JPS61145476A - Optical range finder - Google Patents

Optical range finder

Info

Publication number
JPS61145476A
JPS61145476A JP59266278A JP26627884A JPS61145476A JP S61145476 A JPS61145476 A JP S61145476A JP 59266278 A JP59266278 A JP 59266278A JP 26627884 A JP26627884 A JP 26627884A JP S61145476 A JPS61145476 A JP S61145476A
Authority
JP
Japan
Prior art keywords
light
optical fiber
delay time
light receiving
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59266278A
Other languages
Japanese (ja)
Other versions
JPH0550710B2 (en
Inventor
Yukio Sai
行雄 佐井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59266278A priority Critical patent/JPS61145476A/en
Publication of JPS61145476A publication Critical patent/JPS61145476A/en
Publication of JPH0550710B2 publication Critical patent/JPH0550710B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To compensate the delay time of the delay element of an apparatus or the change in the length of a light path and to make it possible to perform said compensation regardless of the environment of a range finding place. CONSTITUTION:Modulated light outputted from a light emitting part 25 is transmitted through an optical fiber 51 to reach a coupler 41 and branched by said coupler 41 to reach light receiving parts 29, 31 while modulated light outputted from a light emitting part 27 is transmitted through an optical fiber 53 to reach a coupler 43 and branched by said coupler 43 to reach light receiving parts 29, 31. Next, when a switch 23 is present at an a-side contact, the modulated light from the light emitting part 25 through a measuring light path is outputted from the light receiving part 39 and the modulated light from the light emitting part 25 through an internal reference light path is outputted from the light receiving part 31. A phase difference detection part 33 detects these two phase difference on the basis of the signal of a modulation signal source 21 to output the same to a memory operational processing part 35. Next, when the switch 23 is changed over to a b-point, phase difference is performed in the same way to perform predetermined correction.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、例えばレーザ、LEDの光等を用いて測距
を行う光学的距離測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical distance measuring device that measures distance using, for example, laser, LED light, or the like.

[発明の技術的背景とその問題点] 近年、レーザー光等の光を利用した測距において、光の
変調信号を基準にした所謂変調波テレメトり法による距
離測定装置が提案されている。
[Technical Background of the Invention and Problems Therewith] In recent years, in distance measurement using light such as a laser beam, a distance measuring device using a so-called modulated wave telemetry method based on a modulated light signal has been proposed.

この変調波テレメトリ法による距離測定装置の基本原理
は、送受信光の変調信号の位相差を測定し、変調波の波
長を基準として距離を求めるものである。
The basic principle of this distance measuring device using modulated wave telemetry is to measure the phase difference between modulated signals of transmitted and received light, and to determine distance using the wavelength of the modulated wave as a reference.

この方法による距離測定装置の基本的構成は、第3図に
示すように、変調信号源21、光源125、受光部12
9、位相差検出部33、及び表示部37を有する光波距
離計101とコーナキューブ5よりなる。この構成によ
る装置の基本的作用は、一方で、変調信号WA21より
発せられる変調信号121によって光源125から変調
光をコーナキューブ5に投光し、反射された光を受光部
129で光電変換して電気信号131として位相差検出
部33に入力し、同時に他方で、変調信号121を位相
差検出部33に入力し、これを基準としてこの2つの入
力信号の位相差を検出することにより、距離を測定する
というものである。
The basic configuration of a distance measuring device using this method is as shown in FIG.
9, a phase difference detection section 33, a light wave distance meter 101 having a display section 37, and a corner cube 5. The basic operation of the device with this configuration is, on the one hand, modulated light is projected from the light source 125 onto the corner cube 5 by the modulation signal 121 emitted from the modulation signal WA21, and the reflected light is photoelectrically converted by the light receiving section 129. The distance can be calculated by inputting the electrical signal 131 to the phase difference detection unit 33, simultaneously inputting the modulated signal 121 to the phase difference detection unit 33, and detecting the phase difference between these two input signals using this as a reference. It's about measuring.

ここで第3図の構成では、光源125から発せられる光
をチョッパービームスプリッタ123により、測定光路
159と内部参照光、路165とに分岐して、受光部1
29で受光する構成となっている。これは、光源125
として一般に使用されている半導体レーザや受光部12
9の受光素子、増幅器等は、遅れ要素を有しており、測
定光路159にこの遅れ分が含まれるので、前記位相差
にこの遅れ時間が含まれて測距精度が悪くなることが考
えられる。そこで、チョッパービームスプリッタ123
により、時間分割的に測定光路159と内部参照光路1
65とに分岐して、受光部129の出力である両者の位
相差に前記遅れ要素の遅れ時間を含ませないようにして
補償を行っているのである。
In the configuration shown in FIG. 3, the chopper beam splitter 123 branches the light emitted from the light source 125 into a measurement optical path 159, an internal reference beam, and a path 165.
It is configured to receive light at 29. This is the light source 125
Semiconductor lasers and light receiving parts 12 commonly used as
The light-receiving element, amplifier, etc. of 9 have a delay element, and this delay is included in the measurement optical path 159, so it is possible that this delay time is included in the phase difference and the distance measurement accuracy deteriorates. . Therefore, chopper beam splitter 123
, the measurement optical path 159 and the internal reference optical path 1 are divided in time.
65, and compensation is performed by not including the delay time of the delay element in the phase difference between the two, which is the output of the light receiving section 129.

ところで、測定環境等の理由から装置を測定場所に設置
できない場合には、遠隔測定を行うこととなるが、この
ような場合、距離測定装置は、例えば第4図に示すよう
に、光波距離計101より投光受光光学系103を分離
して、投光用光ファイバ107及び受光用光ファイバ1
11によって接続するような構成が考えられる。しかし
ながら、この光ファイバの光路長は一定ではなく、光フ
ァイバを包むシリコン樹脂やナイロン被覆等の温度変化
が原因で、例えば光路長が百メートル程度の光ファイバ
の場合、数十度の温度変化により、数十ミリメートルの
光路長変化が生じる。このため、前記チョッパビームス
プリッタによってこの光路長変化を補償する場合には、
投光受光光学系103にチョッパビームスプリッタを置
いて、測定光路と内部参照光路とが投光用光ファイバ1
07と受光用光ファイバ111を介する光路となるよう
にして、両者の位相差を検出することにより距離を求め
、光ファイバの光路長変化を補償することとなる。
By the way, if the device cannot be installed at the measurement location due to reasons such as the measurement environment, remote measurement will be performed. The light emitting and receiving optical system 103 is separated from the light emitting optical fiber 101 and the light emitting optical fiber 107 and the light receiving optical fiber 1 are separated from each other.
A configuration in which connection is made by 11 is possible. However, the optical path length of this optical fiber is not constant, and is caused by temperature changes in the silicone resin or nylon coating that wraps the optical fiber. For example, in the case of an optical fiber with an optical path length of about 100 meters, temperature changes of several tens of degrees , a change in optical path length of several tens of millimeters occurs. Therefore, when compensating for this optical path length change using the chopper beam splitter,
A chopper beam splitter is placed in the light emitting and receiving optical system 103, and the measurement optical path and the internal reference optical path are connected to the light emitting optical fiber 1.
07 and the light-receiving optical fiber 111, the distance is determined by detecting the phase difference between the two, and the change in optical path length of the optical fiber is compensated for.

ところが、このチョッパービームスプリッタは機械的機
構で且つ電源等の電気的エネルギーを有しているため、
装置としては比較的規模の大きい乙のとなり、被測定場
所の物理的制約等によりチョッパービームスプリッタを
設置できない場合が生じる。また、特に被測定場所の環
境が電気的エネルギーを好まない場合、例えば爆発性の
ガス雰囲気中等の場合には、投光受光光学系103にチ
ョッパービームスプリッタを設置できない。このため、
光ファイバの光路長変化を補償することができず、結果
として、高精度な測定ができないという問題があった。
However, since this chopper beam splitter is a mechanical mechanism and has electrical energy such as a power source,
As the equipment is relatively large in scale, there may be cases where it is not possible to install a chopper beam splitter due to physical constraints at the location to be measured. Further, especially when the environment of the place to be measured does not favor electrical energy, for example, when there is an explosive gas atmosphere, a chopper beam splitter cannot be installed in the light emitting/receiving optical system 103. For this reason,
There was a problem in that it was not possible to compensate for changes in the optical path length of the optical fiber, and as a result, highly accurate measurements were not possible.

[発明の目的コ この発明は、上記に鑑みてなされたもので、その目的と
しては、Vl置の遅れ要素の遅れ時間や光路長の変化を
適確に補償することができ、更に該補償を被測距場所の
環境に関係なくすることのできる光学的距離測定装置を
提供することにある。
[Purpose of the Invention] This invention has been made in view of the above, and its purpose is to be able to accurately compensate for changes in the delay time and optical path length of the delay element in the Vl position, and to further compensate for the compensation. An object of the present invention is to provide an optical distance measuring device that can perform distance measurement regardless of the environment of a place to be measured.

[発明の概要] この発明は、上記目的を達成するため、光出力から反射
体による反射光の受光までの伝播遅延時間に基づき、当
該反射体までの距離を測定する装置において、時間分割
して光を出力する発光部と、発光部より時間分割して出
力された光の夫々に対して被測定系を介し不伝播する測
定光路と被測定系を介さずに伝播する内部参照光路とに
分岐する分岐手段と、前記測定光路及び内部参照光路を
介した光を交互に受けて所定の信号を出力する第1及び
第2の受光部と、測定光路を介して第1の受光手段にて
受光した光と内部参照光路を介して第2の受光手段にて
受光した光との伝播遅延時間差、及び測定光路を介して
第2の受光手段にて受光した光と内部参照光路を介して
第1の受光手段にて受光した光との伝播遅延時間差を交
互に算−出する時間差算出手段と、該時間差算出手段で
交互に算出された伝播遅延時間差の夫々の差を演算して
伝播遅延時間を求める演算手段とを有すること、更に、
前記分岐手段が、非電気的且つ非機械的要素から成るこ
とを要旨とする。
[Summary of the Invention] In order to achieve the above object, the present invention provides a device for measuring the distance to a reflector based on the propagation delay time from the light output to the reception of the reflected light by the reflector. The light emitting unit outputs light, and the light output from the light emitting unit in a time-divided manner is split into a measurement optical path that does not propagate through the system under test and an internal reference optical path that propagates without passing through the system under test. a first and second light receiving unit that alternately receives the light via the measurement optical path and the internal reference optical path and outputs a predetermined signal; and a first light receiving unit that receives the light via the measurement optical path. The difference in propagation delay time between the light received by the second light receiving means via the measurement optical path and the light received by the second light receiving means via the internal reference optical path, and the difference in propagation delay time between the light received by the second light receiving means via the measurement optical path and the light received by the A time difference calculation means for alternately calculating the propagation delay time difference between the light received by the light receiving means, and a propagation delay time calculated by calculating the difference between the propagation delay time differences alternately calculated by the time difference calculation means. and further,
The gist is that the branching means consists of non-electrical and non-mechanical elements.

[発明の実施例j 以下、図面を用いてこの発明の詳細な説明する。[Embodiment of the invention j Hereinafter, the present invention will be explained in detail using the drawings.

第1図はこの発明の一実論例に係る光学的距離測定装置
の構成図である。同図における構成は遠隔測定を想定し
ており、その概要は、光波距離計1とこの光波距離計1
に対し遠隔に設置される投光受光光学系3とを、光ファ
イバ(1)7、光ファイバ(2)9、光ファイバ(3)
11、光ファイバ(4)13によって接続し、被測定系
には、投光受光光学系3から投光された光を反射して返
すコーナキューブ5を有する構成となっている。
FIG. 1 is a block diagram of an optical distance measuring device according to a practical example of the present invention. The configuration in the figure assumes remote measurement, and its outline is as follows:
The light emitting/receiving optical system 3 installed remotely is connected to the optical fiber (1) 7, the optical fiber (2) 9, and the optical fiber (3).
11, are connected by optical fibers (4) 13, and the system to be measured has a corner cube 5 that reflects and returns the light projected from the light emitting/receiving optical system 3.

光波距離計1は、発光系として、変調信号をスイッチ2
3を介して発光部(1)25及び発光部(2>27に、
又位相差検出部33に、夫々出力する変調信号源21と
、前記変調信号を入力して変調光を光ファイバく1)7
に出力する発光部(1)25と、前記変調信号を入力し
て変調光を光ファイバ(2)9に出力する発光部(2)
27とを有する。また、受光系として、光ファイバ(3
)11にて伝送された変調光を入力して、電気信号に変
換して出力する受光部(1)29と、光ファイバ(4)
13にて伝送された変調光を入力して、電気信号に変換
して出ノjする受光部(2)31とを有する。更に、処
理系として、前記2つの受光部29.31からの電気信
号の位相差を前記変調信号を基準として検出して記憶演
算処理部35に出力する位相差検出部33と、この検出
結果を一時記憶し、演算処理を行い結束を表示部37に
出力する記憶演算処理部35と、この処理結果を測定結
果として表示する表示部37とを有する。
The light wave distance meter 1 uses a switch 2 to transmit a modulation signal as a light emitting system.
3 to the light emitting unit (1) 25 and the light emitting unit (2>27,
Further, a modulated signal source 21 outputs each to the phase difference detection section 33, and a modulated light is inputted to the modulated signal and transmitted through an optical fiber 1) 7
a light emitting unit (1) 25 that outputs the modulated light to the optical fiber (2) 9; and a light emitting unit (2) that receives the modulation signal and outputs the modulated light to the optical fiber (2) 9.
27. In addition, an optical fiber (3
) 11, a light receiving unit (1) 29 that inputs the modulated light transmitted in 11, converts it into an electrical signal, and outputs it, and an optical fiber (4).
It has a light receiving section (2) 31 which inputs the modulated light transmitted at 13, converts it into an electric signal, and outputs it. Further, as a processing system, a phase difference detection section 33 detects the phase difference between the electric signals from the two light receiving sections 29 and 31 using the modulation signal as a reference and outputs it to the storage calculation processing section 35; It has a storage/arithmetic processing unit 35 that temporarily stores, performs arithmetic processing, and outputs the binding to a display unit 37, and a display unit 37 that displays the processing result as a measurement result.

投光受光光学系3は、光伝送系統における方向性結合器
としての4個のカブラ(41乃至47)と、光を反射さ
ぜる1個のミラー49と、光を伝送する10本の光フア
イバ51乃至69により構成され、何ら電気的なものは
有していないので、その被測定場所の環境に関係なく設
置できる。
The light emitting/receiving optical system 3 includes four couplers (41 to 47) as directional couplers in an optical transmission system, one mirror 49 for reflecting light, and ten light beams for transmitting light. Since it is composed of fibers 51 to 69 and does not have any electrical components, it can be installed regardless of the environment of the place to be measured.

ここで、前記4個のカブラの機能を説明する。Here, the functions of the four coverlets will be explained.

カブラ(1)41(2X2の方向性結合器)は、光ファ
イバ(1)7及び光ファイバ(5)51を介して入力し
た発光部(1)25からの光を光ファイバ(11)63
及び光ファイバ(12> 65に出力し、他方、光ファ
イバ(11)63を介して入力した光を光ファイバ(9
)59に出力する。
The coupler (1) 41 (2X2 directional coupler) converts the light from the light emitting unit (1) 25 input via the optical fiber (1) 7 and the optical fiber (5) 51 to the optical fiber (11) 63.
and an optical fiber (12>65), and on the other hand, the light input via the optical fiber (11) 63 is output to the optical fiber (9).
)59.

カブラ(2)43 (2X2の方向性結合器)は、光フ
ァイバ(2)9及び光ファイバ(6)53を介して入力
した発光部(2>27からの光を光ファイバ(13)6
7及び光ファイバ(14)69に出力し、他方、光ファ
イバ(13)67を介して入力した光を光ファイバ(1
0)61に出力する。カブラ(3)45 (2X1の方
向性結合器)は、光ファイバ(10)61を介して入力
した光並びに光ファイバ(14)69を介して入力した
光を光ファイバ(7)55に出力し、光ファイバ(3)
11を介して受光部(1)29に伝送する。
The coupler (2) 43 (2X2 directional coupler) converts the light from the light emitting unit (2>27) input via the optical fiber (2) 9 and the optical fiber (6) 53 to the optical fiber (13) 6.
7 and optical fiber (14) 69, and on the other hand, the light input via optical fiber (13) 67 is output to optical fiber (14) 69.
0) Output to 61. The coupler (3) 45 (2X1 directional coupler) outputs the light input via the optical fiber (10) 61 and the light input via the optical fiber (14) 69 to the optical fiber (7) 55. , optical fiber (3)
11 to the light receiving section (1) 29.

カップ(4)47(2X1の方向性結合器)は、光ファ
イバ(9)59を介して伝送した光並びに光ファイバ(
12)65を介して伝送した光を光ファイバ(8)57
に出力し、光ファイバ(4)13を介して受光部(2)
31に伝送する。
The cup (4) 47 (2X1 directional coupler) connects the light transmitted via the optical fiber (9) 59 as well as the optical fiber (
12) The light transmitted through 65 is connected to optical fiber (8) 57
output to the light receiving section (2) via the optical fiber (4) 13.
31.

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

この距離測定装置では、スイッチ23の切換えにより変
調信号が発光部(1)25又は発光部(2)27に与え
られ、各発光部から時間分割して変調光が出力されてい
る。
In this distance measuring device, a modulated signal is applied to the light emitting section (1) 25 or the light emitting section (2) 27 by switching the switch 23, and each light emitting section outputs modulated light in a time-divided manner.

まず、発光部(1)25から出力される変調光は、光フ
ァイバ(1)7及び光ファイバ(5)51を介して伝送
され、カブラ(1)41に至る。
First, modulated light output from the light emitting section (1) 25 is transmitted via the optical fiber (1) 7 and the optical fiber (5) 51, and reaches the coupler (1) 41.

この変調光はカブラ(1)41により分岐されて受光部
(1)29及び受光部(2)31に至る。
This modulated light is branched by a coupler (1) 41 and reaches a light receiving section (1) 29 and a light receiving section (2) 31.

即ち、光ファイバ(11)63→ミラー49による反射
→コーナキューブ5による反射→ミラー49による反射
→光ファイバ(13)67→カプラ(2)43→光フア
イバ(10)61→カブラ(3)45→光フアイバ(7
)55→光ファイバ(3)11→受光部(1)29とい
う測定光路と、光ファイバ(12)65→カブラ(4ン
47→光フアイバ(8)57→光フ?イバ(4)13→
受光部(2)31という内部参照光路とに分岐されるの
である。
That is, optical fiber (11) 63 → reflection by mirror 49 → reflection by corner cube 5 → reflection by mirror 49 → optical fiber (13) 67 → coupler (2) 43 → optical fiber (10) 61 → coupler (3) 45 →Optical fiber (7)
) 55 → optical fiber (3) 11 → light receiving part (1) 29, and optical fiber (12) 65 → coupler (4) 47 → optical fiber (8) 57 → optical fiber (4) 13 →
The light receiving section (2) is branched into an internal reference optical path called 31.

他方、発光部(2>27から出力される変調光は、光)
?イバ(2)9及び光ファイバ(6)53を介して伝送
され、カブラ(2>43に至る。
On the other hand, the modulated light output from the light emitting section (2>27 is light)
? The signal is transmitted via the fiber (2) 9 and the optical fiber (6) 53, and reaches the optical fiber (2>43).

この変調光はカプラ(2)43により分岐されて受光部
(1)29及び受光部(2)31に至る。
This modulated light is branched by a coupler (2) 43 and reaches a light receiving section (1) 29 and a light receiving section (2) 31.

即ち、光ファイバ(13)67→ミラー49による反射
→コーナキューブ5による反射→ミラー49による反射
→光ファイバ(11)63→カブラ(1)41→光フア
イバ(9)59→カプラ(4)47→光フアイバ(8)
57→光フアイバ(4)13→受光部(2)31という
測定光路と、光ファイバ(14)69→カブラ(3)4
5→光フアイバ(7)55→光フアイバ(3)11→受
光部(1)29という内部参照光路とに分岐されるので
ある。
That is, optical fiber (13) 67 → reflection by mirror 49 → reflection by corner cube 5 → reflection by mirror 49 → optical fiber (11) 63 → coupler (1) 41 → optical fiber (9) 59 → coupler (4) 47 →Optical fiber (8)
57 → Optical fiber (4) 13 → Light receiving part (2) 31 measurement optical path, and optical fiber (14) 69 → Cobra (3) 4
5 -> optical fiber (7) 55 -> optical fiber (3) 11 -> light receiving section (1) 29 - an internal reference optical path.

次に、光波距離計1の処理系の作用を説明する。Next, the operation of the processing system of the optical distance meter 1 will be explained.

まず、スイッチ23がa側接点にある時には、受光部(
1)29からは測定光路を経た発光部<1)25より発
せられた変調光が光電変換されて出力され、受光部(2
)31からは内部参照光路を経た発光部(1)25より
発せられた変調光が光電変換されて出力される。位相差
検出部33は、これら2つの電気信号の位相差を変調信
号源21より出力される変調信号を基準として検出し記
憶演算処理部35へ出力する。記憶演算処理部35はこ
れを一時記憶する。次に、時間分割してスイッチ23が
b側接点に切換えられた時には、受光部(1)29から
は内部参照光路を経た発光部(2>27より発せられた
変調光が光電変換されで出力され、受光部(2)31か
らは測定光路を経た発光部(2>27より発せられた変
調光が光電変換されて出力される。同様に、位相差検出
部33は、これら2つの電気信号の位相差を検出し、記
憶演算処理部35へ出力する。記憶演算処理部35はこ
れを一時記憶し、この位相差と前に一時記憶した位相差
との減算を行い、この結果を後述する所定の補正を行っ
て表示部37に出力する。表示部37はこの値を測定結
果として表示する。
First, when the switch 23 is in the a side contact, the light receiving part (
1) The modulated light emitted from the light emitting unit <1) 25 via the measurement optical path is photoelectrically converted and output from the light receiving unit (2).
) 31 outputs the modulated light emitted from the light emitting unit (1) 25 via the internal reference optical path after being photoelectrically converted. The phase difference detection section 33 detects the phase difference between these two electrical signals using the modulation signal output from the modulation signal source 21 as a reference, and outputs it to the storage calculation processing section 35 . The storage calculation processing unit 35 temporarily stores this. Next, when the switch 23 is switched to the b-side contact in a time-divided manner, the modulated light emitted from the light receiving section (1) 29 passes through the internal reference optical path to the light emitting section (2>27) and is photoelectrically converted and output. The modulated light emitted from the light emitting unit (2>27) that has passed through the measurement optical path is photoelectrically converted and output from the light receiving unit (2) 31.Similarly, the phase difference detection unit 33 converts these two electrical signals into Detects the phase difference and outputs it to the storage calculation processing unit 35.The storage calculation processing unit 35 temporarily stores this and subtracts this phase difference from the previously temporarily stored phase difference.The result will be described later. A predetermined correction is performed and output to the display unit 37. The display unit 37 displays this value as a measurement result.

次に、第2図を用いて、前述の一連の処理を定量的に説
明する。
Next, the series of processes described above will be described quantitatively using FIG.

第2図は第1図の作用原理を説明するための図である。FIG. 2 is a diagram for explaining the principle of operation of FIG. 1.

ここで、発光部の遅れ要素による遅延時間を△φs+(
+=+、z)受光部の遅れ要素による遅延時間をΔφP
i(i=+、2)光ファイバ(1)7乃至(4)13の
遅延時間を△Tj  (j=I〜4)、被測定系の片道
の遅延時間を△TXとしている。即ち、以下の如くであ
る。
Here, the delay time due to the delay element of the light emitting part is △φs+(
+=+,z) Delay time due to delay element of light receiving section ΔφP
i (i=+, 2) The delay time of the optical fibers (1) 7 to (4) 13 is ΔTj (j=I to 4), and the one-way delay time of the system under test is ΔTX. That is, as follows.

発光部(1)25の遅延時間・・・Δφ6Iφ光部(2
)27の遅延時間・・・△φs2φ光部(1)29の遅
延時間・・・Δφ唱受光部(2>31の遅延時間・・・
Δφ龍先光ファイバ1)7の遅延時間・・・△T1光フ
ァイバ(2)9の遅延時間・・・ΔT2T2光フアイバ
)11の遅延時間・・・へT3光ファイバ(4)13の
遅延時間・・・Δ丁4被測定系の遅延時間(片道)・・
・△TX尚、投光受光光学系3内の光ファイバ(5)5
1乃至(14)69については、光路長が光ファイバ(
1)7乃至(4)13のものと比べて非常に短く、光路
長の変化は無視できるため、この光路長を予め測定して
おき定数として取扱い、最終的な測定結果を補正すれば
よく、ここでは考慮しないものとする。
Delay time of light emitting section (1) 25...Δφ6Iφ light section (2
) Delay time of 27...Δφs2φ light section (1) Delay time of 29...Δφs light receiving section (Delay time of 2>31...
Δφ Dragon end optical fiber 1) Delay time of 7...ΔT1 optical fiber (2) Delay time of 9...ΔT2 Delay time of T2 optical fiber) 11...Delay time of T3 optical fiber (4) 13 ...Delay time of the system under test (one way)...
・△TX, optical fiber (5) in the light emitting/receiving optical system 3
1 to (14)69, the optical path length is the optical fiber (
It is very short compared to those of 1) 7 to (4) 13, and changes in the optical path length can be ignored, so it is sufficient to measure this optical path length in advance, treat it as a constant, and correct the final measurement result. It will not be considered here.

さて発光部(1)25が変調光を出力した時の受光部(
1)29の出力信号V l5−1の全遅延時間△T 1
.−1は、第2図(1)で示ず如く、次式のようになる
Now, when the light emitting unit (1) 25 outputs modulated light, the light receiving unit (
1) Total delay time ΔT 1 of output signal V l5-1 of 29
.. -1 is as shown in the following equation, as shown in FIG. 2 (1).

Δ1’+、+ =△φs1 +△T1十△T3 士△φ
IF1ヤ2△T×         ・・・■その時の
受光部(2>31の出力信号v2呵の全遅延時間△T2
4−1 は、次式のようになる。
Δ1'+, + = △φs1 + △T1 ten △T3 shi△φ
IF1 y2 △T
4-1 becomes as follows.

△T2.+=△φg++△T1+八T4+Δφれ・・・
■ ■、■式より、両者の遅延時間差φVl−Vlは次式で
求められる。
△T2. +=△φg++△T1+8T4+Δφre...
(2) From the equations (2) and (2), the delay time difference φVl-Vl between the two can be obtained using the following equation.

φ易v、=ΔT3十△φ9+−ΔT4−△φ彎1+2△
TX =△L十2△Tx         ・・・■ここで、
ΔL−△T3+Δφ10−△T4−Δφ究1同様に、発
光部(2)27が変調光を出力した時の受光部(1)2
9の出力信号V14−2の全避延時間へT+、−2、受
光部(2>31の出力信号V2←2の全遅延時門へr 
24−2は、第2図(2)で示す如く、次式のようにな
る。
φeasyv, =ΔT30△φ9+−ΔT4−△φcurvature1+2△
TX = △L12△Tx ・・・■Here,
ΔL−ΔT3+Δφ10−ΔT4−ΔφK1 Similarly, light receiving unit (1) 2 when light emitting unit (2) 27 outputs modulated light
To the total delay time of output signal V14-2 of 9 T+, -2, light receiving section (to the total delay time of output signal V2←2 of 2>31 r
24-2 is expressed by the following equation, as shown in FIG. 2 (2).

ΔT1.2−Δφs2+ΔT2+Δr3+Δφg−・・
・■ △T2.2−Δφ話+ΔT2+△T4+Δφ9L+2Δ
7x          ・・・■■、0式より、両者
の遅延時間差φV+ −Vlは次式で求められる。
ΔT1.2−Δφs2+ΔT2+Δr3+Δφg−・・
・■ △T2.2-Δφ story + ΔT2+△T4+Δφ9L+2Δ
7x...■■, From the formula 0, the delay time difference φV+ -Vl between the two can be obtained by the following formula.

φV、−Vb−ΔT3+Δφl11−ΔT4−ΔφW1
−2ΔTx −へL−2ΔTx         ・・・■ ここで
求めたφV+ −Vh及びφ% −Vlは前記位相差検
出部33の出力であり、各々の値は前記記憶演算処理部
35に一時記憶され、次の演算が行われる。即ち次式に
示される減算である。
φV, -Vb-ΔT3+Δφl11-ΔT4-ΔφW1
-2ΔTx - to L-2ΔTx...■ φV+ -Vh and φ% -Vl found here are the outputs of the phase difference detection section 33, and each value is temporarily stored in the storage calculation processing section 35, The following operations are performed. That is, the subtraction is shown in the following equation.

(す φV+−Vm−φV+−Vh−4Δ7 x      
    −=■更に、これに刻して前記補正及び所定の
演算処理を行って、測定結果として表示部37にて表示
する。
(SφV+-Vm-φV+-Vh-4Δ7 x
-=■Furthermore, the above-mentioned correction and predetermined arithmetic processing are performed on this, and the result is displayed on the display section 37 as a measurement result.

したがって、この装置の測距によれば、発光部、受光部
、及び光ファイバの遅延時間が測定結果に表われず、発
光部、受光部の遅れ要素、及び光ファイバの光路長の温
度変化を補償することができる。
Therefore, according to the distance measurement using this device, the delay time of the light emitting part, light receiving part, and optical fiber does not appear in the measurement results, and temperature changes in the delay elements of the light emitting part, light receiving part, and the optical path length of the optical fiber are not reflected in the measurement results. can be compensated.

[発明の効果コ 以上説明したように、この発明によれば、光学的距離測
定装置において、発光手段から時間分割して光を出力し
、該光を分岐手段により夫々測定光路と内部参照光路に
分岐し、測定光路を介して第1の受光手段にて受光した
光と内部参照光路を介して第2の受光手段にて受光した
光との伝播遅延時間差、及び測定光路を介して第2の受
光手段にて受光した光と内部参照光路を介して第1の受
光手段にて受光した光との伝播遅延時間差を夫々算出し
、更に夫々の差を演算してこの差により測定距離を求め
ることとしたので、装置の遅れ要素や光路長の変化を補
償することができ、また更に前記分光手段に時間分割制
御の機能を持たせることなく、即ち機械的機構及び電気
的エネルギーを有することなく、また、これにより装置
として比較的小規模で実現可能としたので、被測距場所
の環境に関係なく補償することができ、結果として、高
精度な測距が可能となる。
[Effects of the Invention] As explained above, according to the present invention, in an optical distance measuring device, light is outputted from the light emitting means in a time-divided manner, and the light is divided into the measurement optical path and the internal reference optical path by the branching means, respectively. The difference in propagation delay time between the light received by the first light receiving means via the measurement optical path and the light received by the second light receiving means via the internal reference optical path, and the second Calculating the propagation delay time difference between the light received by the light receiving means and the light received by the first light receiving means via the internal reference optical path, further calculating the respective differences, and determining the measurement distance from this difference. Therefore, it is possible to compensate for the delay elements of the device and changes in the optical path length, and further, without providing the spectroscopic means with a time division control function, that is, without having a mechanical mechanism or electrical energy. Further, since this allows the device to be implemented on a relatively small scale, it is possible to compensate regardless of the environment of the distance measurement location, and as a result, highly accurate distance measurement is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る光学的距離測定装置
の構成図、第2図は第1図の作用原理を説明するための
図、第3図は従来の光学釣用1111を測定装置の構成
図、第4図は遠隔測定を行う場合の光学的距離測定装置
のブロック図の一例を示す。 21・・・変調信号源  23・・・スイッチ25・・
・発光部(1)  27・・・発光部(2)29・・・
受光部(1)  31・・・受光部(2)33・・・位
相差検出部 35・・・記憶演算処理部37・・・表示
部    41・・・カブラ(1)43・・・カプラ(
2)
Fig. 1 is a configuration diagram of an optical distance measuring device according to an embodiment of the present invention, Fig. 2 is a diagram for explaining the principle of operation of Fig. 1, and Fig. 3 is a diagram for measuring a conventional optical distance measuring device 1111. FIG. 4 shows an example of a block diagram of an optical distance measuring device for remote measurement. 21... Modulation signal source 23... Switch 25...
- Light emitting part (1) 27... Light emitting part (2) 29...
Light receiving section (1) 31... Light receiving section (2) 33... Phase difference detection section 35... Memory calculation processing section 37... Display section 41... Coupler (1) 43... Coupler (
2)

Claims (2)

【特許請求の範囲】[Claims] (1)光出力から反射体による反射光の受光までの伝搬
遅延時間に基づき、当該反射体までの距離を測定する装
置において、時間分割して光を出力する発光部と、発光
部より時間分割して出力された光の夫々に対して被測定
系を介して伝播する測定光路と被測定系を介さずに伝播
する内部参照光路とに分岐する分岐手段と、前記測定光
路及び内部参照光路を介した光を交互に受けて所定の信
号を出力する第1及び第2の受光部と、測定光路を介し
て第1の受光手段にて受光した光と内部参照光路を介し
て第2の受光手段にて受光した光との伝播遅延時間差、
及び測定光路を介して第2の受光手段にて受光した光と
内部参照光路を介して第1の受光手段にて受光した光と
の伝播遅延時間差を交互に算出する時間差算出手段と、
該時間差算出手段で交互に算出された伝播遅延時間差の
夫々の差を演算して伝播遅延時間を求める演算手段とを
有することを特徴とする光学的距離測定装置。
(1) In a device that measures the distance to a reflector based on the propagation delay time from the light output to the reception of the reflected light by the reflector, there is a light emitting part that outputs light in time division, and a time division from the light emission part. branching means for branching each of the output lights into a measurement optical path that propagates through the measured system and an internal reference optical path that propagates without passing through the measured system; first and second light receiving units that alternately receive the light transmitted through the optical path and output a predetermined signal; The propagation delay time difference between the light received by the means,
and time difference calculating means for alternately calculating the propagation delay time difference between the light received by the second light receiving means via the measurement optical path and the light received by the first light receiving means via the internal reference optical path;
1. An optical distance measuring device comprising a calculation means for calculating the propagation delay time by calculating the differences between the propagation delay time differences alternately calculated by the time difference calculation means.
(2)前記分岐手段が、非電気的且つ機械的要素から成
ることを特徴とする特許請求の範囲第1項に記載の光学
的距離測定装置。
(2) The optical distance measuring device according to claim 1, wherein the branching means comprises a non-electrical and mechanical element.
JP59266278A 1984-12-19 1984-12-19 Optical range finder Granted JPS61145476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59266278A JPS61145476A (en) 1984-12-19 1984-12-19 Optical range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59266278A JPS61145476A (en) 1984-12-19 1984-12-19 Optical range finder

Publications (2)

Publication Number Publication Date
JPS61145476A true JPS61145476A (en) 1986-07-03
JPH0550710B2 JPH0550710B2 (en) 1993-07-29

Family

ID=17428736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59266278A Granted JPS61145476A (en) 1984-12-19 1984-12-19 Optical range finder

Country Status (1)

Country Link
JP (1) JPS61145476A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325182U (en) * 1989-07-20 1991-03-14
EP0603826A1 (en) * 1992-12-21 1994-06-29 Kabushiki Kaisha Topcon Optical distance meter
WO2007020856A1 (en) * 2005-08-17 2007-02-22 Hitachi, Ltd. Method and equipment for measuring displacement, stage equipment and probe microscope
JP2007127541A (en) * 2005-11-04 2007-05-24 Sokkia Co Ltd Electronic distance meter
WO2013084616A1 (en) * 2011-12-05 2013-06-13 株式会社日立製作所 Distance measurement method and device, and shape measurement device in which distance measurement device is installed

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325182U (en) * 1989-07-20 1991-03-14
EP0603826A1 (en) * 1992-12-21 1994-06-29 Kabushiki Kaisha Topcon Optical distance meter
WO2007020856A1 (en) * 2005-08-17 2007-02-22 Hitachi, Ltd. Method and equipment for measuring displacement, stage equipment and probe microscope
JP2007051900A (en) * 2005-08-17 2007-03-01 Hitachi Ltd Displacement measuring method, instrument therefor, stage device, and probe microscope
US20090210971A1 (en) * 2005-08-17 2009-08-20 Toshihiko Nakata Displacement Measurement Method and Apparatus Thereof, Stage Apparatus, and Probe Microscope
US8284406B2 (en) 2005-08-17 2012-10-09 Hitachi, Ltd. Displacement measurement method and apparatus thereof, stage apparatus, and probe microscope
US20120327429A1 (en) * 2005-08-17 2012-12-27 Toshihiko Nakata Displacement Measurement Method and Apparatus Thereof, Stage Apparatus, and Probe Microscope
US8629985B2 (en) 2005-08-17 2014-01-14 Hitachi, Ltd. Displacement measurement method and apparatus thereof, stage apparatus, and probe microscope
JP2007127541A (en) * 2005-11-04 2007-05-24 Sokkia Co Ltd Electronic distance meter
WO2013084616A1 (en) * 2011-12-05 2013-06-13 株式会社日立製作所 Distance measurement method and device, and shape measurement device in which distance measurement device is installed

Also Published As

Publication number Publication date
JPH0550710B2 (en) 1993-07-29

Similar Documents

Publication Publication Date Title
US4356396A (en) Fiber optical measuring device with compensating properties
EP0646767B1 (en) Interferometric distance measuring apparatus
US5657405A (en) Optical fiber sensor for measuring pressure or displacement
EP2329218B1 (en) Compact fiber-optic geometry for a counter chirp fmcw coherent laser radar
CN111007483A (en) Laser radar based on silicon optical chip
CA1306524C (en) Optical position sensor
JP2008531993A (en) Compact fiber optic geometry for inverse chirped FMCW coherent laser radar
EP0793079A2 (en) Fiber coupled interferometric displacement sensor
EP1203211A1 (en) Method and device for fibre-optical measuring systems
US6847437B2 (en) Laser anemometer
US6329648B1 (en) Phase locked loop fiber optic sensor system
JPH0726890B2 (en) Optical fiber effective refractive index measuring device
US5504577A (en) Method and apparatus for measuring meteorological visibility and scattering of light, said apparatus utilizing common optics for transmission and reception
JPH03180704A (en) Laser interference gauge
JPS61145476A (en) Optical range finder
JPH0829128A (en) Physical-quantity measuring apparatus, and measuring instrument thereof
US5747793A (en) Variable light source compensated optical fiber sensing system
US5781305A (en) Fiber optic transmissometer
JPS61145403A (en) Optical detector
JPH11295153A (en) Wavelength detecting device
US5233176A (en) Precision laser surveying instrument using atmospheric turbulence compensation by determining the absolute displacement between two laser beam components
JPS60138484A (en) Distance measuring device
JPS61272677A (en) Measuring instrument for length of optical path
JPS61270683A (en) Light applied measuring instrument
JPH0435997Y2 (en)