JPS61145812A - Film capacitor - Google Patents

Film capacitor

Info

Publication number
JPS61145812A
JPS61145812A JP26910484A JP26910484A JPS61145812A JP S61145812 A JPS61145812 A JP S61145812A JP 26910484 A JP26910484 A JP 26910484A JP 26910484 A JP26910484 A JP 26910484A JP S61145812 A JPS61145812 A JP S61145812A
Authority
JP
Japan
Prior art keywords
film
corona
polypropylene film
treated
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26910484A
Other languages
Japanese (ja)
Inventor
河原 光顕
高島 一成
進 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26910484A priority Critical patent/JPS61145812A/en
Publication of JPS61145812A publication Critical patent/JPS61145812A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属化ポリプロピレンフィルム、又はこれと
ポリプロピレンフィルムを複合して使用したフィルムコ
ンデンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a film capacitor using a metallized polypropylene film or a combination thereof.

従来の技術 従来この種のコンデンサ用ポリプロピレンフィルムは、
非蒸着面のフィルム表面が無処理の平滑なものを使用し
、蒸着面は真空蒸着時の膜強度を向上させるためコロナ
処理するのが一般的であった(例えば特P 51−93
359号公報)。
Conventional technology Conventionally, this type of polypropylene film for capacitors is
It was common to use a film with a smooth, untreated surface on the non-evaporated side, and to apply corona treatment on the evaporated side to improve the film strength during vacuum evaporation (e.g., Patent P. 51-93).
Publication No. 359).

発明が解決しようとする問題点 しかしながら、これらの方法であると、ポリプロピレン
フィルムは、はとんど無極性であるため表面活性基が少
くフィルム同志が密着しKくいという特徴があるため、
コンデンサとして積層又は巻回した場合、フィルム間に
空気層が出来やすく、その結果として空気層部分(一般
にボイドと呼んでいる)での部分的絶縁破壊現象(コロ
ナ放電)が発生し、それが蒸着膜やフィルム自体にも悪
影響を及ぼしコンデンサとしての寿命を短縮させていた
。特に高い電圧が印加された場合、空気層部分のコロナ
放電が進み気中破壊に到シ、これがコンデンサの破壊の
引き金となりコンデンサの破壊レベルを低下させる原因
となっていた。
Problems to be Solved by the Invention However, with these methods, since polypropylene film is mostly non-polar, there are few surface active groups and it is difficult for the films to stick together.
When laminated or wound as a capacitor, an air layer is likely to form between the films, resulting in a partial dielectric breakdown phenomenon (corona discharge) in the air layer portion (generally called a void), which is caused by vapor deposition. This also had a negative effect on the membrane and film itself, shortening the lifespan of the capacitor. In particular, when a high voltage is applied, corona discharge in the air layer progresses to the point of destruction in the air, which triggers the destruction of the capacitor and causes a reduction in the level of destruction of the capacitor.

又、近来、フィルム製造技術の進歩によシ、フィルム自
体の絶縁欠陥部分(ピンホール、導電性微粒子等)が混
入する確率が飛躍的に低下し、その結果としてフィルム
自体の絶縁耐力も向上している。
Furthermore, with recent advances in film manufacturing technology, the probability of incorporation of insulation defects (pinholes, conductive particles, etc.) in the film itself has been dramatically reduced, and as a result, the dielectric strength of the film itself has improved. ing.

片やコンデンサ製造者としても上記高性能化したフィル
ムを使用し単位厚み当シの加電圧を高く設計し、小型軽
量化を目指しているが、先述のボイドによるコロナ放電
が前記の如くそのニーズを阻害する一大要因となシ、フ
ィルム性能を十分発揮させることは不可能とされていた
。これらを解決する手段として真空加熱エージングをす
る方法が一般的に採用されているが、この方法でも機械
的な接触を高めるものであり十分とはいえなかった。
On the other hand, capacitor manufacturers are also aiming to make the capacitors smaller and lighter by using the high-performance films mentioned above and designing them to have a high applied voltage per unit thickness. This was a major hindering factor, and it was considered impossible to fully demonstrate the film's performance. As a means to solve these problems, a method of vacuum heating aging is generally adopted, but even this method increases mechanical contact and is not sufficient.

問題点を解決する為の手段 は両面に亜鉛又はアルミニウムを真空蒸着した金属化ポ
リプロピレンフィルム同志、もしくはこれと非蒸着の両
面コロナ処理ポリプロピレンフィルムを合わせて積層又
は巻回してコンデンサ素子とし、このコンデンサ素子を
加熱エージング処理してなるものである。
The solution to this problem is to create a capacitor element by laminating or winding metallized polypropylene films with zinc or aluminum vacuum-deposited on both sides, or a non-deposited double-sided corona-treated polypropylene film. It is made by subjecting it to heat aging treatment.

作用 本発明は上記した構成によって、フィルムを収縮せしめ
密着せしめることができる。この時、ポリプロピレンフ
ィルムは表面がコロナ処理により表面に多くの活性基が
形成されておシ、この活性基同志がお互いに引き合って
更に密着効果が増大されブロッキングに到る。  、 この結果としてフィルム層間の空気はコンデンサ素子外
に排出され、ボイドによる諸問題が解決されると同時に
マージン部分も完全密着による絶縁耐力の向上が図れる
ものである。
Function: With the above-described structure, the present invention can shrink the film and bring it into close contact. At this time, many active groups are formed on the surface of the polypropylene film due to the corona treatment, and these active groups attract each other to further increase the adhesion effect, leading to blocking. As a result, the air between the film layers is discharged to the outside of the capacitor element, which solves various problems caused by voids, and at the same time improves dielectric strength by completely adhering the margins.

実施例 第1図は本発明の実施例を示し、両面コロナポリプロピ
レンフィルムの片面にアルミニラムラ蒸着したものを2
枚重ね合わせて巻回したコンデンサ素子を示した図であ
り、1及び2は、いずれも両面コロナ処理片面金属化ポ
リプロピレンフィルムを示す。
Embodiment FIG. 1 shows an embodiment of the present invention, in which two sides of a double-sided corona polypropylene film with uneven aluminum vapor deposition on one side were used.
1 is a diagram showing a capacitor element wound in layers, and 1 and 2 both show double-sided corona-treated single-sided metallized polypropylene films; FIG.

本発明者はこの実施例において、フィルム厚みを20μ
mとし、静電容量が100pFとなるように電極長を設
定した。
In this example, the inventor set the film thickness to 20 μm.
m, and the electrode length was set so that the capacitance was 100 pF.

次に、本発明者はこのコンデンサ素子を真空中で11o
′Cの加熱エージングを実施し安定化を図った。
Next, the inventors installed this capacitor element in a vacuum at 11oC.
'C was thermally aged to stabilize it.

第2図は上記実施例のコンデンサ素子をエポキシ樹脂で
コーティングして、試験時、表面にてリ一りすることを
防止したものを従来の未コロナ処理片面金属化ポリプロ
ピレンフィルムを使用し、上記と同条件で製造したもの
との20°Cにおけるコロナ放電開始電圧を測定した図
である。
Figure 2 shows that the capacitor element of the above example was coated with epoxy resin to prevent it from flattening on the surface during the test, and the capacitor element of the above example was coated with a conventional non-corona treated single-sided metallized polypropylene film. FIG. 2 is a graph showing the measured corona discharge starting voltage at 20°C with that manufactured under the same conditions.

第3図は上記と同等品の直流電圧による絶縁破壊点を比
較した図である。
FIG. 3 is a diagram comparing the dielectric breakdown point due to DC voltage of the above-mentioned and equivalent products.

第4図は上記と同等品を直流eoKVを印加し、60°
Cの恒温槽中で寿命試験を行った時のそれぞれの静電容
量の変化率を示したものである。
Figure 4 shows a product equivalent to the above with DC eoKV applied to it at 60°.
The figure shows the rate of change in each capacitance when a life test was conducted in a constant temperature bath of C.

これらの比較の結果のどれをみても、本発明品は従来品
に比して性能的に優れているといえる。
Regardless of the results of these comparisons, it can be said that the product of the present invention is superior in performance to the conventional product.

第5図はコロナ処理の条件を変えることによシ、表面ぬ
れ指数の異るフィルムを製作し、それぞれ上記と同条件
でコンデンサを製作しコロナ放電開始電圧を測定した図
であり、この図よシ表面ぬれ指数は30〜40dyn/
cI11が適度でありそれ以下であると活性基不足によ
り十分な密着が得られず、40dyn/cIII以上で
あると、コロ、す処理によシ表面の粗さが増大し、絶縁
欠陥部が発生し上記耐電圧値が低下することが判明した
Figure 5 shows the results of producing films with different surface wettability indexes by changing the corona treatment conditions, producing capacitors under the same conditions as above, and measuring the corona discharge starting voltage. The surface wettability index is 30 to 40 dyn/
If cI11 is moderate, if it is less than that, sufficient adhesion cannot be obtained due to the lack of active groups, and if it is more than 40 dyn/cIII, the roughness of the surface will increase due to the corrode treatment, and insulation defects will occur. However, it was found that the above-mentioned withstand voltage value decreased.

又本発明は以上の実施例以外に、 (1)両面コロナ処理両面アルミニウム蒸着ポリプロピ
レンフィルムと両面コロナ処理ポリプロピレンフィルム
の組合せ、 (2)両面コロナ処理片面亜鉛蒸着ポリプロピレンフィ
ルム2枚の組合せ、 (3)両面コロナ処理両面亜鉛蒸着ポリプロピレンフィ
ルムと両面コロナ処理ポリプロピレンフィルムの組合せ
、 以上の如< (1) l (2) 、 (3)の各組合
せによる積層方式、巻回方式のコンデンサを上記と同様
の条件で製作し、同様の性能比較を行ったがいずれの場
合も本実施例と同様、良好な結果が得られた。
In addition to the above embodiments, the present invention also includes (1) a combination of a double-sided corona-treated double-sided aluminum-deposited polypropylene film and a double-sided corona-treated polypropylene film; (2) a combination of two double-sided corona-treated single-sided zinc-deposited polypropylene films; (3) A combination of a double-sided corona-treated double-sided zinc-coated polypropylene film and a double-sided corona-treated polypropylene film, as described above. Laminated type and wound type capacitors made of each of the combinations of (1) l (2) and (3) were prepared under the same conditions as above. Similar performance comparisons were made using the following methods, and good results were obtained in both cases, similar to the present example.

又、表面ぬれ指数のそれぞれの比較試験においても全く
同様な結果が得られた。
Furthermore, completely similar results were obtained in each comparative test of surface wettability index.

発明の効果 以上述べてきたように、本発明によればその組合せ方法
を問わずフィルム間のボイドに起因するコロナ開始電圧
の低下を防止できると共に、端面マージン部の耐圧向上
が図れ、高性能ポリプロピレンフィルムの性能を100
ts発揮させることが可能となシ、実用的にきわめて有
用である。
Effects of the Invention As described above, according to the present invention, regardless of the combination method, it is possible to prevent a decrease in the corona starting voltage due to voids between films, and also to improve the withstand voltage of the end face margin, thereby making it possible to improve the performance of high-performance polypropylene. 100% film performance
ts, it is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のコンデンサ素子構成図、第2
図はコロナ開始電圧試験の結果を示す図、第3図は直流
絶縁破壊試験の結果を示す図、第4図は直流sKVを印
加し60°Cの恒温槽中で寿命試験を行ったときの静電
容量変化率を示す特性図、第5図は表面ぬれ指数毎のコ
ロナ開始電圧を示す特性図である。 1.2・・・・・・両面コロナ処理片面金属化ポリプロ
ピレンフィルム。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 12図 第3図
FIG. 1 is a configuration diagram of a capacitor element according to an embodiment of the present invention, and FIG.
Figure 3 shows the results of the corona onset voltage test, Figure 3 shows the results of the DC dielectric breakdown test, and Figure 4 shows the results of the life test conducted in a thermostat at 60°C with DC sKV applied. FIG. 5 is a characteristic diagram showing the capacitance change rate, and FIG. 5 is a characteristic diagram showing the corona onset voltage for each surface wetting index. 1.2...Both sides corona treated and one side metallized polypropylene film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 12 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)ポリプロピレンフィルムの両面にコロナ処理を施
し、このポリプロピレンフィルムの片面に亜鉛またはア
ルミニウムを真空蒸着した一対の金属化ポリプロピレン
フィルムを重ね合わせて積層もしくは巻回してコンデン
サ素子を形成し、このコンデンサ素子を加熱エージング
処理したフィルムコンデンサ。
(1) A capacitor element is formed by applying corona treatment to both sides of a polypropylene film, and laminating or winding a pair of metallized polypropylene films in which zinc or aluminum is vacuum-deposited on one side of the polypropylene film. A film capacitor that has been heat aged.
(2)両面コロナ処理ポリプロピレンフィルムは、ぬれ
指数を30〜40dyn/cmとした特許請求の範囲第
1項記載のフィルムコンデンサ。
(2) The film capacitor according to claim 1, wherein the double-sided corona-treated polypropylene film has a wetting index of 30 to 40 dyn/cm.
(3)ポリプロピレンフィルムの両面にコロナ処理を施
し、このポリプロピレンフィルムの両面に亜鉛またはア
ルミニウムを真空蒸着した金属化ポリプロピレンフィル
ムと両面にコロナ処理をした蒸着されていないポリプロ
ピレンフィルムとを同時に積層もしくは巻回してコンデ
ンサ素子を形成し、このコンデンサ素子を加熱エージン
グ処理したフィルムコンデンサ。
(3) Both sides of a polypropylene film are corona-treated, and a metallized polypropylene film in which zinc or aluminum is vacuum-deposited on both sides of the polypropylene film and a non-deposited polypropylene film that is corona-treated on both sides are simultaneously laminated or wound. A film capacitor is a film capacitor in which a capacitor element is formed using heat-aging treatment.
(4)両面コロナ処理ポリプロピレンフィルムは、ぬれ
指数を30〜40dyn/cmとした特許請求の範囲第
3項記載のフィルムコンデンサ。
(4) The film capacitor according to claim 3, wherein the double-sided corona-treated polypropylene film has a wetting index of 30 to 40 dyn/cm.
JP26910484A 1984-12-19 1984-12-19 Film capacitor Pending JPS61145812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26910484A JPS61145812A (en) 1984-12-19 1984-12-19 Film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26910484A JPS61145812A (en) 1984-12-19 1984-12-19 Film capacitor

Publications (1)

Publication Number Publication Date
JPS61145812A true JPS61145812A (en) 1986-07-03

Family

ID=17467722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26910484A Pending JPS61145812A (en) 1984-12-19 1984-12-19 Film capacitor

Country Status (1)

Country Link
JP (1) JPS61145812A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399517A (en) * 1986-10-16 1988-04-30 松下電器産業株式会社 Double-sided metallized polyolefin film capacitor
JPS63196025A (en) * 1987-02-10 1988-08-15 松下電器産業株式会社 Metallized film capacitor
JP2009021411A (en) * 2007-07-12 2009-01-29 Nichicon Corp Method of manufacturing metallized polypropylene film capacitor
WO2012002123A1 (en) 2010-06-29 2012-01-05 東レ株式会社 Biaxially oriented polypropylene film, metalized film, and film capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785216A (en) * 1980-11-18 1982-05-27 Matsushita Electric Ind Co Ltd Method of producing dry metallized polypropylene film condenser
JPS5816415A (en) * 1981-07-23 1983-01-31 本州製紙株式会社 Electric orientation polypropylene film
JPS593910A (en) * 1982-06-29 1984-01-10 東レ株式会社 Condenser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785216A (en) * 1980-11-18 1982-05-27 Matsushita Electric Ind Co Ltd Method of producing dry metallized polypropylene film condenser
JPS5816415A (en) * 1981-07-23 1983-01-31 本州製紙株式会社 Electric orientation polypropylene film
JPS593910A (en) * 1982-06-29 1984-01-10 東レ株式会社 Condenser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399517A (en) * 1986-10-16 1988-04-30 松下電器産業株式会社 Double-sided metallized polyolefin film capacitor
JPS63196025A (en) * 1987-02-10 1988-08-15 松下電器産業株式会社 Metallized film capacitor
JP2009021411A (en) * 2007-07-12 2009-01-29 Nichicon Corp Method of manufacturing metallized polypropylene film capacitor
WO2012002123A1 (en) 2010-06-29 2012-01-05 東レ株式会社 Biaxially oriented polypropylene film, metalized film, and film capacitor
US9093219B2 (en) 2010-06-29 2015-07-28 Toray Industries, Inc. Biaxially oriented polypropylene film, metallized film, and film capacitor

Similar Documents

Publication Publication Date Title
US5844770A (en) Capacitor structures with dielectric coated conductive substrates
US3457478A (en) Wound film capacitors
JPS61145812A (en) Film capacitor
JPH10214748A (en) Cased film capacitor
JPH03201421A (en) Laminated film capacitor
JPH0121542Y2 (en)
JPH0533524B2 (en)
JPH0143853Y2 (en)
JPS6128210B2 (en)
JPH05135996A (en) Series deposited metallized film capacitor
JPS59227115A (en) Ac metal deposition film capacitor
JPH11186090A (en) Capacitor and metallized dielectric for the capacitor
JPS596524A (en) Oil-immersed condenser
JPS6334260Y2 (en)
JPS63224313A (en) Metallized plastic film capacitor
JPS61187317A (en) Metalized film capacitor
JPH0115130B2 (en)
JPH0227553Y2 (en)
JPS596518A (en) Wire wound condenser
JP2900751B2 (en) Film capacitor and manufacturing method thereof
JPH0511406B2 (en)
JPH0472606A (en) Laminated capacitor
JPS6310515A (en) Winding type metallized film capacitor
JPH0770418B2 (en) Metallized film capacitors
JPS6014499B2 (en) Manufacturing method for resin-clad plastic film capacitors