voltage ■° does not reach the set detection voltage V, the output of the power supply voltage detection circuit 71 (FIG. 7(E)) is at the "0" level, and the set circuit 940 The output (Fig. 7 (F)) also becomes 0" level, and A
The output of ND circuit 950 maintains the "0" level. Therefore, in this state, even if the output signal of the comparator 100 (FIG. 7(C)) reaches the "1" level at the high-speed fixed advance angle position θ□, the cent signal is input to the set input terminal of the flip-flop 300. Since it is not, use a calculation capacitor 10B.
is not discharged, but continues to be charged to the low-speed fixed advance angle position θLl, and is reset at this low-speed fixed advance angle position θ.

これにより、進角信号(第7図(L))は低速固定進角
位置θ、にて立ち上がり、過進角とはならない。
As a result, the advance angle signal (FIG. 7(L)) rises at the low speed fixed advance angle position θ, and does not become overadvanced.

また、機関の始動に伴なって、電源電圧V゛が、第7図
のθ、、θ□位置間で設定電圧Vllに達した場合、前
述と同様、セット回路940のセット入力端子にはセッ
ト信号が入力されない為、θ■位置で演算用コンデンサ
10Bは放電せず二〇L2位置が進角信号の立ち上がり
位置となる。
Further, when the power supply voltage V' reaches the set voltage Vll between the θ, and θ□ positions in FIG. 7 as the engine starts, the set input terminal of the set circuit 940 is Since no signal is input, the calculation capacitor 10B does not discharge at the θ■ position, and the 20L2 position becomes the rising position of the advance angle signal.

しかして、セント回路940は、電源電圧V+が設定電
圧Vlに達した以後のθL2位置にて、セット信号が入
力される為、θ0位置にて“1”レベルとなる。このよ
うにしてセット回路940が“l”レベルに立ち上った
θL2位置以後のθ。位置では、フリプフロソプ300
のセット入力端子に進角制御回路70の出力(第7図(
G))がセット信号として入力される為、演算用コンデ
ンサ108は放電を開始するが、θ。位置での演算用コ
ンデン9−108の電圧(第7図(■))は、電源電圧
V゛が略飽和値に達した領域での定電流充電電圧である
ため、充分大きくなっており、θ。
Since the set signal is input to the cent circuit 940 at the θL2 position after the power supply voltage V+ reaches the set voltage Vl, the voltage becomes "1" level at the θ0 position. θ after the θL2 position where the set circuit 940 rises to the “L” level in this way. In position, Flipflossop 300
The output of the advance angle control circuit 70 (Fig. 7 (
G)) is input as a set signal, the calculation capacitor 108 starts discharging, but θ. The voltage of the calculation capacitor 9-108 at the position (Fig. 7 (■)) is a constant current charging voltage in the region where the power supply voltage V' has almost reached the saturation value, so it is sufficiently large and θ .

位置で演算用コンデンサ108の放電を開始して進角演
算を行なっても過進角にはならない。
Even if the calculation capacitor 108 starts discharging at this position and the advance angle calculation is performed, the angle will not be overadvanced.

即ち、本実施例の如く、電源電圧の上昇過程において、
電源電圧V゛の略飽和値V、を検出し、かつ、電圧検出
直後のθ□位置にて演算用コンデンサ108を放電して
進角演算を行なうのではなく、電圧検出直後のθ0位置
の基準角度信号で進角演算禁止命令を解除し、θ0..
位置までの演算用コンデンサ電圧により、機関の平均回
転数(θ8での演算用コンデンサ電圧値は機関の平均回
転数に反比例する)を求め、この回転数に対応する進角
値を決定する様に演算用コンデンサ108の電圧を放電
させることにしたため、電源電圧の上昇変化分の大きい
期間で求めた平均回転数に基づく進角演算による過進角
を防止できるのである。
That is, as in this embodiment, in the process of increasing the power supply voltage,
Instead of detecting the approximate saturation value V of the power supply voltage V' and discharging the calculation capacitor 108 at the θ□ position immediately after the voltage detection to perform advance angle calculation, the standard of the θ0 position immediately after the voltage detection is used. The advance angle calculation prohibition command is canceled by the angle signal, and θ0. ..
Based on the calculation capacitor voltage up to the position, the average rotation speed of the engine (the calculation capacitor voltage value at θ8 is inversely proportional to the engine average rotation speed) is determined, and the advance angle value corresponding to this rotation speed is determined. Since the voltage of the calculation capacitor 108 is discharged, it is possible to prevent over-advance due to the advance angle calculation based on the average rotational speed obtained during a period in which the increase in the power supply voltage is large.

また、上述の実施例によれば、充電電流に比べて数倍大
きな放電電流が、機関始動時、低速時に阻止されること
になるため、消費力の低減が可能となり、電源電圧の飽
和時間が短くなるばかりでなく、特に低速時において発
生出力が低下する磁石発電機を点火電源とする点火装置
においては点火性能を向上できる。
In addition, according to the above-described embodiment, the discharging current, which is several times larger than the charging current, is blocked at engine startup and at low speeds, so power consumption can be reduced, and the saturation time of the power supply voltage is reduced. Not only can the length be shortened, but also the ignition performance can be improved in an ignition system that uses a magnet generator as the ignition power source, which generates a lower output especially at low speeds.

なお、上述した第1実施例では、進角制御回路70とし
て、進角演算開始位置を決定する09位置での基準角度
信号の、進角演算回路30のフリップフロップ300の
セット入力端子への供給を制御する様に構成したが、第
8図に示す第2実施例の如く、進角演算開始信号となり
うるフリップフロップ300のQ出力を制御する構成に
しても全く一同様な効果が得られることはいうまでもな
い。
In the first embodiment described above, the lead angle control circuit 70 supplies the reference angle signal at the 09 position, which determines the lead angle calculation start position, to the set input terminal of the flip-flop 300 of the lead angle calculation circuit 30. However, the same effect can be obtained by controlling the Q output of the flip-flop 300, which can serve as the advance angle calculation start signal, as in the second embodiment shown in FIG. Needless to say.

第10図は進角wJWi回路70の他の実施例を示し、
第11図はその作動説明に供する各部波形図であり、第
11図(A)〜(D)、(G)は第7図(A)〜(D)
、(G)と同じである。第1゜゛ 図において、進角制
御回路70は電源電圧検出回路71、入力制御回路72
によって構成され、電源電圧検出回路71は第1図の実
施例とほぼ同じもの(抵抗924を省略したもの)であ
って、電源電圧が設定検出電圧以上になるとトランジス
タ926がONからOFFする(第11図(E))。
FIG. 10 shows another embodiment of the advance angle wJWi circuit 70,
FIG. 11 is a waveform diagram of each part to provide an explanation of its operation, and FIGS.
, (G). In FIG. 1, the advance angle control circuit 70 includes a power supply voltage detection circuit 71 and an input control circuit 72.
The power supply voltage detection circuit 71 is almost the same as the embodiment shown in FIG. Figure 11 (E)).

入力制御回路72はAND回路950と、抵抗931〜
936、トランジスタ937〜939で構成されるセッ
ト回路940Aとで構成され、第11図に示す様に、電
源電圧が設定検出電圧以下ではコンパレータ200の出
力信号と同期して、セット回路940Aの出力端子であ
るトランジスタ937のコレクタ端子にはコンパレータ
200の出力信号と同一信号が出力されるが、電源電圧
が設定以上になると、コンパレータ200の出力信号の
立ち上がり位置(θL)に同期して“1”レベルを保持
する(第11図 (F))。このようにセット回路94
0Aの出力が“1″レベルに保持されることにより、コ
ンパレータ100の出力信号を進角演算回路30のフリ
ップフロップ3゜Oのセント入力端子に供給することが
可能となる(第11図(G))。
The input control circuit 72 includes an AND circuit 950 and resistors 931 to
936, and a set circuit 940A composed of transistors 937 to 939. As shown in FIG. 11, when the power supply voltage is lower than the set detection voltage, the output terminal of the set circuit 940A is The same signal as the output signal of the comparator 200 is output to the collector terminal of the transistor 937, but when the power supply voltage exceeds the setting, the level becomes "1" in synchronization with the rising position (θL) of the output signal of the comparator 200. (Fig. 11 (F)). In this way, the set circuit 94
By holding the output of 0A at the "1" level, it becomes possible to supply the output signal of the comparator 100 to the cent input terminal of the flip-flop 3°O of the advance angle calculation circuit 30 (see FIG. 11 (G). )).

また、上述した第1実施例においては、第1の電源回路
40出力を入力とした定電圧回路5oの出力電圧V+を
回路用電源として用いたが、これに限定するものではな
く2例えば第1の電源回路40を回路用電源として用い
た場合も同様な効果が得られる。
Further, in the first embodiment described above, the output voltage V+ of the constant voltage circuit 5o inputting the output of the first power supply circuit 40 was used as the circuit power supply, but the invention is not limited to this. Similar effects can be obtained when the power supply circuit 40 is used as a circuit power supply.

また、進角演算回路としては、積分器を用いた演算用コ
ンデンサ108への定電流充電圧による進角演算方式に
限定するものでな(、公知となっている他の進角演算方
法(例えば、2つの積分器を用いる特開昭54−113
733号公報、演算用コンデンサの充放電電流を機関回
転数に応じて変化させる特開昭55−84863号公報
、2つの定電流回路により演算用コンデンサを充電する
特開昭56−143351号公報、2つの演算用コンデ
ンサを用いる特開昭58−44271号公報等)に適用
しても同じ効果が得られる。
Further, the lead angle calculation circuit is not limited to the lead angle calculation method using a constant current charging voltage to the calculation capacitor 108 using an integrator (other known lead angle calculation methods such as , JP-A-54-113 using two integrators
No. 733, Japanese Patent Application Laid-Open No. 55-84863 which changes the charging and discharging current of a calculation capacitor according to the engine rotation speed, Japanese Patent Application Laid-Open No. 56-143351 which charges a calculation capacitor with two constant current circuits, The same effect can be obtained even when applied to Japanese Patent Laid-Open Publication No. 58-44271, etc., which uses two calculation capacitors.

(発明の効果) 以上述べたように本発明においては、始動時等の電源回
路の電源電圧上昇過程では、この電源電圧が設定値にな
るまで進角演算回路の入力を制御して進角信号の発生を
阻止し、低速固定位置を点火時期とするから、電源回路
の電源電圧の所定値への上昇過程においても過進角を防
止して低速固定位置で確実に点火することができるとい
う優れた効果がある。
(Effects of the Invention) As described above, in the present invention, in the process of increasing the power supply voltage of the power supply circuit at the time of starting, etc., the input of the lead angle calculation circuit is controlled until the power supply voltage reaches the set value, and the lead angle signal is output. Since the ignition timing is set at the low speed fixed position, over-advance can be prevented even in the process of increasing the power supply voltage of the power supply circuit to a predetermined value, and the ignition can be reliably ignited at the low speed fixed position. It has a positive effect.

さらに、電源電圧検出回路が設定電圧値を検出したのち
の平均回転数に基づいて進角演算された出力信号のみを
進角信号とする様に進角・回路の入力を制御するから、
電源回路の電源電圧が所定値に上昇した直後の過進角を
も確実に防止することができるのみならず、電源電圧が
設定値に上昇するまでは進角演算回路の進角演算がなさ
れないから、機関始動時における進角演算回路の消費電
力の低減が可能で、電源電圧の所定値への立ち上がり時
間を短か(することができて、点火性能を向上すること
ができるという優れた効果がある。
Furthermore, the lead angle/circuit input is controlled so that only the output signal calculated based on the average rotational speed after the power supply voltage detection circuit detects the set voltage value is used as the lead angle signal.
Not only is it possible to reliably prevent over-advanced angle immediately after the power supply voltage of the power supply circuit rises to a predetermined value, but also the lead angle calculation circuit does not perform lead angle calculation until the power supply voltage rises to the set value. As a result, it is possible to reduce the power consumption of the advance angle calculation circuit when starting the engine, shorten the time it takes for the power supply voltage to reach a predetermined value, and improve ignition performance. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の第1実施例における点火時期制御
回路の詳細回路を示す電気回路図、第2図は上記実施例
の全体構成を示す電気回路図、第3図は従来装置の作動
説明に供する各部波形図、第4図は上記実施例における
センサ部分の構造を示す模式斜視図、第5図および第7
図は上記実施例の作動説明に供する各部波形図、第6図
は上記実施例における演算用コンデンサの波形図、第8
図は本発明装置の第2実施例における点火時期制御回路
を示す要部電気回路図、第9図は上記第1実施例におけ
るセット回路の詳細電気回路図、第1θ図は上記第1実
施例における進角制御回路の他の実施例を示す電気回路
図、第11図は第1O図図示回路の作動説明に供する各
部波形図である。 l・・・磁石発電機のコンデンサ充電コイル、2・・・
センサ、11・・・点火時期制御回路、30・・・進角
演算回路、40.50・・・電源回路を構成する第1の
電源回路と定電圧回路、60・・・基準角度信号発生回
路、70・・・進角制御回路、71・・・電源電圧検出
回路、72・・・入力制御回路、108・・・演算用コ
ンデンサ。
Fig. 1 is an electric circuit diagram showing the detailed circuit of the ignition timing control circuit in the first embodiment of the device of the present invention, Fig. 2 is an electric circuit diagram showing the overall configuration of the above embodiment, and Fig. 3 is the operation of the conventional device. 4 is a schematic perspective view showing the structure of the sensor portion in the above embodiment, and FIGS. 5 and 7 are waveform diagrams of various parts for explanation.
The figures are waveform diagrams of various parts used to explain the operation of the above embodiment, Fig. 6 is a waveform diagram of the calculation capacitor in the above embodiment, and Fig. 8 is a waveform diagram of the calculation capacitor in the above embodiment.
The figure is a main part electric circuit diagram showing the ignition timing control circuit in the second embodiment of the device of the present invention, Figure 9 is a detailed electric circuit diagram of the set circuit in the first embodiment, and Figure 1θ is the first embodiment. FIG. 11 is an electric circuit diagram showing another embodiment of the advance angle control circuit in FIG. l... Capacitor charging coil of magnet generator, 2...
Sensor, 11...Ignition timing control circuit, 30...Advance angle calculation circuit, 40.50...First power supply circuit and constant voltage circuit constituting the power supply circuit, 60...Reference angle signal generation circuit , 70... Advance angle control circuit, 71... Power supply voltage detection circuit, 72... Input control circuit, 108... Calculation capacitor.

Claims (1)

【特許請求の範囲】[Claims] 内燃機関により駆動される磁石発電機と、内燃機関の回
転と同期して、機関の所定クランク位置に対応した第1
の基準角度位置およびこの第1の基準角度位置よりも所
定角度遅れたクランク位置に対応した第2の基準角度位
置を検出するセンサと、このセンサの出力により基準角
度信号を発生する基準角度信号発生回路と、演算用コン
デンサ含み、前記基準角度信号発生回路からの出力信号
に基づき、機関の平均回転数を求め、この回転数に基づ
き進角値を決定する進角演算回路と、前記磁石発電機の
発生出力を電源として前記進角演算回路に供給するため
の電源回路と、この電源回路の電源電圧を検出する電源
電圧検出回路およびこの電源電圧検出回路が設定電圧値
を検出したのちの平均回転数に基づいて進角演算された
出力信号のみを進角信号とする様に前記進角演算回路の
入力を制御するための入力制御回路を含む進角制御回路
とを備える磁石発電機式内燃機関用無接点点火装置。
a magnet generator driven by the internal combustion engine;
a reference angular position and a second reference angular position corresponding to a crank position delayed by a predetermined angle from the first reference angular position; and a reference angular signal generator that generates a reference angular signal based on the output of the sensor. a circuit, an advance angle calculation circuit including a calculation capacitor, which calculates an average rotational speed of the engine based on an output signal from the reference angle signal generation circuit, and determines an advance angle value based on this rotational speed; and the magnet generator. A power supply circuit for supplying the generated output to the advance angle calculation circuit as a power supply, a power supply voltage detection circuit for detecting the power supply voltage of this power supply circuit, and an average rotation after the power supply voltage detection circuit detects the set voltage value. and a lead angle control circuit including an input control circuit for controlling the input of the lead angle calculation circuit so that only the output signal whose lead angle is calculated based on the number is used as the lead angle signal. Non-contact ignition device.
JP59270282A 1984-03-21 1984-12-20 Contactless ignition device for magnetogenerator type internal-combustion engine Pending JPS61149572A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59270282A JPS61149572A (en) 1984-12-20 1984-12-20 Contactless ignition device for magnetogenerator type internal-combustion engine
US06/713,681 US4624234A (en) 1984-03-21 1985-03-20 Electronic ignition timing adjusting system for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59270282A JPS61149572A (en) 1984-12-20 1984-12-20 Contactless ignition device for magnetogenerator type internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61149572A true JPS61149572A (en) 1986-07-08

Family

ID=17484082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59270282A Pending JPS61149572A (en) 1984-03-21 1984-12-20 Contactless ignition device for magnetogenerator type internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61149572A (en)

Similar Documents

Publication Publication Date Title
US7931014B2 (en) Kickback preventing circuit for engine
US4624234A (en) Electronic ignition timing adjusting system for internal combustion engines
JPS6217676B2 (en)
JPS61149572A (en) Contactless ignition device for magnetogenerator type internal-combustion engine
JPS6217671B2 (en)
JP2005061380A (en) Ignitor for capacitor discharge type internal combustion engine
JPS6119972A (en) Contactless ignitor for internal-combustion engine
JP3075095B2 (en) Ignition device for internal combustion engine
JPH09144636A (en) Ignition device for internal combustion engine
JPH0421012Y2 (en)
JPH0430381Y2 (en)
JPH0422065Y2 (en)
JP2004360631A (en) Ignition device for capacitor discharge type internal combustion engine
JP2623706B2 (en) Ignition device for internal combustion engine
JPS638865Y2 (en)
JP3008746B2 (en) Ignition device for internal combustion engine
JP3149709B2 (en) Ignition device for internal combustion engine
JPH0248702Y2 (en)
JPS6128054Y2 (en)
JP3070261B2 (en) Rotation detection signal generation circuit for internal combustion engine
JP2004169615A (en) Non-contact ignition device for internal combustion engine
JPH0422063Y2 (en)
JP3097457B2 (en) Ignition device for internal combustion engine
JP3379328B2 (en) Ignition device for internal combustion engine
JPS61149571A (en) Contactless ignition device for magnetogenerator type internal-combustion engine