JPS61148880A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61148880A
JPS61148880A JP27113284A JP27113284A JPS61148880A JP S61148880 A JPS61148880 A JP S61148880A JP 27113284 A JP27113284 A JP 27113284A JP 27113284 A JP27113284 A JP 27113284A JP S61148880 A JPS61148880 A JP S61148880A
Authority
JP
Japan
Prior art keywords
silicon
vacuum chamber
polycrystalline silicon
conducting layers
contact holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27113284A
Other languages
Japanese (ja)
Inventor
Takashi Yoda
孝 依田
Katsuya Okumura
勝弥 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27113284A priority Critical patent/JPS61148880A/en
Publication of JPS61148880A publication Critical patent/JPS61148880A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To implement low resistance contact even when conducting layers comprising silicon are connected to a polycrystalline silicon wiring through minute contact holes, by cleaning the conducting layers of silicon, which are exposed from the contact holes by susputter etching, and performing sputtering of the silicon. CONSTITUTION:An insulating film 37 is formed on conducting layers 34-36 comprising silicon. Contact holes 381-383 reaching the surfaces of the conducting layers 34-36 are selectively formed in the insulating layer 37. The silicon conducting layers 34-36 exposed through the contact holes 381-383 are cleaned by sputter etching in a vacuum chamber. Then sputtering of silicon is perfored in the same vaccum chamber, and silicon films 40-42 are deposited. Even if diffused layers 35 and 36 on the surface of a silicon substrate 31 and the silicon conducting layers 34-36 such as the polycrystalline silicon electrode 34 and the like are connected to the plycrystalline silicon wiring 40-42 through the minute contact holes 381-383, low resistance contact can be implemented. Thus highly reliable, highly integrated semiconductor devices can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に関し、特にシリコン
基板表面の拡散層や多結晶シリコン配線等のシリコンか
らなる導電層と多結晶シリコン電極とのコンタクト技術
を改良した半導体装置の製造方法に係わる。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, and in particular, a method for manufacturing a semiconductor device, and in particular, a method for manufacturing a semiconductor device, and in particular, a method for manufacturing a semiconductor device, and in particular, a method for manufacturing a semiconductor device. It relates to a method for manufacturing semiconductor devices using improved contact technology.

〔発明の技術的背景〕[Technical background of the invention]

最近、多結晶シリコンをシリコン基板表面の拡散層やゲ
ート電極等の取出し配線として用いられている。かかる
多結晶シリコン配線を有する半導体装置、例えばnチャ
ンネルMOSトランジスタは、従来より以下に示す方法
によって製造されている。
Recently, polycrystalline silicon has been used as a diffusion layer on the surface of a silicon substrate and as lead wiring for gate electrodes and the like. Semiconductor devices having such polycrystalline silicon wiring, such as n-channel MOS transistors, have conventionally been manufactured by the method described below.

まず、p型シリコン基板1表面に選択酸化法によりフィ
ールド酸化膜2を形成し゛た後、熱酸化処理を施してフ
ィールド酸化膜2で分離された島状の基板1表面にゲー
ト酸化膜3を形成する。つづいて、全面に多結晶シリコ
ン膜を堆積し、該多結晶シリコン膜をパターニングして
ゲート電極4を形成する。ひきつづき、前記フィールド
酸化膜2及びゲート電極4をマスクとしてn型不純物、
例えば砒素を前記島状の基板1表面に選択的にイオン注
入し、活性化してn4″型のソース、ドレイン領域51
.6を形成する(第3図(a)図示)。
First, a field oxide film 2 is formed on the surface of a p-type silicon substrate 1 by selective oxidation, and then a gate oxide film 3 is formed on the surface of the island-shaped substrate 1 separated by the field oxide film 2 by thermal oxidation treatment. do. Subsequently, a polycrystalline silicon film is deposited over the entire surface, and the polycrystalline silicon film is patterned to form a gate electrode 4. Subsequently, using the field oxide film 2 and gate electrode 4 as a mask, an n-type impurity,
For example, arsenic is selectively ion-implanted into the surface of the island-shaped substrate 1 and activated to form the n4'' type source and drain regions 51.
.. 6 (as shown in FIG. 3(a)).

次いで、ゲート電極4を含む全面に層間絶縁躾としての
CVD−8i02膜7を堆積した後、前記ゲート電極4
及びソース、ドレイン領域5.6の一部に対応するCV
D−8i02躾7にフォトエツチング技術によりコンタ
クトホール8を開孔する(同図(b)図示)。つづいて
、SiH+の熱分解反応による減圧CVD法によって全
面に多結晶シリコン膜を堆積し、更にリン等の不純物を
該多結晶シリコンに拡散して低抵抗・かした後、該多結
晶シリコンをバターニングして前記コンタクトホール8
を通してゲート電極4、ソース、ドレイン領域5.6と
夫々接続する多結晶シリコン配線9〜11を夫々形成し
てnチャンネルMOSトランジスタを製造する(同図(
C)図示)。
Next, after depositing a CVD-8i02 film 7 as an interlayer insulation layer on the entire surface including the gate electrode 4,
and CV corresponding to part of the source and drain regions 5.6
A contact hole 8 is formed in the D-8i02 plate 7 by photo-etching technique (as shown in FIG. 8(b)). Next, a polycrystalline silicon film is deposited on the entire surface by low-pressure CVD using a thermal decomposition reaction of SiH+, and impurities such as phosphorus are diffused into the polycrystalline silicon to make it low in resistance. contact hole 8.
An n-channel MOS transistor is manufactured by forming polycrystalline silicon wirings 9 to 11, which are respectively connected to the gate electrode 4 and the source and drain regions 5.6 through the
C) As shown).

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来の方法にあっては、CvD−8i 
02117にコンタクトホール8を開孔した後、多結晶
シリコン膜′を堆積するまでの間に大気中の酸素とコン
タクトホール8から露出したゲート電極4やソース、ド
レイン領域5.6を構成するシリコンとが反応して酸化
物12を生成するため、前記多結晶シリコン配線9〜1
1とゲート電極4やソース、ドレイン領域5.6とのコ
ンタクト抵抗が増大するという問題があったr特に、M
OSトランジスタの微細化に伴って、コンタクトホール
の寸法が縮小されると、前記コンタクト抵抗の増大はよ
り一層顕著となる。
However, in conventional methods, CvD-8i
After the contact hole 8 is opened at 02117 and before the polycrystalline silicon film is deposited, oxygen in the atmosphere and the silicon forming the gate electrode 4 and the source and drain regions 5 and 6 exposed from the contact hole 8 are exposed. reacts to generate oxide 12, so that the polycrystalline silicon wirings 9 to 1
There was a problem in that the contact resistance between M 1 and the gate electrode 4 and the source and drain regions 5.6 increased.
As the size of the contact hole decreases with miniaturization of OS transistors, the increase in contact resistance becomes even more remarkable.

(発明の目的) 本発明は、シリコン基板表面の拡散層や多結晶シリコン
電極等のシリコンからなる導電層と多結晶シリコン配線
とを微細なコンタクトホールを通して接続した場合でも
低抵抗のコンタクトを実現できる高信頼性、高集積度の
半導体装置の製造方法を提供しようとするものである。
(Object of the invention) The present invention can realize a low-resistance contact even when a conductive layer made of silicon such as a diffusion layer on the surface of a silicon substrate or a polycrystalline silicon electrode is connected to a polycrystalline silicon wiring through a fine contact hole. The present invention aims to provide a method for manufacturing a highly reliable and highly integrated semiconductor device.

〔発明の概要〕[Summary of the invention]

本発明は、シリコンからなる導電層上に絶縁膜を形成す
る工程と、この絶縁膜に前記導電層表面に達するコンタ
クトホールを選択的に開孔する工程と、前記コンタクト
ホールから露出するシリコンの導電層を、真空槽内での
スパッタエツチングにより清浄化処理を行なった後、同
一の真空槽内でシリコンのスパッタリングを行なってシ
リコン族を堆積する工程とを具備したことを特徴とする
ものである。かかる本発明によれば、既述した如くシリ
コン基板表面の拡散層や多結晶シリコン、電極等のシリ
コンからなる導電層と多結晶シリコン配線とを微細なコ
ンタクトホールを通して接続した場合でも低抵抗コンタ
クトを実現できる高信頼性、高集積度の半導体装置を得
ることができる。
The present invention includes a step of forming an insulating film on a conductive layer made of silicon, a step of selectively opening a contact hole in the insulating film reaching the surface of the conductive layer, and a step of forming a conductive layer of silicon exposed from the contact hole. This method is characterized by the step of cleaning the layer by sputter etching in a vacuum chamber, and then depositing a silicon group by sputtering silicon in the same vacuum chamber. According to the present invention, as described above, even when a conductive layer made of silicon such as a diffusion layer, polycrystalline silicon, or an electrode on the surface of a silicon substrate is connected to a polycrystalline silicon wiring through a fine contact hole, a low resistance contact can be made. A highly reliable and highly integrated semiconductor device can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をnチャンネルMOSトランジスタの製造
に適用した例についてM1図及び第2図(a)〜(d)
を参照して説明する。
Below, an example in which the present invention is applied to the manufacture of an n-channel MOS transistor is shown in Figure M1 and Figures 2 (a) to (d).
Explain with reference to.

第1図は、本実施例に使用するスパッタリング装置の概
略図であり、図中の21は真空槽である。
FIG. 1 is a schematic diagram of a sputtering apparatus used in this example, and numeral 21 in the figure is a vacuum chamber.

この真空槽21内は、隔壁22で区画されたスパッタエ
ツチングを行なう第1の真空室231と、シリコンのス
パッタリングを行なう第2の真空室232とが形成され
ている。第1の真空室231側の真空槽21の側壁にも
開閉自在な第1のシャッタ241が設けられている。前
記隔!22には開閉自在な第2のシャッタ242が設け
られている。また、前記第1の真空室231内には平行
して対向する一対の平板電極25a、25bが配設され
ている。この上部平板電極25aは、グランドに接続さ
れており、かつ前記下部平板電極25bは高周波電源2
6を介してグランドに接続されている。前記第1の真空
室231内には、前記一対の平板電極間に磁界を与える
ための電磁石27が配−設されている。こうした高周波
電126から一対の平板電極25a、25bの′間に高
周波を入力すると共に、前記電磁石27から磁界を与え
ることによって、前記一対の平板電極25a、25b間
でマグネトロン放電がなされる。更に、前記第1の真空
室231の真空槽21の側壁上部にはArガスの導入管
28が連結されていると共に、同下部壁面には排気管2
9が連結されている。一方、前記第2の真空室232内
にはシリコンからなるターゲット、該ターゲットとの間
で放電を行なう平板電極、該ターゲットと平板電極の間
に高周波電力を入力するための高周波電源(いずれも図
示せず)が配設されていると共に、該第2の真空室23
2の真空槽21にはArとH2を導入する導入管及び排
気管(いずれも図示せず)が連結されている。
Inside the vacuum chamber 21, there are formed a first vacuum chamber 231 for performing sputter etching and a second vacuum chamber 232 for performing silicon sputtering, which are partitioned by partition walls 22. A first shutter 241 that can be opened and closed is also provided on the side wall of the vacuum chamber 21 on the first vacuum chamber 231 side. Said interval! 22 is provided with a second shutter 242 that can be opened and closed. Furthermore, a pair of flat plate electrodes 25a and 25b are arranged in parallel and opposite to each other in the first vacuum chamber 231. This upper flat plate electrode 25a is connected to the ground, and the lower flat plate electrode 25b is connected to the high frequency power source 2.
6 to ground. An electromagnet 27 is disposed within the first vacuum chamber 231 for applying a magnetic field between the pair of flat electrodes. By inputting a high frequency wave from the high frequency electric field 126 between the pair of plate electrodes 25a and 25b and applying a magnetic field from the electromagnet 27, magnetron discharge is generated between the pair of plate electrodes 25a and 25b. Furthermore, an Ar gas introduction pipe 28 is connected to the upper side wall of the vacuum chamber 21 of the first vacuum chamber 231, and an exhaust pipe 28 is connected to the lower wall surface of the same.
9 are connected. On the other hand, inside the second vacuum chamber 232, there is a target made of silicon, a flat plate electrode for discharging with the target, and a high frequency power source for inputting high frequency power between the target and the flat plate electrode (all of which are shown in the figure). ) is provided, and the second vacuum chamber 23
The second vacuum chamber 21 is connected to an inlet pipe for introducing Ar and H2 and an exhaust pipe (both not shown).

次に、MOSトランジスタの製造方法を説明する。Next, a method for manufacturing a MOS transistor will be explained.

まず、p型シリコン基板31表面に選択酸化法によりフ
ィールド酸化膜32を形成した後、熱酸化処理を施して
フィールド酸化膜32で分離された島状の基板31領域
表面に厚さ150人の熱酸化1133を形成した(第2
図(a)I示)。つづいて、全面に厚さ3000人の多
結晶シリコン膜をCVD法により堆積し、更にPOCj
2iの雰囲気で多結晶シリコン膜にリン拡散を行なって
低抵抗化した後、フォトエツチング技術により該多結晶
シリコン膜をバターニングしてゲート電極34を形成し
た。ひきつづき、フィールド酸化膜32及びゲート電極
34をマスクとしてn型不純物、例えば砒素を前記島状
の基板31領域にイオン注入し、活性化してn+型のソ
ース、ドレイン領域35.36を形成した(同図(b)
図示)。
First, a field oxide film 32 is formed on the surface of a p-type silicon substrate 31 by a selective oxidation method, and then a thermal oxidation treatment is applied to the surface of the island-shaped substrate 31 separated by the field oxide film 32 to a thickness of 150 mm. Oxide 1133 was formed (second
Figure (a) I). Subsequently, a polycrystalline silicon film with a thickness of 3000 nm was deposited on the entire surface using the CVD method, and further POCj
After phosphorus was diffused into the polycrystalline silicon film in an atmosphere of 2i to lower its resistance, the polycrystalline silicon film was buttered by photoetching to form a gate electrode 34. Subsequently, using the field oxide film 32 and the gate electrode 34 as a mask, n-type impurities, such as arsenic, were ion-implanted into the island-shaped substrate 31 region and activated to form n+-type source and drain regions 35 and 36 (same as above). Figure (b)
(Illustrated).

次イテ、全面に厚さ1μITIのCVD−8i02膜3
7を堆積した後、フォトエツチング技術と反応性イオン
エツチング技術を用いてCVD−8i02膜37の前記
ゲート電極34、ソース、ドレイン領域35.36の一
部に対応する部分及び熱酸化膜33を選択的に除去して
約1〜1.5μmのコンタクトホール381〜383を
開孔した(同図(C)図示)。
Next iteration, CVD-8i02 film 3 with a thickness of 1 μITI on the entire surface.
After depositing 7, portions of the CVD-8i02 film 37 corresponding to parts of the gate electrode 34, source and drain regions 35 and 36, and the thermal oxide film 33 are selected using photoetching technology and reactive ion etching technology. contact holes 381 to 383 of approximately 1 to 1.5 μm were opened (as shown in FIG. 1C).

次いで、コンタクトホール381〜383開孔後の基板
(ウェハ)31を前述した第1図図示の第1のシャッタ
241から第1の真空室231内の下部平板電極25b
上にセットした。つづいて、スパッタリング装置の排気
管29から第1の真空室231内のガスを1X10−”
torrまで排気した後、導入管28からArガスを3
×10°’ torrまで真空室23i内に導入し、更
に高周波′R源26 (13,56MHz)からパワー
200Wの高周波電力を下部平板電極25bに印加し、
同時に電磁石27から60ガウスの磁界を与えて平板電
極25a、25b間でプラズマ電位200〜250■の
マグネトロン放電を行なわせ、コンタクトホール381
〜383から露出した多結晶シリコンからなるゲート電
極34表面及びソース、トレイン領域35.36表面の
スパッタエツチングを行なった。ひきつづき、スパッタ
エツチング後のウェハ31を第2のシャッタ242から
第2の真空室232内の図示しない保持板上にセットし
、排気管(図示せず)から第2の真空室232内のガス
を5X 10−8torrまで排気した後、導入管(図
示せず)からArとH2の混合ガス(混合比8:2)を
2 X 10’ torrの条件で真空室232内に導
入し、更に高周波電源(13,56MHz)からパワー
2.5Wの高周波電力をシリコンターゲットと平板電極
の間に印加し、更にウェハ31を200〜300℃に加
熱した状態でシリコンのスパッタリングを行なって同図
(d)に示すようにコンタクトホール381〜383を
含む全面に厚さ4000人の多結晶シリコン膜39を堆
積した。この後、真空槽21の第2の真空室232から
ウェハ31を取出し、n型不純物、例えばリンをイオン
注入を施して該多結晶シリコン膜39を低抵抗化した。
Next, the substrate (wafer) 31 after contact holes 381 to 383 are opened is moved from the first shutter 241 shown in FIG.
set on top. Next, the gas in the first vacuum chamber 231 is pumped 1×10-” from the exhaust pipe 29 of the sputtering device.
After exhausting to torr, Ar gas is introduced from the introduction pipe 28 at 3.
×10°' torr into the vacuum chamber 23i, and furthermore, a high frequency power of 200 W from the high frequency 'R source 26 (13.56 MHz) is applied to the lower flat plate electrode 25b,
At the same time, a magnetic field of 60 Gauss is applied from the electromagnet 27 to cause magnetron discharge with a plasma potential of 200 to 250 cm between the plate electrodes 25a and 25b, and the contact hole 381
Sputter etching was performed on the surface of the gate electrode 34 made of polycrystalline silicon exposed from 383 to 383, and the surfaces of the source and train regions 35 and 36. Subsequently, the wafer 31 after sputter etching is set on a holding plate (not shown) in the second vacuum chamber 232 through the second shutter 242, and the gas in the second vacuum chamber 232 is discharged from the exhaust pipe (not shown). After evacuating to 5X 10-8 torr, a mixed gas of Ar and H2 (mixing ratio 8:2) was introduced into the vacuum chamber 232 at 2X 10' torr from an inlet pipe (not shown), and then a high frequency power supply was applied. (13,56MHz) with a power of 2.5W was applied between the silicon target and the flat electrode, and silicon was sputtered with the wafer 31 heated to 200 to 300°C. As shown, a polycrystalline silicon film 39 having a thickness of 4,000 wafers was deposited over the entire surface including contact holes 381 to 383. Thereafter, the wafer 31 was taken out from the second vacuum chamber 232 of the vacuum chamber 21, and ions of n-type impurities, such as phosphorus, were implanted to lower the resistance of the polycrystalline silicon film 39.

次いで、多結晶シリコン膜39をフォットエッチング技
術によりパターニングしてコンタクトホール381〜3
83を通してゲートIr極34及びn+型のソース、ド
レイン領域35.36と夫々接続する多結晶シリコン配
線40〜42を形成してnチャンネルMOSトランジス
タを製造した(同図(e)図示)。
Next, the polycrystalline silicon film 39 is patterned using a photo-etching technique to form contact holes 381 to 3.
Polycrystalline silicon wirings 40 to 42 were formed to connect to the gate Ir electrode 34 and the n+ type source and drain regions 35 and 36, respectively, through the polycrystalline silicon wires 83, thereby manufacturing an n-channel MOS transistor (as shown in FIG. 3(e)).

しかして、本発明方法によればシリコン基板31上にゲ
ート電極34を形成し、同基板表面にソース、ドレイン
領域35.36を形成し、更に全面にCVD−8i02
膜37の堆積、コンタクトホール381〜383の開孔
を行なった後、第1図図示のスパッタリング装置の真空
槽21(第1の真空室231)内でコンタクトホール3
81〜383から露出したゲート電極34、ソース、ド
レイン領域35.36の表面の酸化膜等をスパッタエツ
チングにより除去して清浄化する。ひきつづき、大気中
に取出すことなく、同一の真空槽21(第2の真空室2
32)内でシリコンのスパッタリングを行なってコンタ
クトホール381〜383を含む全面に多結晶シリコン
躾39を堆積する。従って、該多結晶シリコン1139
をバターニングすることによって、多結晶シリコンから
なる配置1140と多結晶シリコンからなるゲート電極
34の問、及び配線41.42とII型のソース、ドレ
イン領域35.36との間のコンタクト部(コンタクト
ホール381〜38!底部)に酸化膜が存在しないため
、シリコン同志の接続である配線40〜42とゲート電
極34、ソース、ドレイン領域35.36との闇を低抵
抗で接続できる。
According to the method of the present invention, a gate electrode 34 is formed on a silicon substrate 31, source and drain regions 35 and 36 are formed on the surface of the same substrate, and further CVD-8i02 is formed on the entire surface.
After depositing the film 37 and opening the contact holes 381 to 383, the contact holes 3 are opened in the vacuum chamber 21 (first vacuum chamber 231) of the sputtering apparatus shown in FIG.
The oxide film and the like on the surfaces of the gate electrode 34, source and drain regions 35 and 36 exposed from 81 to 383 are removed and cleaned by sputter etching. Subsequently, the same vacuum chamber 21 (second vacuum chamber 2
32) to deposit polycrystalline silicon 39 over the entire surface including contact holes 381 to 383 by sputtering silicon. Therefore, the polycrystalline silicon 1139
By patterning, contact areas (contacts) between the arrangement 1140 made of polycrystalline silicon and the gate electrode 34 made of polycrystalline silicon, and between the wiring 41.42 and the type II source and drain regions 35.36 are formed. Since there is no oxide film in the holes 381 to 38 (bottoms), the wirings 40 to 42, which are connections between silicones, and the gate electrode 34 and the source and drain regions 35 and 36 can be connected with low resistance.

また、、スパッタエツチングによるコンタクトホール3
81〜383底部の清浄化に際して、マグネトロン放電
によりプラズマ電位を200〜250vと低電位にする
ことによって、エツチング速度の低下を招かず、しかも
露出したゲート電極34やソース、ドレイン領域35.
36表面にダメージを発生させることなく、酸化膜等の
除去が可能となる。従って、プラズマ電位を高くした状
態でスパッタエツチングして清浄化した場合に比べて、
多結晶シリコンからなる配線40〜42とシリコンから
なるゲート電1134、ソース、ドレイン領域35.3
6との閣のコンタクト抵抗をより一層低減でき良好な接
続が可能となる。事実、多結晶シリコンからなるゲート
電極と多結晶シリコンからなる配線との間のコンタクト
抵抗を測定したところ、従来方法では数にΩ〜敗MΩで
ありたのに対し、本実施例の場合では20〜3oΩと著
しく減少していることが確認された。なお、こうしたス
パッタエツチング時のプラズマ電位の上限は、多結晶シ
リコンからなるゲート電極等へのダメージ発生を抑制乃
至防止する観点から300■とすることが望ましい。
In addition, contact hole 3 is formed by sputter etching.
When cleaning the bottom portions of the gate electrodes 34 and 81 to 383, the plasma potential is reduced to a low potential of 200 to 250 V by magnetron discharge, thereby preventing a decrease in the etching rate and cleaning the exposed gate electrode 34, source, and drain regions 35.
The oxide film etc. can be removed without causing damage to the 36 surface. Therefore, compared to cleaning by sputter etching with a high plasma potential,
Wiring lines 40 to 42 made of polycrystalline silicon, gate electrode 1134 made of silicon, source and drain regions 35.3
It is possible to further reduce the contact resistance with 6 and achieve a good connection. In fact, when we measured the contact resistance between the gate electrode made of polycrystalline silicon and the wiring made of polycrystalline silicon, it was found to be in the range of several Ω to MΩ in the conventional method, but in the case of this example it was 20 MΩ. It was confirmed that the resistance was significantly reduced to ~3oΩ. Incidentally, the upper limit of the plasma potential during such sputter etching is desirably 300 cm from the viewpoint of suppressing or preventing damage to the gate electrode etc. made of polycrystalline silicon.

更に、シリコンのスパッタリングに際して、イオン種と
してArとH2どの混合ガスを使用することによって、
結晶性が改善された膜質の良好な多結晶シリコン膜を堆
積でき、ひいては高精度のバターニングが可能となると
共に、抵抗値が均一な配線形成が可能となる。この場合
、ArとH2との混合割合はAr:H2−9:1〜7:
3の範囲とすることが望ましい。
Furthermore, when sputtering silicon, by using a mixed gas such as Ar and H2 as ion species,
A polycrystalline silicon film with improved crystallinity and good film quality can be deposited, which in turn enables highly accurate patterning and the formation of interconnects with uniform resistance values. In this case, the mixing ratio of Ar and H2 is Ar:H2-9:1-7:
It is desirable to set it in the range of 3.

なお、上記実施例ではnチャンネルMOSトランジスタ
の製造に適用した例について説明したが、nチャンネル
MOSトランジスタ、相補型MOSトランジスタ、バイ
ポーラトランジスタ等にも同様に適用できる。また、第
111多結晶シリコン配線とコンタクトホールを通して
第2層多結晶シリコン配線を接続する多層配線構造のも
のにも同様に適用できる。
In the above embodiment, an example in which the present invention is applied to the manufacture of an n-channel MOS transistor has been described, but the present invention can be similarly applied to an n-channel MOS transistor, a complementary MOS transistor, a bipolar transistor, etc. Further, the present invention can be similarly applied to a multilayer wiring structure in which the 111th polycrystalline silicon wiring is connected to the second layer polycrystalline silicon wiring through the contact hole.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればシリコン基板表面の
拡散層や多結晶シリコン電極等のシリコンからなる導電
層と多結晶シリコン配線とを微細なコンタクトホールを
通して接続した場合でも低抵抗のコンタクトが実現でき
る高信頼性、^集積度の半導体装置の製造方法を提供で
きる。
As detailed above, according to the present invention, even when a conductive layer made of silicon such as a diffusion layer on the surface of a silicon substrate or a polycrystalline silicon electrode is connected to a polycrystalline silicon wiring through a fine contact hole, a contact with low resistance can be achieved. It is possible to provide a method for manufacturing a semiconductor device with high reliability and high degree of integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例で用いたスパッタリング装置の概略図
、第2図(a)〜(e)は本発明の実施例、におけるn
チャンネルMOSトランジスタの製造工程を示す断面図
、第3図(a)〜(C)は従来のnチャンネルMOSト
ランジスタの製造工程を示す断面図である。 21・・・真空槽、231.232−真空室、25a、
25b−・・平板電極、27−・・電磁石、29−・・
排気管、31・・・p型シリコン基板、32−・・フィ
ールド酸化膜、34、多結晶シリコンからなるゲート電
極、35・・・nゝ型ソース、領域°、36・・・n+
型トドレイン領域37−CVD−8i 02 II、3
81〜383・・・コンタクトホール、40〜42・・
・多結晶シリコン配線。 第1図 第2図 (a) (C) 第2図 (d) ・2 (e) 第3図 (a) (b) (C)
Figure 1 is a schematic diagram of the sputtering apparatus used in this example, and Figures 2 (a) to (e) are examples of the present invention.
3(a) to 3(C) are cross-sectional views showing the manufacturing process of a conventional n-channel MOS transistor. 21... Vacuum chamber, 231.232-Vacuum chamber, 25a,
25b--Flat electrode, 27--Electromagnet, 29--
Exhaust pipe, 31...p-type silicon substrate, 32-...field oxide film, 34, gate electrode made of polycrystalline silicon, 35...n-type source, region °, 36...n+
Type drain region 37-CVD-8i 02 II, 3
81-383...Contact hole, 40-42...
・Polycrystalline silicon wiring. Figure 1 Figure 2 (a) (C) Figure 2 (d) ・2 (e) Figure 3 (a) (b) (C)

Claims (3)

【特許請求の範囲】[Claims] (1)シリコンからなる導電層上に絶縁膜を形成する工
程と、この絶縁膜に前記導電層表面に達するコンタクト
ホールを選択的に開孔する工程と、前記コンタクトホー
ルから露出するシリコンの導電層を、真空槽内でのスパ
ッタエッチングにより清浄化処理を行なつた後、同一の
真空槽内でシリコンのスパッタリングを行なつてシリコ
ン膜を堆積する工程とを具備したことを特徴とする半導
体装置の製造方法。
(1) A step of forming an insulating film on a conductive layer made of silicon, a step of selectively opening a contact hole in this insulating film reaching the surface of the conductive layer, and a step of forming a conductive layer of silicon exposed from the contact hole. A semiconductor device characterized by comprising the steps of performing a cleaning treatment by sputter etching in a vacuum chamber, and then depositing a silicon film by sputtering silicon in the same vacuum chamber. Production method.
(2)コンタクトホールから露出するシリコンの導電層
を、真空槽内でスパッタエッチングするに際し、照射イ
オンの電位を300V以下に設定することを特徴とする
特許請求の範囲第1項記載の半導体装置の製造方法。
(2) The semiconductor device according to claim 1, wherein the potential of irradiated ions is set to 300 V or less when sputter etching the silicon conductive layer exposed from the contact hole in a vacuum chamber. Production method.
(3)シリコンのスパッタリングをAr/H_2プラズ
マ中で行なうことを特徴とする特許請求の範囲第1項又
は第2項記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1 or 2, characterized in that silicon sputtering is performed in Ar/H_2 plasma.
JP27113284A 1984-12-22 1984-12-22 Manufacture of semiconductor device Pending JPS61148880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27113284A JPS61148880A (en) 1984-12-22 1984-12-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27113284A JPS61148880A (en) 1984-12-22 1984-12-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61148880A true JPS61148880A (en) 1986-07-07

Family

ID=17495764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27113284A Pending JPS61148880A (en) 1984-12-22 1984-12-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61148880A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58200533A (en) * 1982-04-30 1983-11-22 テキサス・インスツルメンツ・インコ−ポレイテツド Method of attaching metal layer to surface of insulating layer
JPS59100522A (en) * 1982-11-30 1984-06-09 Kokusai Electric Co Ltd Automatically sputtering device for formation of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58200533A (en) * 1982-04-30 1983-11-22 テキサス・インスツルメンツ・インコ−ポレイテツド Method of attaching metal layer to surface of insulating layer
JPS59100522A (en) * 1982-11-30 1984-06-09 Kokusai Electric Co Ltd Automatically sputtering device for formation of thin film

Similar Documents

Publication Publication Date Title
US5232871A (en) Method for forming a titanium nitride barrier layer
JP2978748B2 (en) Method for manufacturing semiconductor device
EP0063916B1 (en) Semiconductor intregrated circuits and manufacturing process thereof
US5175126A (en) Process of making titanium nitride barrier layer
JP3492634B2 (en) Method for filling a gap on a semiconductor wafer
JP3350246B2 (en) Method for manufacturing semiconductor device
KR0147626B1 (en) Method for forming gate electrode
JP3208124B2 (en) Semiconductor device, method of manufacturing semiconductor device, and apparatus for manufacturing semiconductor device
JP3838397B2 (en) Semiconductor manufacturing method
JPH10313054A (en) Interconnect structure for integrated circuit
JPH06244185A (en) Wiring structure and its manufacture
US6281116B1 (en) Method of manufacturing a semiconductor device
US6559043B1 (en) Method for electrical interconnection employing salicide bridge
JP4955848B2 (en) Substrate manufacturing method for electronic device
JPS61148880A (en) Manufacture of semiconductor device
JPH01160010A (en) Manufacture of semiconductor device
JPS59144174A (en) Semiconductor device
JPH04368125A (en) Semiconductor device and manufacture thereof
JP3225696B2 (en) Film formation method
JPH06120355A (en) Manufacture of semiconductor device
JP3067433B2 (en) Method for manufacturing semiconductor device
JP2718450B2 (en) Method for manufacturing semiconductor device
JP2003142472A (en) Method of manufacturing semiconductor device
KR100356817B1 (en) Method of forming contacts in semiconductor devices
JPS5955070A (en) Manufacture of semiconductor device