JPS61145867A - Matrix-type thin film transistor substrate - Google Patents

Matrix-type thin film transistor substrate

Info

Publication number
JPS61145867A
JPS61145867A JP59267304A JP26730484A JPS61145867A JP S61145867 A JPS61145867 A JP S61145867A JP 59267304 A JP59267304 A JP 59267304A JP 26730484 A JP26730484 A JP 26730484A JP S61145867 A JPS61145867 A JP S61145867A
Authority
JP
Japan
Prior art keywords
gate
wire
insulating layer
layer
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59267304A
Other languages
Japanese (ja)
Inventor
Atsushi Mizutome
敦 水留
Osamu Takamatsu
修 高松
Takashi Enomoto
隆 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59267304A priority Critical patent/JPS61145867A/en
Publication of JPS61145867A publication Critical patent/JPS61145867A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te

Abstract

PURPOSE:To sharply reduce a short circuit between a gate wire and a source wire, by providing a photosensitive organic insulating film under the source wire, as an insulating layer between the gate wire and the source wire, in addition to a gate insulating layer, so as to form a partial dual structure. CONSTITUTION:A photosensitive organic insulating film 9 is formed under a source wire so as to prevent a short circuit between a gate wire and the source wire. Concretely, after the gate wire 2 is formed, an SiN:H film or a semiconductor layer 4 as an inorganic gate insulating layer, and an n<+> layer 8, are formed successively by a P-CVD method, and the n<+> layer 8 and the semiconductor layer 4 in a part other than a part made to operate as TFT are removed by etching. Next, photosensitive polyimide is applied by spin coating and then is patterned by a photo process so that it remains under a source wire of TFT. Moreover, after rinsing is made with isopropyl alcohol, the photosensitive organic insulating film 9 is formed, the source wire 5, a drain wire 6, etc. of TFT are formed, and thus a matrix-shaped TFT base is prepared.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば液晶等によるマトリクス型薄膜トラン
ジスタ基板、特に薄膜トランジスタ(Thin−Fil
m−’rransister ・・・以下TFTと略記
する。)アレイの配線構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to matrix type thin film transistor substrates such as liquid crystals, particularly thin film transistors (Thin-Film transistors).
m-'rransister...hereinafter abbreviated as TFT. ) relates to the wiring structure of the array.

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

近年、例えば液晶表示パネルの一方の基板にゲート線(
走査線)及びソース線(信号線)を多数互いに絶縁した
状態で直交させ、これら各ラインの交差点にTFTをス
イッチング素子として配列し、このTPTにより各交差
点毎に設けられた画素電極に信号を与え、その部分の液
晶を選択的に駆動させることにより、テレビ等の画像表
示を行う、フラットパネルディスプレイの開発が進めら
れている。最近では、特にパネルの大面積、高精細化に
伴ないTFTのゲート線、ソース線の引き出し本数が増
加しゲート線とソース線が絶縁層を介して交差する部分
の数が増加している。
In recent years, for example, gate lines (
A large number of scanning lines (scanning lines) and source lines (signal lines) are insulated from each other and intersected at right angles, TFTs are arranged as switching elements at the intersections of these lines, and signals are applied to pixel electrodes provided at each intersection using the TPTs. , flat panel displays are being developed that display images on televisions and the like by selectively driving liquid crystals in those areas. In recent years, the number of TFT gate lines and source lines has increased, especially as panels have become larger in area and higher in definition, and the number of portions where gate lines and source lines intersect via insulating layers has increased.

第3図に、従来のマトリクス型液晶表示パネルに用いら
れるTFT7レイ基板の構成図を示す。
FIG. 3 shows a configuration diagram of a TFT7 array substrate used in a conventional matrix type liquid crystal display panel.

1はTFT側透明絶縁基板、2はゲート線、3は画素電
極、4は半導体層、5はソース線、6はドレイン線であ
る。一方第4図(a) 、(b)は、それぞれ第3図に
おけるA−A ’及びB−B’断面を示す図であり、8
は、半導体層とソース及びドレイン線とのオーミックコ
ンタクトを得るためのn′″層、7は、ゲート絶縁層で
ある。・7のゲート絶縁層は前述のゲート層とソース層
線の線間絶縁層も兼ねている。7の絶縁層としては、例
えばP−CVD法により形成されるSiN:H膜を用い
ることができる。 P−CVD法により形成されるSi
N:H膜は低温(〜250℃)で形成でき、5i02等
の他の無機絶縁膜に比べて誘電率が大きい等の特徴があ
り、 TFTのゲート絶縁層として、広く用いられてい
る。しかし、 P−CCD法により形成されるSiN:
H膜は、若干数のピンホール等が避けられず、前述の様
に、大面積、高精細化に伴ないSiN:HIIのみでは
ゲート線とソース線の交差点でのショートの危険性が増
大する。ゲート線とソース線の交差点でショートが生ず
ると、パネル上にはライン欠陥として現われ、パネル不
良の原因とな4ていた。
1 is a TFT side transparent insulating substrate, 2 is a gate line, 3 is a pixel electrode, 4 is a semiconductor layer, 5 is a source line, and 6 is a drain line. On the other hand, FIGS. 4(a) and 4(b) are views showing the AA' and BB' cross sections in FIG. 3, respectively, and 8
is an n''' layer for obtaining ohmic contact between the semiconductor layer and the source and drain lines, and 7 is a gate insulating layer.The gate insulating layer 7 serves as the line-to-line insulation between the gate layer and source layer lines. As the insulating layer 7, an SiN:H film formed by the P-CVD method can be used, for example.
N:H films can be formed at low temperatures (~250° C.) and have a higher dielectric constant than other inorganic insulating films such as 5i02, and are widely used as gate insulating layers of TFTs. However, SiN formed by the P-CCD method:
The H film inevitably has some pinholes, etc., and as mentioned above, as the area becomes larger and the resolution becomes higher, the risk of short circuits at the intersection of the gate line and the source line increases with only SiN:HII. . When a short circuit occurs at the intersection of the gate line and the source line, it appears as a line defect on the panel, causing panel failure.

本発明は上記問題点に鑑みなされたもので、TPT配線
部(ソース線とゲート線間)での電気的ショートを防止
した薄膜トランジスタ基板を提供することを目的とする
ものである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a thin film transistor substrate that prevents electrical short-circuits in the TPT wiring portion (between the source line and the gate line).

〔問題点を解決するための手段及び作用〕本発明は、マ
トリクス状に配置された画素と、該画素を駆動する為の
スイッチング用薄膜トランジスタを備え、該薄膜トラン
ジスタのソース線とゲート線間の絶縁層の一部に、ゲー
ト絶縁層に加え、感光性有機絶縁層を設け、二層の層間
絶縁層としたもので、この様な基板構成をすることによ
って、ゲート線とソース線の交差点におけるショートは
減少する。
[Means and effects for solving the problems] The present invention includes pixels arranged in a matrix and a switching thin film transistor for driving the pixels, and an insulating layer between the source line and gate line of the thin film transistor. In addition to the gate insulating layer, a photosensitive organic insulating layer is provided on a part of the board, creating a two-layer interlayer insulating layer. By configuring the substrate in this way, short circuits at the intersection of the gate line and source line can be prevented. Decrease.

〔実施例〕〔Example〕

第1図(a)、(b)は、本発明の一実施例を示す断面
図であり、第4図(a)、(b)と対応している。第1
図において、9が新たに、ソース線下にゲート線とソー
ス線間のショート防止の為に設けた感光性有機絶縁膜で
ある。
FIGS. 1(a) and 1(b) are cross-sectional views showing one embodiment of the present invention, and correspond to FIGS. 4(a) and (b). 1st
In the figure, 9 is a photosensitive organic insulating film newly provided under the source line to prevent short circuit between the gate line and the source line.

第2図に、下ゲートスタガー型TFTを一例として、そ
の作成プロセスを示す。
FIG. 2 shows the manufacturing process of a lower gate stagger type TFT as an example.

第2図(a)はゲート線2形成後、無機ゲート絶縁層と
してSiN:H膜又半導体層4、n0層8をP−CVD
法により連続形成し、 TPTとして動作させる以外の
部分のn′″層8、半導体層4をエツチング除去した状
態である。前述したが、従来無機ゲート絶縁層は、 T
PTのゲート線2と、ソース線5間の層間絶縁層を兼ね
るものである0次に第2図(b)に示す様に、本発明の
感光性有機絶縁層9として感光性ポリイミドであるフォ
トニースυR−3100、(商品名、東し■製)番NM
Pにて、6:4(重量比)に希釈後、約2000Aの膜
厚にスピンコードした。80℃で1時間プリベークした
後、 TFTのソース線下に残る様、フォト工程にてパ
ターニングした。(第2図(C)) さらにイソプロピルアルコール(IPA)にてリンスし
た後、 135℃30分間、続いて200℃30分間キ
ュアレ、木目的の感光性有機絶縁膜9を形成した。(第
2図(d))最後に通常の工程により TPTのソース
線5、ドレイン線6等を形成し、マトリクス状TF丁基
板を作成した、(第2図(e))以上の様に、作成され
たマトリクス状TFT基板のゲート線とソース線5間の
ショートの発生率を調査したところ、従来の無機絶縁層
(SiN:H膜)のみの場合、全交差点数の0.O1%
程度生じていたのに対し、本発明の無機絶縁層+感光性
有機絶縁層の2層の層間絶縁層を設けたマトリクス状T
PT基板では、 o、oooi%以下と、従来の1/1
00以下に大幅に減少した。
Figure 2 (a) shows that after the gate line 2 is formed, a SiN:H film or semiconductor layer 4 and n0 layer 8 are formed by P-CVD as an inorganic gate insulating layer.
This is a state in which the n''' layer 8 and the semiconductor layer 4 in the portions other than those to be operated as a TPT are etched away.As mentioned above, the conventional inorganic gate insulating layer is
As shown in FIG. 2(b), the photosensitive organic insulating layer 9 of the present invention, which also serves as an interlayer insulating layer between the gate line 2 and the source line 5 of the PT, is made of photosensitive polyimide. Nice υR-3100, (product name, manufactured by Toshi ■) No. NM
After diluting with P to 6:4 (weight ratio), the film was spin-coded to a film thickness of about 2000 Å. After prebaking at 80° C. for 1 hour, it was patterned using a photo process so that it remained under the source line of the TFT. (FIG. 2(C)) After rinsing with isopropyl alcohol (IPA), the photosensitive organic insulating film 9 was cured at 135° C. for 30 minutes and then at 200° C. for 30 minutes. (Fig. 2 (d)) Finally, TPT source lines 5, drain lines 6, etc. were formed by the usual process to create a matrix-shaped TF substrate. (Fig. 2 (e)) As shown above, When we investigated the incidence of short circuits between the gate line and source line 5 of the fabricated matrix TFT substrate, we found that in the case of only a conventional inorganic insulating layer (SiN:H film), the total number of intersections was 0. O1%
In contrast, the matrix T with two interlayer insulating layers of the inorganic insulating layer and the photosensitive organic insulating layer of the present invention
For PT substrates, it is less than o,oooi%, which is 1/1 of the conventional
It has decreased significantly to below 00.

又、本発明のマトリクス状TFT基板を用いて、通常の
工程により、液晶表示パネルを作成した。
Further, a liquid crystal display panel was fabricated using the matrix TFT substrate of the present invention through normal processes.

かくして得られた液晶表示パネルを高温多湿雰囲気(8
0℃、80%RH)中で1000時間連続動作させたと
ころ、良好な表示特性を維持した。
The thus obtained liquid crystal display panel was placed in a high temperature and humid atmosphere (8
When the device was operated continuously for 1000 hours at 0° C. and 80% RH, good display characteristics were maintained.

感光性有機絶縁膜として、感光性ポリイミドを一例とし
て挙げたが、他にもゴム系フォトレジスト(例えばOM
R−83、商品名、東京応化工業■製)等も使用できる
Although photosensitive polyimide is used as an example of the photosensitive organic insulating film, rubber-based photoresists (such as OM
R-83 (trade name, manufactured by Tokyo Ohka Kogyo ■), etc. can also be used.

また、本発明はクラークらにより発表された強誘電性液
晶素子(米国特許第4367824号公報)などにも応
用することができる。
Further, the present invention can be applied to a ferroelectric liquid crystal device disclosed by Clark et al. (US Pat. No. 4,367,824).

〔発明の効果〕〔Effect of the invention〕

本発明は、ゲート線とソース線間の絶縁層として、ゲー
ト絶縁層に加えソース線下に感光性有機絶縁膜を設け、
一部分二重構造としたのでゲート線とソース線間のショ
ートを大幅に減少させることができたものであって、す
ぐれた効果が認められる。
The present invention provides a photosensitive organic insulating film under the source line in addition to the gate insulating layer as an insulating layer between the gate line and the source line,
Since it has a partially double structure, short circuits between the gate line and the source line can be significantly reduced, and an excellent effect can be recognized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のマトリクス状TPT基板の一実施例
を示す断面図、第2図は、本発明のマトリクス状TPT
基板の作成プロセスの一例を示す断面図、第3図は、従
来のマトリクス状TPT基板の一例を示す平面図、第4
図(a) (b)はそれぞれ第1図におけるA−A ’
及びB−B ’断面図である。 l・・・基板、2・・・ゲート線、3・・・画素電極、
4・・・半導体層、5・・・ソース線、6・・・ドレイ
ン線7・・・ゲート絶縁層、8・・・30層、9・・・
感光性有機絶縁層、lO・・・フォトマスク出願者 キ
ャノン株式会社
FIG. 1 is a sectional view showing an embodiment of the matrix TPT substrate of the present invention, and FIG. 2 is a cross-sectional view of the matrix TPT substrate of the present invention.
FIG. 3 is a cross-sectional view showing an example of the substrate creation process, and FIG. 4 is a plan view showing an example of a conventional matrix TPT substrate.
Figures (a) and (b) are A-A' in Figure 1, respectively.
and BB' sectional view. 1...Substrate, 2...Gate line, 3...Pixel electrode,
4... Semiconductor layer, 5... Source line, 6... Drain line 7... Gate insulating layer, 8... 30 layers, 9...
Photosensitive organic insulating layer, IO...Photomask applicant Canon Corporation

Claims (1)

【特許請求の範囲】[Claims] マトリクス状に配置された画素と、該画素を駆動する為
のスッチング用薄膜トランジスタを備え、該薄膜トラン
ジスタのソース線とゲート線間の絶縁層の一部にゲート
絶縁層に加えて感光性有機絶縁層を設け、二層の層間絶
縁層としたことを特徴とするマトリクス状薄膜トランジ
スタ基板。
It has pixels arranged in a matrix and switching thin film transistors for driving the pixels, and a photosensitive organic insulating layer is provided in addition to the gate insulating layer as part of the insulating layer between the source line and gate line of the thin film transistor. 1. A matrix-like thin film transistor substrate characterized in that the substrate is provided with two interlayer insulating layers.
JP59267304A 1984-12-20 1984-12-20 Matrix-type thin film transistor substrate Pending JPS61145867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59267304A JPS61145867A (en) 1984-12-20 1984-12-20 Matrix-type thin film transistor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59267304A JPS61145867A (en) 1984-12-20 1984-12-20 Matrix-type thin film transistor substrate

Publications (1)

Publication Number Publication Date
JPS61145867A true JPS61145867A (en) 1986-07-03

Family

ID=17442966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59267304A Pending JPS61145867A (en) 1984-12-20 1984-12-20 Matrix-type thin film transistor substrate

Country Status (1)

Country Link
JP (1) JPS61145867A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319876A (en) * 1986-07-11 1988-01-27 Fuji Xerox Co Ltd Thin film transistor device
JPS63131569A (en) * 1986-11-20 1988-06-03 Fuji Xerox Co Ltd Semiconductor device
JPH01259565A (en) * 1988-04-11 1989-10-17 Hitachi Ltd Thin film transistor and manufacture of the same
US11125191B2 (en) 2011-12-06 2021-09-21 Oval Engine Ltd Engine intake apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319876A (en) * 1986-07-11 1988-01-27 Fuji Xerox Co Ltd Thin film transistor device
JPS63131569A (en) * 1986-11-20 1988-06-03 Fuji Xerox Co Ltd Semiconductor device
JPH01259565A (en) * 1988-04-11 1989-10-17 Hitachi Ltd Thin film transistor and manufacture of the same
US11125191B2 (en) 2011-12-06 2021-09-21 Oval Engine Ltd Engine intake apparatus and method

Similar Documents

Publication Publication Date Title
US5828433A (en) Liquid crystal display device and a method of manufacturing the same
KR100255592B1 (en) The structure and manufacturing method of lcd
US6927105B2 (en) Thin film transistor array substrate and manufacturing method thereof
KR100874647B1 (en) LCD and its manufacturing method
JPH04163528A (en) Active matrix display
JP2008107849A (en) Liquid crystal display device and its manufacturing method
US20100271564A1 (en) Active matrix substrate, liquid crystal display device having the substrate, and manufacturing method for the active matrix substrate
JPH061314B2 (en) Thin film transistor array
KR100673331B1 (en) Liquid crystal display and method for fabricating the same
KR100308367B1 (en) Active matrix substrate
US6525342B2 (en) Low resistance wiring in the periphery region of displays
KR20010079729A (en) Active matrix liquid crystal device and method for producing the same
US5523866A (en) Liquid-crystal display device having slits formed between terminals or along conductors to remove short circuits
JPS61145867A (en) Matrix-type thin film transistor substrate
JPH01185522A (en) Substrate for driving display device
US20020168788A1 (en) Method of fabricating a thin film transistor liquid crystal display
KR101205767B1 (en) Method of fabricating the array substrate for liquid crystal display device using liquid type organic semiconductor material
KR20060068442A (en) Tft substrate for display apparatus and making method of the same
JPS61203484A (en) Drive circuit substrate for display unit and manufacture thereof
US20060054889A1 (en) Thin film transistor array panel
JPH06242453A (en) Active matrix type liquid crystal display device
JPH0568708B2 (en)
JP2000187241A (en) Liquid crystal display device and its manufacture
JP3187004B2 (en) Liquid crystal display device and manufacturing method thereof
JP4052804B2 (en) Electrode substrate and method for producing electrode substrate