JPS61146752A - Manufacture of high size precision oxide sintered body and oxide sintered body for high size precision heat-resistant tool - Google Patents

Manufacture of high size precision oxide sintered body and oxide sintered body for high size precision heat-resistant tool

Info

Publication number
JPS61146752A
JPS61146752A JP59267007A JP26700784A JPS61146752A JP S61146752 A JPS61146752 A JP S61146752A JP 59267007 A JP59267007 A JP 59267007A JP 26700784 A JP26700784 A JP 26700784A JP S61146752 A JPS61146752 A JP S61146752A
Authority
JP
Japan
Prior art keywords
sintered body
oxide
oxide sintered
heat
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59267007A
Other languages
Japanese (ja)
Inventor
輝代隆 塚田
正和 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP59267007A priority Critical patent/JPS61146752A/en
Publication of JPS61146752A publication Critical patent/JPS61146752A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、寸法精度の優れた酸化物焼結体の製造方法お
よび寸法精度の優れた耐熱性治具用酸化物焼結体く関し
、特に本発明は、所望の形状に成形した生成形体を実質
的に焼成収縮を生じさせることなく焼結することによっ
て、寸法精度および強度の要求される用途に適した酸化
物焼結体を安価にかつ容易に製造することのできる寸法
精度の優れた酸化物焼結体の製造方法および寸法精度の
優れた耐熱性治具用酸化物焼結体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an oxide sintered body with excellent dimensional accuracy, and an oxide sintered body for a heat-resistant jig with excellent dimensional accuracy. In particular, the present invention is capable of producing an oxide sintered body suitable for applications requiring dimensional accuracy and strength at a low cost by sintering a formed body molded into a desired shape without substantially causing firing shrinkage. The present invention also relates to a method for manufacturing an oxide sintered body with excellent dimensional accuracy that can be easily manufactured, and a heat-resistant oxide sintered body for use in a jig with excellent dimensional accuracy.

〔従来の技術〕[Conventional technology]

酸化物焼結体は、一般に耐熱性、硬度、化学的安定性お
よび電気的特性などに優れたものが多く、耐蝕耐摩耗部
品、電子工業用部品などに広く使用されている。
Oxide sintered bodies generally have excellent heat resistance, hardness, chemical stability, and electrical properties, and are widely used in corrosion-resistant and wear-resistant parts, parts for the electronic industry, and the like.

従来、酸化物焼結体の製造方法としては一般に常圧焼結
法が適用されている。
Conventionally, a pressureless sintering method has generally been applied as a method for manufacturing oxide sintered bodies.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、前記常圧焼結法によれば、高密度かつ高強度
の焼結体を得ることはできるが、焼成時に大きな焼成収
縮を伴う焼結法であシ、焼結体の寸法は前記焼成収縮お
よび生成形体の密度に大きく影響を受けるため、特定の
寸法精度を有する焼結体を格別の機械加工を施すことな
く製造することは極めて困難であった。
By the way, according to the above-mentioned pressureless sintering method, it is possible to obtain a sintered body with high density and high strength, but the sintering method is accompanied by large firing shrinkage during firing, and the dimensions of the sintered body are It has been extremely difficult to produce sintered bodies with specific dimensional accuracy without special machining because they are greatly affected by shrinkage and the density of the formed body.

上述の如く、従来知られた焼結方法では、特に高い寸法
精度の要求される酸化物焼結体を格別の機械加工を施す
ことなく製造することは困難であシ、ましてや安価でか
つ寸法精度に優れた酸化物焼結体よりなる耐熱性治具は
知られていなかった。
As mentioned above, with conventionally known sintering methods, it is difficult to manufacture oxide sintered bodies that require particularly high dimensional accuracy without special machining, especially at low cost and with high dimensional accuracy. A heat-resistant jig made of an oxide sintered body with excellent properties was not known.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前述の如き従来知られた焼結方法とは異なる
焼結方法、すなわち所望の形状に成形した生成形体を実
質−的に焼成収縮を生じさせることなく焼結し、寸法精
度および強度の要求される酸化物焼結体を格別の機械加
工を施すことなく製造することのできる方法および寸法
精度に優れた酸化物焼結体よシなる耐熱性治具を安価に
提供することを目的とし、焼成時に収縮し易い微細な酸
化物粉末を出発原料としても、焼結に伴う焼成収縮を抑
制し、かつ強度の発現できる焼結方法を開発すべく種々
研究を積重ねた結果、酸化物粉末に含有される不純物成
分を制御し、特定の雰囲気および温度範囲内で焼結する
ことによって実質的な焼成収縮を生じさせることなく表
面精度の高い高強度の酸化物焼結体を製造することので
きる方法を新規に知見するに至り、本発明を完成した。
The present invention utilizes a sintering method different from the conventionally known sintering methods as described above, that is, a formed body formed into a desired shape is sintered without substantially causing firing shrinkage, thereby improving dimensional accuracy and strength. The purpose of the present invention is to provide a method for manufacturing an oxide sintered body that requires no special machining, and a heat-resistant jig such as an oxide sintered body with excellent dimensional accuracy at a low cost. As a result of conducting various researches to develop a sintering method that suppresses the firing shrinkage caused by sintering and can develop strength using fine oxide powders that easily shrink during firing as a starting material, we have developed oxide powders. By controlling the impurity components contained in the oxide and sintering it within a specific atmosphere and temperature range, it is possible to produce a high-strength oxide sintered body with high surface precision without substantial firing shrinkage. The present invention has been completed by newly discovering a method that can be used.

本発明によれば、平均粒径が5μ風以下の酸化物粉末を
主体とする出発原料を生成形体に成形した後、前記生成
形体を液相の生成量が5重量%以下となる温度域の非還
元性雰囲気下で実質的に収縮させることなく焼成し、5
Kg/mm2以上の平均曲げ強度を有する酸化物焼結体
を製造することを特徴とする寸法精度の優れた酸化物焼
結体の製造方法および実質的に収縮−させることなく焼
結させた酸化物焼結体よりなり、平均曲げ強度が5Kg
/mm2以上であることを特徴とする寸法精度の優れた
耐熱性治具用酸化物焼結体くよって、前記目的を達成す
ることができる。
According to the present invention, after forming a starting material mainly composed of oxide powder with an average particle size of 5 μm or less into a green body, the green body is heated in a temperature range where the amount of liquid phase produced is 5% by weight or less. Calcined in a non-reducing atmosphere without substantial shrinkage, 5
A method for producing an oxide sintered body with excellent dimensional accuracy, characterized by producing an oxide sintered body having an average bending strength of Kg/mm2 or more, and an oxide sintered body that is sintered without substantially shrinking. Made of sintered material, average bending strength is 5Kg
The above object can be achieved by using a heat-resistant oxide sintered body for a jig with excellent dimensional accuracy, which is characterized by a diameter of 1/mm2 or more.

次に本発明の製造方法を詳細に説明する。Next, the manufacturing method of the present invention will be explained in detail.

本発明によれば、出発原料である酸化物粉末は、その平
均粒径が5μ風以下であることが必要である。
According to the present invention, the oxide powder that is the starting material needs to have an average particle size of 5 μm or less.

前記平均粒径を5μm以下に限定する理由は、5μmよ
シ大きい粒度の酸化物は焼成収縮を抑制する上では好ま
しいが、焼結体内の粒と粒との結合箇所が少なくなるた
め、高強度すなわち平均曲げ強度が59以上の焼結体を
得ることが田無になるばかりでなく、表面の面粗度が大
きくなり寸法精度が低下するからである。
The reason why the average particle size is limited to 5 μm or less is that oxides with a particle size larger than 5 μm are preferable for suppressing firing shrinkage, but they reduce the number of bonding points between grains within the sintered body, resulting in high strength. That is, it is not only difficult to obtain a sintered body having an average bending strength of 59 or more, but also the surface roughness increases and dimensional accuracy decreases.

本発明によれば、前記生成形体を液相の生成量が5重量
%以下である温度域の非還元性雰囲気下で焼成すること
が必要である。その理由は、焼成時に液相が5重量%よ
りも多く存在すると液相の作用によって収縮し易くなυ
、本発明の目的とする実質的な収縮を生じさせることな
く焼結体を製造することが困難であるからである。
According to the present invention, it is necessary to sinter the green body in a non-reducing atmosphere in a temperature range where the amount of liquid phase produced is 5% by weight or less. The reason for this is that if more than 5% by weight of the liquid phase is present during firing, it tends to shrink due to the action of the liquid phase.
This is because it is difficult to produce a sintered body without causing substantial shrinkage, which is the objective of the present invention.

本発明によれば、前記出発原料に含有される酸化物粉末
としては種々のものが使用できるが、なかでも強度、硬
度、耐熱性、化学的安定性および電気的特性などく優れ
た酸化物焼結体を製造する上で、前記出発原料はAノ、
06、Sin、 ZrQより選ばれるいずれか少なくと
も1種の酸化物を含有し、その含有量の合計が50重量
%以上であることが好ましい。
According to the present invention, various oxide powders can be used as the oxide powder contained in the starting material, but among them, an oxide powder with excellent strength, hardness, heat resistance, chemical stability, and electrical properties is used. In producing the aggregate, the starting materials are A,
06, Sin, and ZrQ, and the total content thereof is preferably 50% by weight or more.

本発明によれば、前記酸化物粉末は実質的に均質な組成
から成るものであることが有利である。その理由は、前
記酸化物粉末が実質的に均質でないと焼結時に物質移動
が進行し、前記物質移動に伴って焼結時に焼成収縮し易
いばかシでなく、局部的に多量の液相が生成して収縮作
用を呈したシするからである。
Advantageously, according to the invention, the oxide powder is of substantially homogeneous composition. The reason for this is that if the oxide powder is not substantially homogeneous, mass transfer will proceed during sintering, and as a result of the mass transfer, a large amount of liquid phase will be formed locally, rather than being prone to shrinkage during sintering. This is because it generates and exhibits a contraction effect.

なお、本発明によれば、寸法精度の高い焼結体を得る上
で実質的に収縮させることなく焼結することが必要であ
り、その際の収縮率は2%以下であることが好ましく、
なかでも1%以下であることがよシ好適である。
According to the present invention, in order to obtain a sintered body with high dimensional accuracy, it is necessary to sinter without substantially shrinking, and the shrinkage rate in this case is preferably 2% or less,
Among these, it is particularly preferable that the content be 1% or less.

本発明によれば、前記生成形体を焼成雰囲気を制御する
ことのできる耐熱性容器内に装入して焼成す4ことが有
利である。このように耐熱性容器内に生成形体を装入し
て焼成雰囲気を制御しつつ焼成することが有利である理
由は、隣接する酸化物粒子間の結合およびネックの成長
を促進させることができるからである。前述の如く耐熱
性容器内に生成形体を装入して焼成雰囲気を制御しつつ
焼成することによって隣接する酸化物粒子間の結合およ
びネックの成長を促進させることができる理由は、酸化
物粒子間における酸化物の蒸発・再凝縮および/lたは
表面拡散による物質移動を促進することができるためと
考えられる。
According to the present invention, it is advantageous to charge and fire the green body in a heat-resistant container in which the firing atmosphere can be controlled. The reason why it is advantageous to charge the formed body into a heat-resistant container and fire it while controlling the firing atmosphere is because it can promote bonding between adjacent oxide particles and the growth of necks. It is. The reason why bonding between adjacent oxide particles and growth of necks can be promoted by charging the formed body into a heat-resistant container and firing while controlling the firing atmosphere as described above is because This is thought to be because it can promote evaporation and recondensation of oxides and mass transfer by surface diffusion.

本発明によれば、前記生成形体を焼成雰囲気を制御する
ことのできる耐熱性容器内に装入して焼成することによ
シ、焼成時における酸化物の揮散を抑制し、前記揮散率
を5重量%以下とすることが有、利である。
According to the present invention, by charging the formed body into a heat-resistant container in which the firing atmosphere can be controlled and firing it, volatilization of oxides during firing is suppressed, and the volatilization rate is reduced to 5. It is advantageous to keep the amount below % by weight.

本発明によれば、前記生成形体は少なくとも45容量%
の密度を有することが有利である。その理由は、前記生
成形体の密度が45容量%よシ低いと酸化物粒子相互の
接触点が少ないため、必然的に結合箇所が少なくなシ、
本発明の目的とする5Kg/mm2以上の平均曲げ強度
を有する焼結体を得ることが困難であるからである。
According to the invention, said product form is at least 45% by volume
It is advantageous to have a density of . The reason for this is that when the density of the formed body is lower than 45% by volume, there are fewer contact points between the oxide particles, which inevitably leads to fewer bonding points.
This is because it is difficult to obtain a sintered body having an average bending strength of 5 kg/mm 2 or more, which is the object of the present invention.

本発明によれば、前記焼成時の雰囲気中に生成形体を構
成すゐ酸化物のガス状亜酸化物、例えばAJOlSiO
などを含有させることが有利である。その理由は、前記
ガス状の亜酸化物を雰囲気中に含有させることによって
ネックの成長を促進させることができ、焼結体の強度を
高めることができるからである。
According to the present invention, a gaseous suboxide of an oxide, such as AJOlSiO, constituting the formed body in the atmosphere during the firing.
It is advantageous to contain the following. This is because by including the gaseous suboxide in the atmosphere, the growth of the neck can be promoted and the strength of the sintered body can be increased.

なお、前記雰囲気中にガス状の扼酸化物を含有させる方
法としては、生成形体中に適量の還元剤、例えば生成形
体を構成している酸化物の金属元素粉末あるいは戻素粉
末などを均一分散状態で含有させる方法あるいは、生成
形体を構成しているものと同じ酸化物とその金属元素あ
るい紘次素粉末との混合物を前記耐熱性容器内に装入す
る方法が有利である。
In addition, as a method for containing a gaseous oxide in the atmosphere, an appropriate amount of a reducing agent, such as a metal element powder or a reconstituted element powder of the oxide constituting the formed body, is uniformly dispersed in the formed body. Advantageous methods include a method in which a mixture of the same oxide as that constituting the formed body and its metallic element or sulfuric acid powder is charged into the heat-resistant container.

次に本発明の耐熱性治具用酸化物焼結体くついて詳細に
説明する。
Next, the heat-resistant oxide sintered body for jig according to the present invention will be explained in detail.

本発明の耐熱性治具用酸化物焼結体は、実質的に収縮さ
せることなく焼結させた酸化物焼結体よりなシ、平均曲
げ強度が5Kg/mm2以上であることが必要である。
The heat-resistant oxide sintered body for jig of the present invention must be an oxide sintered body sintered without substantially shrinking, and must have an average bending strength of 5 kg/mm2 or more. .

その理由は、焼結時における収縮は高強度の焼結体を得
る上では好ましいが、一般的には焼結時の収縮量は生成
形体の密度に大きく影響するため、均一な収縮を生じさ
せるためには均一な密度を有する生成形体を得ることが
重要である。しかし、そのような均一な密度を有する生
成形体を得ることは極めて困難であるため、本発明の目
的とする極めて寸法精度の高い焼結体を得ることが困難
であるからである。また平均曲げ強度を5Kg/mm2
以上に限定する理由は、焼結体の強度が5〜よルも低い
と使用中に折れたシ割れたシし易く、実質的な使用に耐
えないからである。
The reason for this is that shrinkage during sintering is preferable for obtaining a high-strength sintered body, but in general, the amount of shrinkage during sintering has a large effect on the density of the formed body, so uniform shrinkage is required. Therefore, it is important to obtain a formed body with uniform density. However, it is extremely difficult to obtain a formed body having such a uniform density, which makes it difficult to obtain a sintered body with extremely high dimensional accuracy, which is the object of the present invention. Also, the average bending strength is 5Kg/mm2
The reason for the above limitation is that if the strength of the sintered body is as low as 5 to 50, it will easily break or crack during use, and will not be able to withstand practical use.

なお、本発明の実質的に収縮させることなく焼結させた
酸化物焼結体の焼成収縮率は2%以下であることが有利
であシ、なかでも1%以下であることがより好適である
In addition, it is advantageous that the sintering shrinkage rate of the oxide sintered body of the present invention, which is sintered without substantially shrinking, is 2% or less, and more preferably 1% or less. be.

本発明の耐熱性治具用酸化物焼結体としての酸化物焼結
体は種々の酸化物を使用できるが、なかでも強度、硬度
、耐熱性、化学的安定性および電気的特性などに優れた
ものであることが要求される用途に対してはAJ* 0
−1Stα、Zrへよシ選ばれるいずれか少なくとも1
種の酸化物を含有し、その含有量の合計が50重量で以
上であることが好ましい。
Various oxides can be used for the oxide sintered body as the oxide sintered body for heat-resistant jigs of the present invention, but among them, oxides with excellent strength, hardness, heat resistance, chemical stability, and electrical properties can be used. AJ*0 for applications that require
-1Stα, at least 1 selected from Zr
Preferably, it contains oxides of seeds, the total content of which is greater than or equal to 50% by weight.

本発明の耐熱性治具用酸化物焼結体は、極めて高い寸法
精度および強度が要求されるものであシ、平均粒径が5
μm以下の酸化物粉末を主体とする出発原料を生成形体
に成形した後、前記生成形体を液相の生成量が5重量%
以下である温度域の非還元性雰囲気下で焼成させた酸化
物焼結体であることが好ましい。
The heat-resistant oxide sintered body for jig of the present invention is required to have extremely high dimensional accuracy and strength, and has an average particle size of 5.
After molding the starting material mainly consisting of oxide powder of µm or less into a formed body, the formed body has a liquid phase production amount of 5% by weight.
It is preferable that the oxide sintered body be fired in a non-reducing atmosphere in the following temperature range.

本発明の耐熱性治具用酸化物焼結体は、半導体熱処理用
治具、断熱材止め具やセッターのような耐熱部品、絶縁
スリーブ、耐熱・耐食プレート、パμブ・ボンデ部品と
して有利に使用することができる。
The oxide sintered body for heat-resistant jigs of the present invention is advantageously used as jigs for semiconductor heat treatment, heat-resistant parts such as heat-insulating fasteners and setters, insulating sleeves, heat-resistant/corrosion-resistant plates, and pub/bond parts. can be used.

次に本発明の実施例および比較例について説明する。Next, examples and comparative examples of the present invention will be described.

実施例1 平均粒径が0.4μmで不純物含有量が第1表に示した
如きα型アルミナ粉末100重量部に対し、ポリビニ〃
アμコーA/2重量部、ポリエチレングリコ−μm重量
部、ステアリン酸0.5重量部および水100重量部を
配合し、ボーμミル中で5時間混合した後噴霧乾燥した
Example 1 For 100 parts by weight of α-type alumina powder with an average particle size of 0.4 μm and an impurity content as shown in Table 1, polyvinyl
2 parts by weight of Akko A/2 parts by weight of polyethylene glyco-μm, 0.5 parts by weight of stearic acid and 100 parts by weight of water were mixed in a Bau mill for 5 hours and then spray-dried.

この乾燥物を適量採取し、金属製押し型を用いて1−5
 脇の圧力で成形し、直径40鵡、厚さ5腸、密度2.
3〜(59容量95)の生成形体を得た。
Collect an appropriate amount of this dried material and use a metal pressing mold to
Shaped with armpit pressure, diameter: 40 mm, thickness: 5 mm, density: 2.
A product form of 3 to 95 volumes (59 volumes) was obtained.

前記生成形体をアμミナ製μツボに装入し、大気圧下の
空気中で1300℃の温度で1時間焼成した。
The formed body was placed in a μ pot made of AmuMina and fired at a temperature of 1300° C. for 1 hour in air under atmospheric pressure.

得られた焼結体の密度は2.3〜であり、生成形体に対
する線収縮率はいずれの方向に対−しても0.5±0.
1%の範囲内であり、焼結体の寸法精度は±0.04鰺
以内であった。また、この焼結体の平均曲げ強度は6.
7〜と極めて高い値であった。
The density of the obtained sintered body is 2.3~, and the linear shrinkage rate of the formed body is 0.5±0.
It was within the range of 1%, and the dimensional accuracy of the sintered body was within ±0.04. Moreover, the average bending strength of this sintered body is 6.
It was an extremely high value of 7~.

第1表 実施例2 実施例1と同様の操作を繰返して焼結体を製造した結果
は第2表に示した。
Table 1 Example 2 The same operations as in Example 1 were repeated to produce a sintered body. The results are shown in Table 2.

第2表に示した結果よりわかるように線収縮率は最大で
も0.6%程度であシ、実施例1に示した焼結条件によ
れば線収縮率を0.5%に設定して生成形体を成形し焼
結を行うことkよ)、極めて寸法精度の高い焼結体を容
易に製造することが可能であることが確認された。
As can be seen from the results shown in Table 2, the linear shrinkage rate is about 0.6% at most, and according to the sintering conditions shown in Example 1, the linear shrinkage rate was set to 0.5%. It was confirmed that it is possible to easily produce a sintered body with extremely high dimensional accuracy by molding the formed body and sintering it.

第2表 実施例3、比較例1、比較例2 実施例1と同様であるが、第1表に示した如き平均粒径
および不純物含有量のα型アルミナ粉末を使用して焼結
体を得た。
Table 2 Example 3, Comparative Example 1, Comparative Example 2 The same as Example 1, but using α-type alumina powder with the average particle size and impurity content shown in Table 1, a sintered body was prepared. Obtained.

得られた焼結体の物性はvg2表に示した。The physical properties of the obtained sintered body are shown in table vg2.

第2表に示した結果よυわかるように、本発明の実施例
はいずれも線収縮率およびそのバラツキが小さく寸法精
度に優れた焼結体を容易に製造することが可能であるこ
とがわかる。これに蛤して比較例1の平均粒径の大き々
アμミナ粉末を出発原料とした場合には、線収縮率が0
.4±0.3%とバラツキが大きく寸法精度も±0.1
211)と著しく劣るものであった。
As can be seen from the results shown in Table 2, in all the examples of the present invention, it is possible to easily produce sintered bodies with small linear shrinkage percentages and small variations thereof, and excellent dimensional accuracy. . On the other hand, when the large average particle size of the amina powder of Comparative Example 1 was used as the starting material, the linear shrinkage rate was 0.
.. Large variation of 4±0.3% and dimensional accuracy of ±0.1
211), which was significantly inferior.

また不純物含有量の多い比較例2は線収縮率およびその
バラツキが大きく寸法精度の優れた焼結体を得ることが
困難であった。
Furthermore, in Comparative Example 2, which contained a large amount of impurities, the linear shrinkage rate and its dispersion were large, making it difficult to obtain a sintered body with excellent dimensional accuracy.

実施例4 実施例1と同様であるが、α型アルミナ粉末に換えて第
1表に示したシリカ粉末を使用し、1100℃の温度で
焼結体を得た。
Example 4 A sintered body was obtained in the same manner as in Example 1, except that the silica powder shown in Table 1 was used instead of the α-type alumina powder, and at a temperature of 1100°C.

得られた焼結体の物性は第2表に示した。The physical properties of the obtained sintered body are shown in Table 2.

実施例5 実施例1と同様であるが、a型アルミナ粉末に換えて第
1表に示したジルコニア粉末を使用し、1400℃の温
度で焼結体を得た。
Example 5 A sintered body was obtained in the same manner as in Example 1, but using the zirconia powder shown in Table 1 instead of the a-type alumina powder at a temperature of 1400°C.

得られた焼結体の物性は第2表に示した。The physical properties of the obtained sintered body are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、実質的に焼成収縮を
生じさせることなく酸化物焼結体を得ることができ、寸
法精度および強度の要求される構造材料としての酸化物
焼結体を格別の機械加工を施すことなく安価に製造する
方法を提供できるものであって産業上極めて有用なもの
である。
As described above, according to the present invention, an oxide sintered body can be obtained without substantially causing firing shrinkage, and the oxide sintered body can be used as a structural material that requires dimensional accuracy and strength. It is extremely useful industrially because it can provide a method of manufacturing at low cost without special machining.

Claims (1)

【特許請求の範囲】 1、平均粒径が5μm以下の酸化物粉末を主体とする出
発原料を生成形体に成形した後、前記生成形体を液相の
生成量が5重量%以下である温度域の非還元性雰囲気下
で実質的に収縮させることなく焼成し、5Kg/mm^
2以上の平均曲げ強度を有する酸化物焼結体を製造する
ことを特徴とする寸法精度の優れた酸化物焼結体の製造
方法。 2、前記焼結体の焼成に伴う収縮率は2%以下である特
許請求の範囲第1項記載の製造方法。 3、前記出発原料はAl_2O_3、SiO_2、Zr
O_2より選ばれるいずれか少なくとも1種の酸化物を
含有し、その含有量の合計が50重量%以上である特許
請求の範囲第1あるいは2項記載の製造方法。 4、実質的に収縮させることなく焼結させた酸化物焼結
体よりなり、平均曲げ強度が5Kg/mm^2以上であ
ることを特徴とする寸法精度の優れた耐熱性治具用酸化
物焼結体。 5、前記酸化物焼結体はAl_2O_3、SiO_2、
ZrO_2より選ばれるいずれか少なくとも1種の酸化
物を含有し、その含有量の合計が50重量%以上である
特許請求の範囲第4項記載の耐熱性治具用酸化物焼結体
。 6、前記酸化物焼結体は平均粒径が5μm以下の酸化物
粉末を主体とする出発原料を生成形体に成形した後、前
記生成形体を液相の生成量が5重量%以下である温度域
の非還元性雰囲気下で焼成させたものである特許請求の
範囲第4あるいは5項記載の耐熱性治具用酸化物焼結体
[Claims] 1. After molding a starting material mainly consisting of oxide powder with an average particle size of 5 μm or less into a green body, the green body is heated in a temperature range where the amount of liquid phase produced is 5% by weight or less. Sintered in a non-reducing atmosphere of 5Kg/mm^ without shrinking
A method for producing an oxide sintered body with excellent dimensional accuracy, the method comprising producing an oxide sintered body having an average bending strength of 2 or more. 2. The manufacturing method according to claim 1, wherein the shrinkage rate of the sintered body upon firing is 2% or less. 3. The starting materials are Al_2O_3, SiO_2, Zr
The manufacturing method according to claim 1 or 2, which contains at least one kind of oxide selected from O_2, and the total content thereof is 50% by weight or more. 4. A heat-resistant jig-use oxide with excellent dimensional accuracy, which is made of an oxide sintered body sintered without substantially shrinking, and has an average bending strength of 5 Kg/mm^2 or more. Sintered body. 5. The oxide sintered body is Al_2O_3, SiO_2,
The heat-resistant oxide sintered body for a jig according to claim 4, which contains at least one kind of oxide selected from ZrO_2, and the total content thereof is 50% by weight or more. 6. The oxide sintered body is obtained by molding a starting material mainly composed of oxide powder with an average particle size of 5 μm or less into a green body, and then heating the green body at a temperature such that the amount of liquid phase produced is 5% by weight or less. The heat-resistant oxide sintered body for a jig according to claim 4 or 5, which is fired in a non-reducing atmosphere of about
JP59267007A 1984-12-18 1984-12-18 Manufacture of high size precision oxide sintered body and oxide sintered body for high size precision heat-resistant tool Pending JPS61146752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59267007A JPS61146752A (en) 1984-12-18 1984-12-18 Manufacture of high size precision oxide sintered body and oxide sintered body for high size precision heat-resistant tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59267007A JPS61146752A (en) 1984-12-18 1984-12-18 Manufacture of high size precision oxide sintered body and oxide sintered body for high size precision heat-resistant tool

Publications (1)

Publication Number Publication Date
JPS61146752A true JPS61146752A (en) 1986-07-04

Family

ID=17438758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59267007A Pending JPS61146752A (en) 1984-12-18 1984-12-18 Manufacture of high size precision oxide sintered body and oxide sintered body for high size precision heat-resistant tool

Country Status (1)

Country Link
JP (1) JPS61146752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015253A (en) * 2018-07-26 2020-01-30 日本特殊陶業株式会社 Ceramic composite body and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015253A (en) * 2018-07-26 2020-01-30 日本特殊陶業株式会社 Ceramic composite body and method for producing the same

Similar Documents

Publication Publication Date Title
JPS61197464A (en) Manufacture of sintered formed body
JPS6313955B2 (en)
JPS61146752A (en) Manufacture of high size precision oxide sintered body and oxide sintered body for high size precision heat-resistant tool
JP2592223B2 (en) Alumina ceramics for bonding capillaries and method for producing the same
JPS61143686A (en) Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy
KR890002158B1 (en) Silicon mitride ceramic sintered body and the method for producing the same
JPH0518790B2 (en)
JPH0224789B2 (en)
JPS60141671A (en) Manufacture of zirconia sintered body
JPS61178470A (en) Manufacture of high size-precision nitride sintered body andsame sintered body for heat-resistant tools
JPS62123070A (en) Manufacture of boron nitride base sintered body
JPS6110073A (en) Aluminum nitride sintered body
JPS61201662A (en) Manufacture of composite ceramics
JP2568521B2 (en) Composite sintered body
KR910003901B1 (en) Manufacture method of sic sintering material
JPH0453831B2 (en)
JPS624356B2 (en)
JPS60141672A (en) Manufacture of zirconia sintered body
JPS6054979A (en) Manufacture of silicon nitride sintered body
JPH0818876B2 (en) Method for manufacturing silicon nitride sintered body
JPS59227767A (en) Beta spodumene type low expandalbe ceramics and manufacture
JP3219112B2 (en) Method for producing calcium aluminate ceramic sintered body
JPS59146980A (en) Manufacture of silicon nitride sintered body
JPS61242953A (en) Manufacture of barium titanate base sintered body
JPH06247771A (en) Boron nitride composite material and its production