JPS61146725A - Production of side tunnel shape constant polarization fiber - Google Patents

Production of side tunnel shape constant polarization fiber

Info

Publication number
JPS61146725A
JPS61146725A JP59267516A JP26751684A JPS61146725A JP S61146725 A JPS61146725 A JP S61146725A JP 59267516 A JP59267516 A JP 59267516A JP 26751684 A JP26751684 A JP 26751684A JP S61146725 A JPS61146725 A JP S61146725A
Authority
JP
Japan
Prior art keywords
core
glass rod
circular holes
sides
circular hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59267516A
Other languages
Japanese (ja)
Other versions
JPH051219B2 (en
Inventor
Hiroshi Suganuma
寛 菅沼
Hiroshi Yokota
弘 横田
Toshio Dantsuka
彈塚 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59267516A priority Critical patent/JPS61146725A/en
Publication of JPS61146725A publication Critical patent/JPS61146725A/en
Publication of JPH051219B2 publication Critical patent/JPH051219B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a side tunnel shape constant polarization fiber excellent in the polarization characteristics or the like in the good reproducibility by boring the circular holes in the axial symmetry in both sides of core of a glass rod and enlarging the diameters by the etching to form the hollow parts. CONSTITUTION:The circular holes 14a, 14b are bored in the axial symmetry in both sides of a core 12 apart from the core 12 in a glass rod 11 having a rod-shaped glass layer 12 for the core. Then the sides of the glass rod 11 are ground and two faces 15a, 15b which are mutally parallel and symmetrical in relating to a line L passing both a center of core 12 and the centers of circular holes 14a, 14b are formed. Successively after the diameters of circular holes 14a, 14b are enlarged by the etching until touching the core 12, the aimed side tunnel shape constant polarization fiber available as the coherent light transmission is obtained by spinning the rod 11 and forming a flattened shape core 17 and the hollow parts 19a, 19b of the axial symmetry touching the core 17.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、コヒーレント光伝送に用い几シ。[Detailed description of the invention] <Industrial application field> The present invention can be used for coherent optical transmission.

光フアイバ応用計測器や集積形光回路との結合等に用い
几すして一有用な偏波特性を保持するサイドトンネル形
定偏波ファイバの製造方法に関する。
The present invention relates to a method for manufacturing a side-tunnel type polarization-controlled fiber that maintains useful polarization characteristics when used for coupling with optical fiber applied measuring instruments, integrated optical circuits, etc.

〈従来の技術〉 従来定偏波ファイバとしては、■楕円コアファイバ、■
楕円クラッドファイバ、■非軸対称応力付与型ファイバ
、■サイドトンネル形ファイバ、等が提案されている。
<Conventional technology> Conventional polarization-controlled fibers include ■elliptical core fiber, ■
Elliptical clad fibers, non-axisymmetric stress-applying fibers, side tunnel fibers, etc. have been proposed.

これらのなかで、■のサイドトンネル形定偏波ファイバ
は第1図(d)に断面構造を示すように、偏平形コア1
7の両側に低屈功′率部分としてトンネルと称される中
空部19a、19bi設けて偏波特性を保持するように
しtものである。
Among these, the side tunnel type polarization constant fiber (■) has a flat core 1, as shown in the cross-sectional structure in Figure 1(d).
Hollow portions 19a and 19bi called tunnels are provided as low refractive index portions on both sides of the antenna 7 to maintain polarization characteristics.

サイドトンネル形定偏波ファイバは、他のタイプの定偏
波ファイバと異なシ、互いに直交するHEII)C、H
E1□アモードに対して各々異なる遮断周波数を有する
ため、いずれか一方のモードのみが伝播可能な帯域即ち
絶対単一偏波帯域が存在するという特長を持つ。ま几、
偏波特性が優れている几め、複屈許ファイバとしても良
好な特性を示す。更には、■の非軸対称応力付与型ファ
イバのような外径によって偏波特性が変化するという欠
点がないので、サイドトンネル形定偏波ファイバは光フ
アイバ応用計測器の小形化の際に要求されるファイバの
細径化に有利である。
Side-tunnel type polarization-controlled fiber differs from other types of polarization-controlled fiber in that HEII) C, H, which are orthogonal to each other,
Since each of the E1□ amodes has a different cutoff frequency, it has the feature that there is a band in which only one mode can propagate, that is, an absolute single polarization band. Well done,
It has excellent polarization characteristics and also exhibits good characteristics as a birefringent fiber. Furthermore, since it does not have the disadvantage of the polarization characteristics changing depending on the outer diameter like the non-axisymmetric stress-applying fiber described in (2), the side tunnel type polarization-controlled fiber is useful when downsizing optical fiber-applied measuring instruments. This is advantageous in reducing the required fiber diameter.

以上の如くサイドトンネル形定偏波ファイバは理論的に
優れ比特性を有し理想的な定偏波ファイバであるが、十
分な特性を得るには下記■。
As mentioned above, the side tunnel type polarization-controlled fiber has theoretically excellent ratio characteristics and is an ideal polarization-controlled fiber, but in order to obtain sufficient characteristics, the following steps must be taken.

■、■、■の条件を満足する必要がアシ、これらが製法
上いくつかの困難の原因になっている。
It is necessary to satisfy the conditions ①, ②, and ②, and these are the causes of some difficulties in the manufacturing process.

■ トンネル部(中空部)はコアに接してコアの両側に
軸対称に位置すること。
■ The tunnel part (hollow part) must be in contact with the core and located axially symmetrically on both sides of the core.

■ トンネル径がコア径に比べて十分大きいこと。■ The tunnel diameter is sufficiently larger than the core diameter.

■ トンネル間距離はコア径の約1/2程度であること
■ The distance between tunnels should be approximately 1/2 of the core diameter.

■ 以上よシ、コアの形状はコアがトンネルと接する方
向の軸を短軸とする偏平形であること。
■ As mentioned above, the shape of the core should be flat with the short axis being the direction in which the core touches the tunnel.

従来のサイドトンネル形定偏波ファイバの製造方法とし
ては、下記囚、@)の方法が提案されている。
As a conventional method for manufacturing a side tunnel type polarization-controlled fiber, the following method has been proposed.

(A)  まず第2図(a)に示すようにコア用ガラス
層2t−有する石英ガラスロッド1の側面にコア2に軸
対称に2つの側溝4m、4bt−機械加工で穿設し1次
いで第2図(b)に示すように溝付石英ガラスロッド1
を石英ガラスパイプ5に挿入し、これらを加熱一体化し
た後に紡糸する方法。第2図(C)に紡糸された光ファ
イ/46t−拡大して示す。第2図(8L)〜(e)中
、3はクラッド部、7&と7bは中空部である。
(A) First, as shown in FIG. 2(a), two side grooves 4m and 4bt are machined on the side surface of the quartz glass rod 1 having the core glass layer 2t, axially symmetrical to the core 2. As shown in Figure 2(b), the grooved quartz glass rod 1
is inserted into a quartz glass pipe 5, heated and integrated, and then spun. FIG. 2(C) shows the spun optical fiber/46t in an enlarged manner. In FIGS. 2(8L) to (e), 3 is a cladding portion, and 7& and 7b are hollow portions.

■ 第3図に示すようにコア用ガラス層2を有する石英
ガラスロッド8に、クラッド部9からコア2にかけてコ
ア2に軸対称に2つの孔10a、10b′t−機械加工
で直接穿設し、次いで紡糸する方法。
■ As shown in Fig. 3, two holes 10a and 10b't are directly machined in the quartz glass rod 8 having the core glass layer 2 from the cladding part 9 to the core 2 axially symmetrically. , then the method of spinning.

〈発明が解決しようとする問題点〉 しかし、第2図(荀〜(C)に示す囚の方法では、中空
部7m、7bの径をあまり大きくできないこと、ま九側
溝4a、4bの機械的穿設時にコ、アークラッド界面に
クラックが生じ易いのでコア2に接するような側溝を作
れないこと、といつ九問題がある。
<Problems to be solved by the invention> However, in the method shown in FIG. During drilling, cracks tend to occur at the arc-clad interface, so it is impossible to create side grooves that come into contact with the core 2, which is a problem.

また、第3図に示す[F])の方法でも、コア2に接し
て孔10a、Lobt−機械的に開孔しようとするとコ
アークラッド界面に割れが生じ易く、そのため、コア2
が偏平形になるように開孔することは殆ど不可能である
こと、といつ次問題がある。
Furthermore, even with the method [F] shown in FIG.
Another problem is that it is almost impossible to drill holes in a flat shape.

そこで本発明は、中空部及びコアいずれの形状もを任意
に且つ再現性良く形成でき、よって理想的形状を有する
サイドトンネル形定偏波ファイ・櫂を製造することがで
きる方法な提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention aims to provide a method that allows the shapes of both the hollow part and the core to be formed arbitrarily and with good reproducibility, and thereby to manufacture a side tunnel type constant polarization fiber paddle having an ideal shape. purpose.

く問題点を解決する九めの手段〉 上述し九目的を達成する本発明によるサイドトンネル形
定偏波ファイバの製造方法は、コア用ガラスを有するガ
ラスロッドに、コアから離れて当該コアの1側に軸対称
に円形孔を開孔する開孔工程と、ガラスロッドの側面を
研削し、互いに平行で且つコアの中心と円形孔の中心と
を通る線に関して対称をなす2つの面を形成する側面研
削工程と、開孔され交円形孔をエツチングによって少な
くともコアに接するまで拡径するエツチング工程と、拡
径され交円形孔及び平行な研削面を有するガラスロッド
を紡糸し、偏平形コア及びこのコアに接し比軸対称の中
部部管形成する紡糸工程と、を具備し九ことt′特徴と
する。但し、開孔工程と側面研削工程の順序は先後を問
われない。を几、側面研削工程とエツチング工程の順序
も先後を問われない。要は、紡糸の前に、開孔をエツチ
ングで拡径し交円形孔と研削し几側面とがガラスロッド
に形成されていれば良い。
Ninth Means for Solving the Problems〉 The method for manufacturing a side tunnel type polarization-controlled fiber according to the present invention that achieves the nine objects described above is characterized in that a glass rod having a glass for the core is provided with one portion of the core separated from the core. A hole-opening step of drilling a circular hole axially symmetrically on the side, and grinding the side surface of the glass rod to form two surfaces that are parallel to each other and symmetrical with respect to a line passing through the center of the core and the center of the circular hole. A side surface grinding step, an etching step of enlarging the diameter of the intersecting circular holes by etching until they are at least in contact with the core, and spinning a glass rod having the enlarged diameter, intersecting circular holes and parallel ground surfaces, and forming a flat core and this glass rod. and a spinning step of forming a central tube in contact with the core and symmetrical about the axis. However, the order of the hole-opening process and the side surface grinding process does not matter. However, the order of the side surface grinding process and etching process does not matter. In short, it is sufficient that the diameter of the opening is enlarged by etching, and the intersecting circular hole and the cylindrical side surface are formed in the glass rod before spinning.

く作用〉 円形孔をエツチングによシ拡径するので、最初の円形孔
はコアークラッド界面に割れを生じない程度に離して開
孔し、を九小径であってもかまわず、エツチングによっ
てコア用ガラス層に接するかその内部に入り込む円形孔
を簡単に形成できる。ま友、コア両側に軸対称に円形孔
を形成すると共に、ガラスロッドの側面を研削してコア
中心と円形孔中心を通る線に関して対称な且つ互いに平
行な2つの面を形成しておくことにより、円形細線に紡
糸し文とき、コアが偏平形になシ且つ中空部が楕円形に
なる。
Effect> Since the diameter of the circular hole is enlarged by etching, the first circular hole is opened at a distance to the extent that it does not cause cracks at the core clad interface. Circular holes can be easily formed that touch or penetrate the glass layer. By forming circular holes axially symmetrically on both sides of the core and grinding the side surfaces of the glass rod to form two surfaces that are symmetrical with respect to a line passing through the center of the core and the center of the circular hole and parallel to each other. When spun into a circular thin wire, the core becomes flat and the hollow part becomes oval.

〈実施例〉 第1図(a)〜(d)を参照して本発明方法の一実施例
を説明する。まず、コア用ロンド状ガラス層を有する石
英ガラスロッドを公知の方法で作る。
<Example> An example of the method of the present invention will be described with reference to FIGS. 1(a) to (d). First, a quartz glass rod having a rond glass layer for the core is made by a known method.

次いで第1図(−に示すように、この石英ガラスロッド
11のクラッド部13に、コア12に接しないよう離し
てコア12の両側に軸対称に2つの円形孔14m、14
d’i機械的加工、レーザ加工等で開孔する。次に第1
図(縁に示すように1石英ガラスロッド11の側面を研
削加工し、コア12の中心と2つの円形孔14a、14
bの中心とを通るIiLに関して対称で且つ互いに平行
な2つの研削面15 a e 15 bを形成する。
Next, as shown in FIG.
Holes are opened by d'i mechanical processing, laser processing, etc. Next, the first
As shown in the figure (edge), the side surface of the quartz glass rod 11 is ground, and the center of the core 12 and the two circular holes 14a, 14 are
Two grinding surfaces 15 a e 15 b are formed that are symmetrical with respect to IiL passing through the center of b and parallel to each other.

その後、2つの円形孔14m、14bを気相エツチング
によって拡径する。エツチングは円形孔の円周の一部が
コア12に接するまで、あるいは第1図(e)に示すよ
うに円形孔14’ a、14’ bがコア12の内部に
入り込むまで行う。しかるのち、第1図(e)の石英ガ
ラスロッド11をカーボン抵抗炉等を用いて0.08〜
0.20諷φ程度に紡糸する。第1図(d)に紡糸して
得友円形の定偏波ファイバ16を示し、偏平形コア17
と、その両側に接し丸軸対称の中空部19 a、19 
bとを有する。18はクラッド部である。
Thereafter, the diameters of the two circular holes 14m and 14b are enlarged by vapor phase etching. Etching is performed until a part of the circumference of the circular hole contacts the core 12, or until the circular holes 14'a and 14'b enter the inside of the core 12, as shown in FIG. 1(e). Thereafter, the quartz glass rod 11 shown in FIG. 1(e) is heated to a temperature of 0.08~
Spun to approximately 0.20 diameter. FIG. 1(d) shows a circular constant polarization fiber 16 obtained by spinning, and a flat core 17.
and a hollow part 19a, 19 which is in contact with both sides and is symmetrical about the circular axis.
It has b. 18 is a cladding portion.

第1図(C)、ω)よシ判るように、紡糸前は石英ガラ
スロッド11の外形が略矩形であシ、孔14’a 、 
14′bが円形であったものが、紡糸により、外形が円
形になり、これに伴ってコア17が偏平形になると共に
このコア17に接して両側に楕円形の中空部19a、1
9bが軸対称に形成される。第1図(d)のファイバ1
6は偏平コア17の両側に接して軸対称の中空部19a
As can be seen from FIG. 1(C) and ω), the outer shape of the quartz glass rod 11 is approximately rectangular before spinning, and the holes 14'a,
14'b was circular, but by spinning, the outer shape became circular, and as a result, the core 17 became flat, and oval hollow parts 19a, 1 were formed on both sides in contact with the core 17.
9b is formed axially symmetrically. Fiber 1 in Figure 1(d)
6 is an axially symmetrical hollow portion 19a in contact with both sides of the flat core 17;
.

19bを有するから、非軸対称の屈折率分布を持つ。従
って、光ファイバ16は偏波特性を保持する。また前述
の如く絶対単一偏波帯域を有することにより複屈fr率
ファイバとして使用できる。。なおエツチングは、第1
図山〕の如く側面研削を行った後に行う方が効果的であ
るが、前述の如く先に円形孔14a、、14bをエツチ
ングして拡径してから側面研削を行っても良い。
19b, it has a non-axisymmetric refractive index distribution. Therefore, the optical fiber 16 maintains polarization characteristics. Furthermore, as described above, since it has an absolutely single polarization band, it can be used as a birefringent FR fiber. . Note that etching is the first step.
Although it is more effective to perform side grinding after performing side grinding as shown in Figure 2, it is also possible to perform side grinding after first etching the circular holes 14a, 14b to enlarge their diameters as described above.

ま几互いに平行な2つの側面tsa、1sbの研削を先
に行い、次に研削面151& 、 15bに平行でコア
中心を通る線上に、コアから離れてコアの両側に軸対称
となるように円形孔14a。
First grind two side surfaces tsa and 1sb that are parallel to each other, and then grind a circular shape on a line parallel to the ground surfaces 151 & 15b and passing through the center of the core, away from the core and axially symmetrical on both sides of the core. Hole 14a.

14bt−開孔し、その後エツチングで円形孔を拡径す
るという順序を採っても良い。
The order of opening a 14-bt hole and then enlarging the diameter of the circular hole by etching may be adopted.

く実験例〉 まず、直径30m、コア用ロンド状ガラス径1.2 m
mの石英ガラスロッドに、直径10m、円形孔中心とコ
ア中心との間隔7■の内形孔t−2つ、コア両側に軸対
称に開孔し友。次に、石英ガラスロッドの側面研削を行
い、研削面間の厚さを17−とじ友。次に、円形孔内に
六フッ化硫黄ヲ200cc/分酸素を100 c c 
7%流すと共に、石英ガラスロッドt−Ha10s炎を
用いて約1800℃に加熱して気相エツチングを行い、
円形孔を直径12.91mまで拡径し文。これにより円
形孔はコア内に0.05−入シ込んでいる。その後、石
英ガラスロッドを約2100℃の温度でカーボン抵抗炉
を用いて加熱し、外径100μmの光ファイバを紡糸し
次。この光ファイバは偏平形コアの両側に楕円形の中空
部が形成されたものである。この光ファイバの特性をλ
= 1.30μmの光で評価し九ところ、複屈折率が2
×10″″4と良好な値が得られ友。なお、第2図(a
)〜(c)で説明し几従来方法囚によシ作つ次光ファイ
バの複屈折率は1xio−’であつ几ので、これに比べ
て本実験例の光ファイバは十分大きな複屈折率を有し。
Experimental example> First, the diameter is 30 m, and the diameter of the rond glass for the core is 1.2 m.
A silica glass rod with a diameter of 10 m and two internal holes with a spacing of 7 cm between the center of the circular hole and the center of the core are drilled axially symmetrically on both sides of the core. Next, the sides of the quartz glass rod are ground, and the thickness between the ground surfaces is reduced to 17mm. Next, 200 cc/min of sulfur hexafluoride was added to the circular hole at 100 cc of oxygen.
At the same time as flowing 7%, vapor phase etching was performed by heating to about 1800°C using a quartz glass rod T-Ha10s flame,
The circular hole was enlarged to a diameter of 12.91 m. As a result, the circular hole extends 0.05 mm into the core. Thereafter, the quartz glass rod was heated at a temperature of about 2100° C. using a carbon resistance furnace, and an optical fiber with an outer diameter of 100 μm was spun. This optical fiber has an elliptical hollow portion formed on both sides of a flat core. The characteristics of this optical fiber are λ
= 1. When evaluated with 30 μm light, the birefringence was 2.
A good value of ×10″″4 was obtained. In addition, Fig. 2 (a
) to (c), the birefringence of the optical fiber produced using the conventional method is 1xio-', so compared to this, the optical fiber of this experimental example has a sufficiently large birefringence. I have it.

特性が大幅に向上していることが判る。It can be seen that the characteristics have been significantly improved.

〈発明の効果〉 本発明の製造方法によれば、トンネルと称される中空部
を形成するのに一旦開孔した円形孔をエツチングによっ
て拡径するので、従来は困難であつ九コアークラッド界
面にクラックを生ぜずにコアに接した円形孔を形成する
ことができる。更に、はじめの開孔の径及び位置と次の
エツチングの程度とを適当に設定すること、並びにガラ
スロッドの側面研削の程度を適当に設定することにより
、コア及び中空部を任意の断面形状とすることができ、
理想的形状のサイドトンネル形定偏波ファイバが再現性
良く実現する。これにより、広い絶対単一偏波帯域を持
つ、偏波特性の優れ比定偏波ファイバを製造することが
できる。
<Effects of the Invention> According to the manufacturing method of the present invention, in order to form a hollow part called a tunnel, the diameter of the circular hole once opened is enlarged by etching. A circular hole can be formed in contact with the core without causing cracks. Furthermore, by appropriately setting the diameter and position of the first hole, the degree of subsequent etching, and the degree of side surface grinding of the glass rod, the core and hollow part can be formed into any cross-sectional shape. can,
A side-tunnel type polarization-controlled fiber with an ideal shape is realized with good reproducibility. As a result, it is possible to manufacture a constant polarization fiber with excellent polarization characteristics and a wide absolute single polarization band.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(−〜(d)は本発明方法の一実施例に係る製造
手順を示し、第1図(〜は開孔された石英ガラスロッド
の断面図、同図価)は側面が研削された石英ガラスロン
ドの断面図、同図(C)は気相エツチングによシ孔が拡
径された石英ガラスロンドの断面図、同図(d)は紡糸
して得たサイドトンネル形定偏波ファイバの断面図であ
る。 第2図(a)〜(e)は従来方法の製造手順を示し、第
2図(姉は側溝が穿設された石英ガラスロッドの断面図
、同図(b)は石英ガラスパイプに挿入し次石英ガラス
ロッドの断面図、同図(e)は紡糸され几すイドトンネ
ル形定偏波ファイバの断面図である。第3図は他の従来
方法を示す開孔された石英ガラスロンドの断面図である
。 図面中、 11は石英ガラスロッド、 12はコア用ロッド状ガラス層、 13はクラッド部、 14mと14bは円形孔、 14′aと14′bは拡径され交円形孔、15JLと1
5bは研削面、 16は定偏波ファイバ、 17は偏平形コア、 18はクラッド部、 19aと19bは中空部。 Lはコア中心と円形孔中心を通る線である。 第1 (a) (d) ダ乙イ轟;皮ファ4+く15       17 41
111作り丁−\   l  ・ (b) ◇ (C) f3 15a
Figure 1 (- to (d) shows the manufacturing procedure according to an embodiment of the method of the present invention, and Figure 1 (- to (d) is a cross-sectional view of a quartz glass rod with a hole in it, and the same figure number) shows the side surface of the rod being ground. Figure (C) is a cross-sectional view of a quartz glass iron whose diameter has been enlarged by vapor phase etching, Figure (d) is a side tunnel type constant polarization obtained by spinning. 2 is a cross-sectional view of a fiber. FIGS. 2(a) to 2(e) show the manufacturing procedure of the conventional method; FIG. 3 is a cross-sectional view of a quartz glass rod inserted into a quartz glass pipe, and FIG. This is a cross-sectional view of a fused silica glass iron. In the drawing, 11 is a quartz glass rod, 12 is a rod-shaped glass layer for the core, 13 is a cladding part, 14m and 14b are circular holes, and 14'a and 14'b are enlarged holes. Intersecting circular holes, 15JL and 1
5b is a ground surface, 16 is a constant polarization fiber, 17 is a flat core, 18 is a cladding portion, and 19a and 19b are hollow portions. L is a line passing through the center of the core and the center of the circular hole. 1st (a) (d) Daotoi Todoroki; Skin Fa 4 + Ku15 17 41
111 making knife-\ l ・ (b) ◇ (C) f3 15a

Claims (1)

【特許請求の範囲】[Claims] コア用ガラスを有するガラスロッドに、コアから離れて
当該コアの両側に軸対称に円形孔を開孔する開孔工程と
、ガラスロッドの側面を研削し、互いに平行で且つコア
の中心と円形孔の中心とを通る線に関して対称をなす2
つの面を形成する側面研削工程と、開孔された円形孔を
エッチングによつて少なくともコアに接するまで拡径す
るエッチング工程と、拡径された円形孔及び平行な研削
面を有するガラスロッドを紡糸し、偏平形コア及びこの
コアに接した軸対称の中空部を形成する紡糸工程と、を
具備したサイドトンネル形定偏波ファイバの製造方法。
A hole-opening step of drilling a circular hole axially symmetrically on both sides of the core away from the core in a glass rod having glass for the core, and grinding the side surface of the glass rod to form a circular hole that is parallel to each other and parallel to the center of the core. 2 which is symmetrical about the line passing through the center of
a side-grinding process to form two faces, an etching process to enlarge the diameter of the circular hole by etching until it touches the core at least, and spinning a glass rod having the enlarged circular hole and parallel ground surfaces. A method for producing a side tunnel type polarization constant fiber, comprising: a spinning process for forming a flat core and an axially symmetrical hollow portion in contact with the core.
JP59267516A 1984-12-20 1984-12-20 Production of side tunnel shape constant polarization fiber Granted JPS61146725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59267516A JPS61146725A (en) 1984-12-20 1984-12-20 Production of side tunnel shape constant polarization fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59267516A JPS61146725A (en) 1984-12-20 1984-12-20 Production of side tunnel shape constant polarization fiber

Publications (2)

Publication Number Publication Date
JPS61146725A true JPS61146725A (en) 1986-07-04
JPH051219B2 JPH051219B2 (en) 1993-01-07

Family

ID=17445924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59267516A Granted JPS61146725A (en) 1984-12-20 1984-12-20 Production of side tunnel shape constant polarization fiber

Country Status (1)

Country Link
JP (1) JPS61146725A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113978A1 (en) * 2003-06-19 2004-12-29 Corning Incorporated Single polarization optical fiber and system and method for producing same
US7200309B2 (en) 2003-06-19 2007-04-03 Corning Incorporated Single polarization and polarization maintaining optical fibers and system utilizing same
WO2008007743A1 (en) * 2006-07-12 2008-01-17 The Furukawa Electric Co., Ltd. Polarization retaining optical fiber, manufacturing method of polarization retaining optical fiber connector, and polarization retaining optical fiber connector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113978A1 (en) * 2003-06-19 2004-12-29 Corning Incorporated Single polarization optical fiber and system and method for producing same
US7194172B2 (en) 2003-06-19 2007-03-20 Corning Incorporated Single polarization optical fiber and system and method for producing same
US7200309B2 (en) 2003-06-19 2007-04-03 Corning Incorporated Single polarization and polarization maintaining optical fibers and system utilizing same
CN100388030C (en) * 2003-06-19 2008-05-14 康宁股份有限公司 Single polarization optical fiber and system and method for producing same
WO2008007743A1 (en) * 2006-07-12 2008-01-17 The Furukawa Electric Co., Ltd. Polarization retaining optical fiber, manufacturing method of polarization retaining optical fiber connector, and polarization retaining optical fiber connector
JPWO2008007743A1 (en) * 2006-07-12 2009-12-10 古河電気工業株式会社 Polarization-maintaining optical fiber, method of manufacturing polarization-maintaining optical fiber connector, and polarization-maintaining optical fiber connector
US7809223B2 (en) 2006-07-12 2010-10-05 The Furukawa Electric Co., Ltd Polarization-maintaining optical fiber, method of manufacturing polarization-maintaining optical-fiber connecting portion, and polarization-maintaining optical-fiber connecting portion

Also Published As

Publication number Publication date
JPH051219B2 (en) 1993-01-07

Similar Documents

Publication Publication Date Title
JP2584619B2 (en) Manufacturing method of non-axisymmetric optical fiber preform
JP3903987B2 (en) Polarization-maintaining optical fiber manufacturing method
JPS5957925A (en) Preform for high multiple refraction optical fiber and manu-facture
JPS61146725A (en) Production of side tunnel shape constant polarization fiber
JPH0211527B2 (en)
JP2762571B2 (en) Manufacturing method of polarization maintaining optical fiber
JPS6212626A (en) Production of optical fiber of constant polarized electromagnetic radiation
JPS6246931A (en) Production of base material for optical fiber
JPH06235838A (en) Production of polarization maintaining optical fiber
JPS6150887B2 (en)
JPS5884137A (en) Manufacture of optical fiber retaining polarized light
JPS6140832A (en) Process for forming hollow hole for parent material for fixed polarization optical fiber and preparation of fixed polarization optical fiber
JPS6212625A (en) Production of optical fiber of constant polarized electromagnetic radiation
JPH0211528B2 (en)
JPS58110439A (en) Manufacture of constant polarization type optical fiber
JPH0225806A (en) Polarization maintaining optical fiber and manufacture thereof
JPS61228404A (en) Optical fiber for constant polarized wave
JPS58115403A (en) Multicore constant polarization optical fiber and its manufacture
JPS63159230A (en) Production of optical fiber preform having preserved plane of polarization
JPH0467105A (en) Polarization maintaining optical fiber
JPS61168549A (en) Production of optical fiber keeping plane of polarization
JP2827231B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
CN1121053A (en) &#34;Geometric Process&#34; for prepn of special optical fibre
JPS597305A (en) Production of constant polarization fiber
JP2003084160A (en) Polarization maintaining optical fiber