JPS6114916B2 - - Google Patents

Info

Publication number
JPS6114916B2
JPS6114916B2 JP52110784A JP11078477A JPS6114916B2 JP S6114916 B2 JPS6114916 B2 JP S6114916B2 JP 52110784 A JP52110784 A JP 52110784A JP 11078477 A JP11078477 A JP 11078477A JP S6114916 B2 JPS6114916 B2 JP S6114916B2
Authority
JP
Japan
Prior art keywords
welding
gas
shielding gas
primary
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52110784A
Other languages
Japanese (ja)
Other versions
JPS5443843A (en
Inventor
Kyukichi Yanagidate
Ryohei Kumagai
Rokuro Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11078477A priority Critical patent/JPS5443843A/en
Publication of JPS5443843A publication Critical patent/JPS5443843A/en
Publication of JPS6114916B2 publication Critical patent/JPS6114916B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、溶加材に高ニツケル合金ワイヤを用
いたMIG溶接に係り、特に高能率で、しかも健全
な溶接部を得るガスシールド方法に関するもので
ある。 近年、石油資源の枯渇に伴ない、原子力関係、
液化天然ガスの低温貯槽関係の産業が脚光をあ
び、高ニツケル合金の溶接はもちろんのこと、低
合金鋼へのオーバーレイ、9%Ni鋼の溶接など
に高ニツケル合金を添加材として用いた溶接がま
すます多く適用される機運にある。 これらの溶接は従来、主に被覆アーク溶接棒に
よる手動アーク溶接またはTIG溶接で施工されて
いたが、溶接能率が低い欠点がある。 溶接能率の向上を計るための自動溶接として潜
弧溶接か、またはMIG溶接が考えられるが、潜弧
溶接は溶込みが深く、特に溶接金属の耐われ性に
問題が生じやすく、耐われ性を考慮した特定の溶
加材が適用されているが、世界的に適用されてい
るAWS SFA―5.14に規定されているワイヤをそ
のまま適用することはむずかしい。 他方、MIG法を適用する場合、シールドガスが
純アルゴンだと、アーク状態が不安定であるとと
もに、溶込みが少なく、コールドラツプ、オーバ
ーラツプなどの溶接欠陥ができやすい。 これらの溶接欠陥を改善するためには、シール
ドガス中に少量の炭酸ガス、酸素のような活性ガ
スを添加することが有効であるが、この場合ワイ
ヤ中に、Al,Ti,Nbなどが含まれていると
(AWS SAFA―5.14ERNiCr―3,ERNiCrFe―
6,ERNiCrMo―3など)、溶接金属ビード表面
に融点の高い酸化皮膜を生ずるとともに、溶接金
属の凝固状態に異常をきたし、融合不良、巻き込
みなどの溶接欠陥を生じ、実用上問題がある。 なお、高ニツケル合金ワイヤ中にこれらの元素
を添加するのは、脱酸剤として溶接金属のブロー
ホール防止のために必要であり、かつ溶接金属の
常温および高温強度改善に非常に有効な元素とし
て不可欠である。 一般にMIG溶接は、第2図の如く溶接ワイヤ1
に電極チツプ2を通して給電して溶接アーク5を
発生させ、シールドガスノズル3よりシールドガ
ス4を流して溶融池を1次シールドのみよりシー
ルドする方法がとられている。なお、6は溶接金
属、7は被溶接母材、Wは溶接方向を夫々示す。 この場合、溶接金属のシールドを良好に保つた
めに、シールドガスの組成、流量、シールドノズ
ルの形状などの適正なものを用いるとか、或いは
第1図に示すように第2図の様式のものに、さら
に1次シールドガスと全く同一の組成の2次シー
ルドガス9を2次シールドノズル8から供給する
手段など、種々提案がなされているが、Al,Ti
およびNbを含有する高ニツケル合金ワイヤにお
いてアーク状態を良好にして適正な溶込みが得ら
れ、しかもビート表面の酸化を少なくし、金属光
沢を得る方法は、まつたく見あたらない。 本発明者らは、この解決法について種々検討し
た結果、酸化皮膜の生成過程は、アークが発生し
溶滴が母材へ移行する瞬間に生成するものではな
く、主に溶融池において溶融金属の表面とアーク
を安定にするため混合した活性ガスとの反応によ
つて支配されるものであり、したがつて1次シー
ルドガスに活性ガスを混合してアークを安定にさ
せた上で、2次シールドガス(アルゴン)により
溶融金属だけを覆つてやると、溶接金属の酸化状
態が少なく、きれいな金属光沢を示し、溶融金属
の凝固状態も正常で適正な溶込みが得られ、健全
な溶接ができるという新たな知見を得た。 本発明はこのような知見に基いてなされたもの
であつて、1次シールドと2次シールドのガス組
成を異にすることに特徴があり、これらの相乗効
果によつてアークの安定を計ると共に、適正な溶
込みを得、しかもビード表面の酸化を防ぐところ
に意義がある。 すなわち、本発明はAl,Ti,Nbを含む高ニツ
ケル合金ワイヤを用いるMIG溶接において、1次
シールドガスとして、0.5〜10%の炭酸ガス、0.3
〜5%の酸素のいずれか一方、または両者の合計
で0.3〜7%を含み、残りが実質的にアルゴンか
らなる混合ガスを10〜50/min流すと共に、2
次シールドガスとして、アルゴンガスを3〜50
/min流すことを特徴とする高ニツケル合金ワ
イヤのMIG溶接におけるガスシールド方法であ
る。 以下本発明において、1次シールドガスとして
流す混合ガスの種類、混合比率、流量および2次
シールドの必要性、ガス流量を上述のように規定
した理由について述べる。 1次シールドガスは、アークの安定を計り、適
正な溶込みを得るために重要であつて、混合する
活性ガスの最低必要量は炭酸ガスで0.5%以上、
酸素では0.3%以上、両者を同時に混合する場合
は、両者の合計で0.3%以上であり、これらの活
性ガスが多くなればなるほどアーク状態が安定し
て、良好な溶込みが得られるが、他方炭酸ガスで
10%、酸素で5%、または両者の合計で7%を超
えると、1次シールドガスおよび2次シールドガ
スの流量をいくら多くしてもビード表面の酸化を
防止することはできなくなる。 したがつて、適正混合比率は、炭酸ガス0.5〜
10%、酸素0.3〜5%、また両者の合計で0.3〜7
%の範囲である。 1次シールドガスの流量としては、10/min
未満ではシールドの効果が不十分で、2次シール
ドガスの流量を多くしてもビード表面が酸化す
る。流量が多ければ多い程ビード表面の酸化が防
止されるが、50/minを超えて流しても効果が
それ以上顕著にならないので、10〜50/minが
適正流量範囲である。 次に1次シールドガスの組成、流量を先に述べ
た適正値に設定した場合の2次シールドガスの組
成および流量について述べる。 まず、2次シールドガスの組成であるが、そも
そも2次シールドの必要性は、1次シールドガス
のみでは、シールド性を確実に保証できないため
であるので、当然活性ガスを含まない不活性ガス
でなければならない。 不活性ガスとしては、アルゴンの他ヘリウムも
あるが、ヘリウムは比重が軽くシールド効果がア
ルゴンに比べ格段に低いので、本発明における2
次シールドガスはアルゴンがもつとも適してい
る。 2次シールドガスの流量としては、その効果が
実用の域に達するためには最少限3/min以上
が必要であり、1次シールドガスの組成が適正混
合量の上限に近ずく程、2次シールドガスの流量
を多くした方が効果が大きいので、1次シールド
ガスの組成に応じて、2次シールドガスの流量を
増減するが、50/minを超えても、それ以上の
効果が現われないので、適正流量範囲は3〜50
/minである。 なお、2次シールドガスによるシールド効果も
おのずから限度があり、1次シールドガスの組
成、流量が適正範囲を逸脱した場合、2次シール
ドガスの流量をいくら多くしても、ビード表面の
酸化、溶接欠陥を防止することができないことは
当然である。 以上、述べた通り従来、不可能であつたAl,
Ti,Nbを含む高ニツケル合金ワイヤによるMIG
溶接において、アーク状態が安定し、かつ適正な
溶込みが得られ、しかもビード表面の酸化が少な
く、溶接欠陥のない溶接が本発明になる方法によ
つて初めて可能になつた。 以下本発明の効果を実施例にて、さらに具体的
に述べる。 実施例―1 原子炉の炉体などに使われる高ニツケル合金、
インネル600の突合せ継手を、Al,Ti,Nbを含む
高ニツケル合金溶接ワイヤにて、種々の溶接条件
の下で実施した。 第1表に供試ワイヤの化学成分を示す。ワイヤ
のサイズは、直径1.6mmφを使用した。第2表に
供試母材(板厚20mm)の化学成分を示す。第3表
に試験結果を示す。試験に用いた母材の開先形状
は、開先角度70゜、ルートフエース8mmのY開先
であり、表、裏夫々4層ずつの8層溶接とした。
なお、裏側の溶接に際しては、深さ15mm、板厚表
面における巾18mmの寸法でU形に裏はつりをした
のち溶接した。 溶接に際しては本発明法を第1図に示す要領に
より、また、比較法を第2図に示す要領により、
夫々実施し、アーク状態、ビード表面の酸化状態
を調査すると共に、溶接継手部よりJISZ3122―
3号による寸法の側曲げ試験片を採取し、側曲げ
試験を行なつて、溶接欠陥の有無について試験し
た。この時の曲げ半径は板厚の2倍で、曲げ角度
は180゜とした。 溶接条件は、電源としてパルスMIG溶接機を用
い、電源特性は直流逆極性で、ワイヤ突出し長さ
15mmに設定し、溶接速度15cm/minとした。この
時の溶接電流180〜230Amp、溶接電圧25〜
30Volt、入熱は平均2.2万ジユールで、溶接姿勢
は下向である。 第3表の結果から明らかな通り、本発明方法に
よる試験番号17,18,19,20,33,34,35,36,
45,51,52,56,57,65,70,71が良好な結果が
得られていることは明らかである。 これに対し、比較例においては、2次シールド
を用いず、しかも1次シールドガスがアルゴン単
独の場合、試験番号1〜4,47,61の通り、ガス
流量を多くしてもアーク不安定で、溶接欠陥がみ
られた。また2次シールドの使用の如何にかかわ
らず、1次シールドガスとしてアルゴンに炭酸ガ
スまたは酸素を本発明の混合比未満混合ガスを流
した場合でも試験番号5〜8,21〜24,48,53,
54,62,67,68、の例にみる通り、アークは安定
したが、ビード表面は酸化し、溶接欠陥がみられ
た。 一方1次シールドガスとして、本発明範囲の混
合比のシールドガスを用いたが、2次シールドを
行なわない場合は、試験番号9〜12,25〜28,
49,63、の如くアーク状態は安定であつたが、ビ
ード表面が酸化し溶接欠陥がみられた。 さらに1次シールドガスとして、本発明範囲の
混合比のシールドガスを用いても、2次シールド
ガスの流量が不足の場合は、試験番号13〜16,29
〜32,50,55,64,69、の通り、アーク状態は安
定であつたが、ビード表面が酸化し溶接欠陥がみ
られた。 また1次シールドガスとして混合ガスを用いて
溶接を行なつた場合でも、1次シールドガスへの
炭酸ガスまたは酸素の混合量が本発明の範囲を超
えたり、2次シールドの流量が少なすぎたりする
と試験番号37〜44,58〜60,72〜74、の通りアー
ク状態は良好であるが、ビード表面が酸化し、溶
接欠陥がみられた。これらの傾向は、供試ワイヤ
3種について、いずれも同じであつた。
The present invention relates to MIG welding using a high nickel alloy wire as a filler metal, and particularly to a gas shielding method for obtaining a highly efficient and sound weld. In recent years, with the depletion of oil resources, nuclear energy-related
The industry related to low-temperature storage tanks for liquefied natural gas has been in the spotlight, and welding that uses high nickel alloy as an additive is not only for welding high nickel alloys, but also for overlaying low alloy steel, welding 9% Ni steel, etc. It is likely to be applied more and more often. Conventionally, these welds have been mainly performed by manual arc welding or TIG welding using coated arc welding rods, but these have the drawback of low welding efficiency. Submerged arc welding or MIG welding can be considered as automatic welding to improve welding efficiency, but submerged arc welding requires deep penetration and is particularly prone to problems with the durability of the weld metal. Although specific filler metals have been considered, it is difficult to apply the wire specified in AWS SFA-5.14, which is applied worldwide, as is. On the other hand, when applying the MIG method, if the shielding gas is pure argon, the arc condition will be unstable, penetration will be low, and welding defects such as cold laps and overlaps will easily occur. In order to improve these welding defects, it is effective to add a small amount of active gas such as carbon dioxide or oxygen to the shielding gas, but in this case, the wire may contain Al, Ti, Nb, etc. (AWS SAFA―5.14ERNiCr―3, ERNiCrFe―
6, ERNiCrMo-3, etc.), an oxide film with a high melting point is formed on the surface of the weld metal bead, and the solidification state of the weld metal is abnormal, resulting in welding defects such as poor fusion and entrainment, which is a practical problem. The addition of these elements to high nickel alloy wire is necessary as a deoxidizing agent to prevent blowholes in weld metal, and they are also very effective elements in improving the strength of weld metal at room and high temperatures. It is essential. Generally, in MIG welding, as shown in Figure 2, welding wire 1
The welding arc 5 is generated by supplying power through the electrode chip 2, and the shielding gas 4 is flowed through the shielding gas nozzle 3 to shield the molten pool using only the primary shield. In addition, 6 indicates a weld metal, 7 indicates a base material to be welded, and W indicates a welding direction. In this case, in order to maintain good shielding of the weld metal, appropriate shielding gas composition, flow rate, shield nozzle shape, etc. should be used, or the type shown in Fig. 2 as shown in Fig. 1 should be used. Furthermore, various proposals have been made, such as means for supplying a secondary shielding gas 9 having exactly the same composition as the primary shielding gas from the secondary shielding nozzle 8.
I have yet to find a method that can improve the arc condition of a high nickel alloy wire containing Nb, achieve appropriate penetration, reduce oxidation of the bead surface, and obtain metallic luster. As a result of various studies on this solution, the inventors of the present invention found that the oxide film is not formed at the moment when an arc is generated and the droplets transfer to the base metal, but mainly in the molten metal in the molten pool. It is dominated by the reaction between the surface and the active gas mixed to stabilize the arc. Therefore, after stabilizing the arc by mixing the active gas with the primary shielding gas, the secondary shielding gas is When only the molten metal is covered with shielding gas (argon), the oxidation state of the weld metal is low, it shows a beautiful metallic luster, the solidification state of the molten metal is also normal, and proper penetration is obtained, resulting in sound welding. I gained new knowledge. The present invention has been made based on this knowledge, and is characterized by having different gas compositions between the primary shield and the secondary shield, and the synergistic effect of these can stabilize the arc. , it is significant in that it achieves proper penetration and prevents oxidation of the bead surface. That is, the present invention uses 0.5 to 10% carbon dioxide gas and 0.3
A mixed gas containing either one of ~5% oxygen, or a total of 0.3~7% of both, with the remainder being essentially argon, is flowed at a rate of 10~50/min, and
Next, as a shielding gas, use 3 to 50 argon gas.
This is a gas shielding method for MIG welding of high nickel alloy wire, which is characterized by a flow rate of /min. In the present invention, the type, mixing ratio, and flow rate of the mixed gas flowed as the primary shielding gas, the necessity of the secondary shield, and the reason why the gas flow rate is defined as described above will be described below. The primary shielding gas is important for stabilizing the arc and achieving proper penetration, and the minimum required amount of active gas to be mixed is at least 0.5% carbon dioxide.
For oxygen, it is 0.3% or more, and when both are mixed at the same time, the total of both is 0.3% or more.The more these active gases are, the more stable the arc condition will be and the better penetration will be obtained. with carbon dioxide
If it exceeds 10%, 5% for oxygen, or 7% for both in total, oxidation of the bead surface cannot be prevented no matter how high the flow rates of the primary shielding gas and the secondary shielding gas are. Therefore, the proper mixing ratio is carbon dioxide 0.5~
10%, oxygen 0.3-5%, and the total of both 0.3-7
% range. The flow rate of the primary shielding gas is 10/min.
If it is less than that, the shielding effect is insufficient, and even if the flow rate of the secondary shielding gas is increased, the bead surface will be oxidized. The higher the flow rate, the more oxidation on the bead surface is prevented, but the effect will not become more pronounced even if the flow rate exceeds 50/min, so the appropriate flow rate range is 10 to 50/min. Next, the composition and flow rate of the secondary shielding gas will be described when the composition and flow rate of the primary shielding gas are set to the appropriate values described above. First, regarding the composition of the secondary shielding gas, the reason why the secondary shielding is necessary in the first place is that shielding performance cannot be guaranteed with the primary shielding gas alone, so it is natural to use an inert gas that does not contain active gas. There must be. In addition to argon, helium is also an inert gas, but since helium has a light specific gravity and a much lower shielding effect than argon, it is used as the second inert gas in the present invention.
Argon is also suitable as the next shielding gas. The flow rate of the secondary shielding gas must be at least 3/min or more in order for its effectiveness to reach a practical level, and the closer the composition of the primary shielding gas is to the upper limit of the appropriate mixing amount, the more the secondary shielding gas will flow. The effect is greater when the flow rate of the shielding gas is increased, so the flow rate of the secondary shielding gas is increased or decreased depending on the composition of the primary shielding gas, but even if it exceeds 50/min, no further effect appears. Therefore, the appropriate flow rate range is 3 to 50
/min. Note that the shielding effect of the secondary shielding gas naturally has its limits, and if the composition and flow rate of the primary shielding gas deviate from the appropriate range, no matter how high the flow rate of the secondary shielding gas, oxidation of the bead surface and welding may occur. It is natural that defects cannot be prevented. As mentioned above, Al, which was previously impossible,
MIG using high nickel alloy wire containing Ti and Nb
In welding, the method of the present invention has made it possible for the first time to perform welding in which the arc condition is stable, appropriate penetration is obtained, there is little oxidation on the bead surface, and there are no weld defects. The effects of the present invention will be described in more detail below with reference to Examples. Example-1 High nickel alloy used for reactor bodies, etc.
Butt joints of Innel 600 were made using high nickel alloy welding wires containing Al, Ti, and Nb under various welding conditions. Table 1 shows the chemical composition of the test wire. The wire size used was 1.6 mmφ in diameter. Table 2 shows the chemical composition of the test base material (plate thickness 20 mm). Table 3 shows the test results. The groove shape of the base metal used in the test was a Y groove with a groove angle of 70° and a root face of 8 mm, and eight layers of welding were performed, with four layers each on the front and back sides.
In addition, when welding the back side, the back side was welded after being hung in a U shape with dimensions of 15 mm in depth and 18 mm in width on the plate thickness surface. When welding, the method of the present invention was performed as shown in Figure 1, and the comparative method was performed as shown in Figure 2.
In addition to investigating the arc condition and the oxidation condition of the bead surface, we tested the welded joints according to JISZ3122.
A side bending test piece having dimensions according to No. 3 was taken, and a side bending test was conducted to test for the presence or absence of welding defects. The bending radius at this time was twice the plate thickness, and the bending angle was 180°. Welding conditions used a pulse MIG welding machine as the power source, the power characteristics were DC reverse polarity, and the wire protrusion length was
The welding speed was set at 15 mm and the welding speed was 15 cm/min. At this time welding current 180~230Amp, welding voltage 25~
30 Volt, average heat input is 22,000 Joules, and the welding position is downward. As is clear from the results in Table 3, test numbers 17, 18, 19, 20, 33, 34, 35, 36,
It is clear that good results have been obtained for samples 45, 51, 52, 56, 57, 65, 70, and 71. On the other hand, in the comparative example, when the secondary shield was not used and the primary shielding gas was argon alone, the arc was unstable even if the gas flow rate was increased, as shown in test numbers 1 to 4, 47, and 61. , welding defects were observed. In addition, regardless of whether or not a secondary shield is used, test numbers 5 to 8, 21 to 24, 48, and 53 also apply when a mixture of argon and carbon dioxide or oxygen, which is less than the mixing ratio of the present invention, is flowed as the primary shield gas. ,
As seen in examples 54, 62, 67, and 68, the arc was stable, but the bead surface was oxidized and welding defects were observed. On the other hand, as the primary shielding gas, a shielding gas having a mixture ratio within the range of the present invention was used, but when secondary shielding was not performed, test numbers 9 to 12, 25 to 28,
49 and 63, the arc condition was stable, but the bead surface was oxidized and welding defects were observed. Furthermore, even if a shielding gas with a mixing ratio within the range of the present invention is used as the primary shielding gas, if the flow rate of the secondary shielding gas is insufficient, test numbers 13 to 16, 29
As shown in ~32, 50, 55, 64, and 69, the arc condition was stable, but the bead surface was oxidized and welding defects were observed. Furthermore, even when welding is performed using a mixed gas as the primary shielding gas, the amount of carbon dioxide or oxygen mixed in the primary shielding gas may exceed the scope of the present invention, or the flow rate of the secondary shielding gas may be too low. As shown in test numbers 37-44, 58-60, and 72-74, the arc condition was good, but the bead surface was oxidized and welding defects were observed. These trends were the same for all three types of test wires.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 実施例―2 母材として低合金鋼ASTM―A―533B、板厚
40mmを用い、Al,Ti,Nbを含む高ニツケル合金
溶接ワイヤAWS SFA―5.14,ERNiCr―3相当
品にて種々の溶接条件の下で肉盛溶接を実施し
た。 第1表に供試ワイヤの化学成分を示す。。ワイ
ヤのサイズは、直径1.6mmφを使用した。第4表
に供試母材(板厚40mm)の化学成分を示す。第5
表に試験結果を示す。 溶接は、母材の上に25mmの高さまで多層肉盛溶
接を行なつた。 溶接に際しては本発明法を、第1図に示す要領
により、また、比較法を第2図に示す要領により
夫々実施し、アーク状態、ビード表面の酸化状態
を調査すると共に、溶接部よりJIS―Z―3122―
3号による寸法の側曲げ試験片を採取して、側曲
げ試験を行なつて、溶接欠陥の有無について試験
した。この時の曲げ半径は板厚の2倍で、曲げ角
度は180゜とした。 溶接条件は、電源としてパルスMIG溶接を用
い、電源特性は直流逆極性で、ワイヤ突出し長さ
15mmに設定し、溶接速度は10cm/minとした。溶
接は、溶接トーチをオシレートさせて行ない、オ
シレート巾は17mmとした。 溶接電流180〜230Amp、溶接電圧25〜
30Volt、入熱は平均3.4万ジユールで、溶接姿勢
は下向である。 第5表に示す通り、本発明による試験番号5,
6,7,13,14,15が良好な結果が得られている
ことは明らかである。 これに対し、比較例においては2次シールドを
行なわない試験番号1〜3にみる通り、アーク状
態あるいはビード表面の酸化状態が正常でなく、
溶接欠陥がみられた。また、2次シールドを行な
つた場合でも、2次シールドガスの流量が不足だ
と、試験番号4,9,12,17にみる通りビード表
面が酸化し、溶接欠陥がみられた。また、充分な
2次シールドを行なつた場合でも、1次シールド
ガスに混合する炭酸ガスあるいは酸素の量が不足
な場合、試験番号10,11、にみる通り、アーク状
態が不安定で、溶接欠陥がみられた。 一方、1次シールドおよび2次シールドを併用
した場合でも、1次シールドガスに混合する炭酸
ガスあるいは酸素の量が多すぎると、試験番号
8,16にみるように、ビード表面が酸化し、溶接
欠陥がみられた。
[Table] Example-2 Low alloy steel ASTM-A-533B as base material, plate thickness
Overlay welding was carried out under various welding conditions using a 40 mm high nickel alloy welding wire containing Al, Ti, and Nb equivalent to AWS SFA-5.14 and ERNiCr-3. Table 1 shows the chemical composition of the test wire. . The wire size used was 1.6 mmφ in diameter. Table 4 shows the chemical composition of the test base material (plate thickness 40 mm). Fifth
The test results are shown in the table. Welding was performed by multi-layer overlay welding to a height of 25 mm on the base metal. When welding, the method of the present invention was carried out as shown in Fig. 1, and the comparative method was carried out as shown in Fig. 2, and the arc condition and oxidation state of the bead surface were investigated, and the welded part was JIS- Z-3122-
A side bending test piece having dimensions according to No. 3 was taken and subjected to a side bending test to test for the presence or absence of welding defects. The bending radius at this time was twice the plate thickness, and the bending angle was 180°. The welding conditions used pulsed MIG welding as the power source, the power source characteristics were DC reverse polarity, and the wire protrusion length was
The welding speed was set to 15 mm and the welding speed was 10 cm/min. Welding was performed by oscillating the welding torch, and the oscillation width was 17 mm. Welding current 180~230Amp, welding voltage 25~
30 Volt, average heat input is 34,000 Joules, and the welding position is downward. As shown in Table 5, test number 5 according to the present invention,
It is clear that samples 6, 7, 13, 14, and 15 have yielded good results. On the other hand, in the comparative example, as seen in test numbers 1 to 3 in which secondary shielding was not performed, the arc condition or the oxidation condition of the bead surface was not normal.
Welding defects were observed. Furthermore, even when secondary shielding was performed, if the flow rate of secondary shielding gas was insufficient, the bead surface was oxidized and welding defects were observed as seen in test numbers 4, 9, 12, and 17. In addition, even if sufficient secondary shielding is performed, if the amount of carbon dioxide or oxygen mixed with the primary shielding gas is insufficient, the arc condition will be unstable and welding will occur, as seen in test numbers 10 and 11. A defect was observed. On the other hand, even if the primary shield and secondary shield are used together, if too much carbon dioxide or oxygen is mixed with the primary shield gas, the bead surface will oxidize and weld, as seen in test numbers 8 and 16. A defect was observed.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2次シールドガスを用いるMIG溶接方
法を示す図、第2図は従来より一般に使われてい
るMIG溶接方法を示す図である。 1…溶接ワイヤ、2…電極チツプ、3…1次シ
ールドノズル、4…1次シールドガス、5…溶接
アーク、6…溶接金属、7…被溶接母材、8…2
次シールドノズル、9…2次シールドガス、W…
溶接方向。
FIG. 1 is a diagram showing an MIG welding method using a secondary shielding gas, and FIG. 2 is a diagram showing a conventionally commonly used MIG welding method. DESCRIPTION OF SYMBOLS 1... Welding wire, 2... Electrode chip, 3... Primary shield nozzle, 4... Primary shielding gas, 5... Welding arc, 6... Weld metal, 7... Base material to be welded, 8... 2
Next shield nozzle, 9...Secondary shield gas, W...
Welding direction.

Claims (1)

【特許請求の範囲】[Claims] 1 Al,Ti,Nbを含む高ニツケル合金ワイヤを
用いるMIG溶接において、1次シールドガスとし
て0.5%〜10%の炭酸ガス、0.3%〜5%の酸素の
いずれか一方、または両者の合計で0.3〜7%を
含み、残りが実質的にアルゴンからなる混合ガス
を10〜50/min流すと共に、2次シールドガス
としてアルゴンガスを3〜50/min流すことを
特徴とする高ニツケル合金ワイヤのMIG溶接にお
けるガスシールド方法。
1 In MIG welding using high nickel alloy wire containing Al, Ti, and Nb, either 0.5% to 10% carbon dioxide gas, 0.3% to 5% oxygen, or 0.3% of both in total as the primary shielding gas. MIG of high nickel alloy wire characterized by flowing a mixed gas containing ~7% and the remainder substantially argon at 10 to 50/min, and flowing argon gas as a secondary shielding gas at 3 to 50/min. Gas shielding method in welding.
JP11078477A 1977-09-14 1977-09-14 Gas shielding method at mig arc welding of high nickel alloy wire Granted JPS5443843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11078477A JPS5443843A (en) 1977-09-14 1977-09-14 Gas shielding method at mig arc welding of high nickel alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11078477A JPS5443843A (en) 1977-09-14 1977-09-14 Gas shielding method at mig arc welding of high nickel alloy wire

Publications (2)

Publication Number Publication Date
JPS5443843A JPS5443843A (en) 1979-04-06
JPS6114916B2 true JPS6114916B2 (en) 1986-04-21

Family

ID=14544525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11078477A Granted JPS5443843A (en) 1977-09-14 1977-09-14 Gas shielding method at mig arc welding of high nickel alloy wire

Country Status (1)

Country Link
JP (1) JPS5443843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527126Y2 (en) * 1990-03-09 1993-07-09

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4327671A1 (en) * 1993-08-17 1995-02-23 Linde Ag Inert gas arc welding process for non-ferrous metals, especially aluminum materials
US5440099A (en) * 1993-12-22 1995-08-08 Fn Mfg Llc Welding complicated, difficult-to-weld metal components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161446A (en) * 1974-11-26 1976-05-28 Nippon Kokan Kk GASUSHIIRUDOAAKUYOSETSUHO
JPS5161453A (en) * 1974-11-27 1976-05-28 Nippon Kokan Kk
JPS5242441A (en) * 1971-08-06 1977-04-02 Int Nickel Co Process for welding nickel alloy
JPS5276242A (en) * 1975-12-23 1977-06-27 Nippon Kokan Kk High speed gas shielded arc welding process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242441A (en) * 1971-08-06 1977-04-02 Int Nickel Co Process for welding nickel alloy
JPS5161446A (en) * 1974-11-26 1976-05-28 Nippon Kokan Kk GASUSHIIRUDOAAKUYOSETSUHO
JPS5161453A (en) * 1974-11-27 1976-05-28 Nippon Kokan Kk
JPS5276242A (en) * 1975-12-23 1977-06-27 Nippon Kokan Kk High speed gas shielded arc welding process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527126Y2 (en) * 1990-03-09 1993-07-09

Also Published As

Publication number Publication date
JPS5443843A (en) 1979-04-06

Similar Documents

Publication Publication Date Title
JP5107492B2 (en) Method for MIG welding of nickel and nickel alloys using a shielding gas based on argon and carbon dioxide
JPH03142100A (en) Electrode including basic metal core
CN102059476A (en) Hardfacing MIG-arc welding wire and hardfacing MIG-arc welding process
KR20140131996A (en) A welding wire electrode, a welding method and a welding system
US11426824B2 (en) Aluminum-containing welding electrode
US3405248A (en) Core wire for electric arc welding
US3221136A (en) Method and electrode for electric arc welding
EP3444063A2 (en) Electrodes for forming austenitic and duplex steel weld metal
JP4422484B2 (en) Ternary gas mixture that can be used for blaze welding of galvanized parts
CA2461317A1 (en) Tig welding equipment and tig welding method
JP2001259888A (en) Flux cored wire for welding galvanized steel sheet having excellent pit resistance and blowhole resistance
Ramirez et al. Effect of welding parameters and electrode condition on alloying enrichment of weld metal deposited with coated cellulosic electrodes
JPS6114916B2 (en)
JP2007083303A (en) Shielding gas for mig brazing and welding method using the shielding gas
US3328557A (en) Nickel arc welding electrode
JP3130020B2 (en) Shield gas for MIG welding using nickel alloy as welding wire and MIG welding method using the gas
JPS6249160B2 (en)
JP2006075847A (en) Hybrid welding method by laser beam and arc
US3542997A (en) Non-shielded arc welding
US3557340A (en) Selenium bearing wire for steel welding
JPH0362518B2 (en)
JPS637879B2 (en)
JPS60145283A (en) Gas shielded welding method
JPS6324799B2 (en)
JPS6047039B2 (en) Filler rod for TIG welding