JPS61145305A - Control device for turbine plant using hot water - Google Patents

Control device for turbine plant using hot water

Info

Publication number
JPS61145305A
JPS61145305A JP59267936A JP26793684A JPS61145305A JP S61145305 A JPS61145305 A JP S61145305A JP 59267936 A JP59267936 A JP 59267936A JP 26793684 A JP26793684 A JP 26793684A JP S61145305 A JPS61145305 A JP S61145305A
Authority
JP
Japan
Prior art keywords
opening
steam
hot water
control valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59267936A
Other languages
Japanese (ja)
Inventor
Mikio Takayanagi
幹男 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59267936A priority Critical patent/JPS61145305A/en
Publication of JPS61145305A publication Critical patent/JPS61145305A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To eliminate power recovery losses caused as a result of change in hot water temperature by controlling the opening of a steam control valve during normal operation to its maximum within control range, using an opening sensor and an adjuster for setting the opening of a steam control valve. CONSTITUTION:An opening sensor 17 mounted on a steam control valve 4 detects its opening and sends a signal to an opening setter adjuster 18. The adjuster 18 is provided with a predetermined value intended to set the steam control valve 4 to a maximum opening within the control range and this predetermined value is compared with the opening signals to control the valve opening to the degree corresponding to the predetermined value. This arrangement serves to eliminate power recovery losses such as a throttling loss of the steam control valve 4 as a result of excessively high steam pressure relating to all types of fluctuation in hot water temperature or steam bypassing the turbine as a result of too low steam pressure.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ランキンサイクルにより構成され、例えば海
洋温度差発電プラントの如き温水利用タービンプラント
における制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control device for a hot water turbine plant, such as an ocean temperature difference power generation plant, which is configured by a Rankine cycle.

〔発明の技術的背景およびその問題点〕従来、太陽によ
って暖められた海洋の表層の温海水と深さ数百メートル
から1000m程度の深層冷海水とをそれぞれ高温熱源
および低温熱源とし、これらの間の約20℃程度の温度
差で、例えばフロン系ガスの如き動作流体にランキンサ
イクルを行なわせ、その動作流体によってタービンを駆
動させる、海洋温度差発電プラントの如き温水利用ター
ビンプラントが提案されている。
[Technical background of the invention and its problems] Conventionally, warm seawater on the surface of the ocean warmed by the sun and deep cold seawater at a depth of several hundred meters to about 1000 meters are used as high-temperature heat sources and low-temperature heat sources, respectively. A hot water turbine plant, such as an ocean temperature difference power generation plant, has been proposed in which a working fluid, such as a fluorocarbon gas, undergoes a Rankine cycle with a temperature difference of about 20°C, and the working fluid drives a turbine. .

すなわち、第2図は上記海洋温度差発電プラントの系統
図であって、温海水ポンプ1によって汲み上げられた表
層温海水を高熱源とする蒸発器2で蒸発せしめられた動
作流体が、蒸気止め弁3、および蒸気加減弁4を経てタ
ービン5に供給され、そこで仕事を行ない発電機6を駆
動する。上記タービン5で仕事を終えた動作流体は凝縮
器7に導かれ、そこで冷海水ポンプ8によって汲み上げ
られた深層冷海水によって凝縮せしめられ、その後動作
流体ポンプ9によって蒸発器レベル調整弁10を経て前
記蒸発器2に還流され、上記動作流体によるランキンサ
イクルが形成される。
That is, FIG. 2 is a system diagram of the ocean temperature difference power generation plant, in which the working fluid evaporated in the evaporator 2, which uses surface warm seawater pumped up by the warm seawater pump 1 as a high heat source, flows through the steam stop valve. 3, and is supplied to a turbine 5 through a steam control valve 4, where it performs work and drives a generator 6. The working fluid that has completed its work in the turbine 5 is led to a condenser 7, where it is condensed by deep cold seawater pumped up by a cold seawater pump 8, and then passed through an evaporator level regulating valve 10 by a working fluid pump 9 to the The fluid is refluxed to the evaporator 2, and a Rankine cycle is formed by the working fluid.

ところで、上記蒸気化め弁3の上流側とタービン5の下
流側との間には、バイパス弁11を有するタービンバイ
パス回路12が設けられている。
Incidentally, a turbine bypass circuit 12 having a bypass valve 11 is provided between the upstream side of the vaporization valve 3 and the downstream side of the turbine 5.

上記バイパス弁11は、前記蒸気化め弁3の上流側の圧
力を検出する圧力検出器13からの圧力信号を入力とす
る圧力設定調整器14の出力信号によって開閉制御され
るようにしてあり、上記バイパス弁11は、前記蒸気化
め弁3の上流側の圧力が所定圧力以上になったとき開制
御され、圧力制御機能および主蒸気圧力異常時の圧力逃
し機能を果すとともに、起動時におけるバイパス運転機
能を果すようにしである。また、前記蒸気加減弁4は・
タービン5の回転数に応じてその開度制御が行なわれ、
タービン入口流口を制御する調速機能または負荷制御機
能を有している。
The bypass valve 11 is controlled to open and close by an output signal of a pressure setting regulator 14 which receives a pressure signal from a pressure detector 13 that detects the pressure on the upstream side of the vaporization valve 3. The bypass valve 11 is controlled to open when the pressure on the upstream side of the vaporization valve 3 exceeds a predetermined pressure, and performs a pressure control function and a pressure relief function when the main steam pressure is abnormal. It is designed to perform the driving function. In addition, the steam control valve 4 is...
The opening degree is controlled according to the rotation speed of the turbine 5,
It has a speed regulating function or a load control function to control the turbine inlet and outlet.

一方、前記蒸発器2にはレベル検出器15が設けられて
おり、その蒸発器2の器内液位の変動に応じてレベル設
定調整器16を介して蒸発器レベル調整弁10の開度が
制御され、蒸発器2への動作流体流入団を調整して上記
器内液位が常に一定になるようにしである。
On the other hand, the evaporator 2 is provided with a level detector 15, and the opening degree of the evaporator level adjustment valve 10 is adjusted via the level setting regulator 16 in response to fluctuations in the internal liquid level of the evaporator 2. The working fluid flow into the evaporator 2 is controlled so that the liquid level in the evaporator 2 is always constant.

ところで、海洋温度差発電プラントで対象とする深層冷
海水は、前述のように海面下500m程度の深海から取
水されるので、季節的な温度変化は一般に小さいが、他
方の表層温海水は、特に高緯度地方では比較的大きな温
度変化が伴う。しかも、上記温海水と冷海水の温度差は
20℃程度のわずかなものであるため、上記温度変化が
たとえ数℃の小さな温度変化でもプラント出力に与える
影響は大きいものとなる。
By the way, as mentioned above, the deep cold seawater that is the target of the ocean temperature difference power generation plant is taken from the deep sea about 500m below the sea surface, so seasonal temperature changes are generally small, but surface warm seawater, in particular, High latitude regions experience relatively large temperature changes. Moreover, since the temperature difference between the warm seawater and the cold seawater is as small as about 20° C., even a small temperature change of several degrees Celsius has a large effect on the plant output.

第3図は、第2図に示す発電プラントにおいて、温海水
温度が低下した際に蒸発圧力を種々変化せしめた時の動
作流体のタービン流入量、断熱熱落差、および発電端出
力の傾向を一試算例としてまとめたものである。なお、
動作流体はフロンR−22で、設計点におけるタービン
流入量、発電端出力はそれぞれ100%とした。
Figure 3 shows trends in the amount of working fluid flowing into the turbine, the adiabatic heat drop, and the power generation output when the evaporation pressure is varied in various ways when the warm seawater temperature decreases in the power plant shown in Figure 2. This has been compiled as an example of a trial calculation. In addition,
The working fluid was Freon R-22, and the turbine inflow amount and power generation output at the design point were each 100%.

すなわち、仮りに動作流体の蒸発圧力が種々の圧力にな
るようにすることができとした場合、表層海水温度に対
して最大出力を与える最適蒸発圧力を超えた圧力で運転
を行なうと、タービンの蒸気加減弁は部分開度となり、
絞り損失の増加、タービン流入口の低下により出力は減
少する。逆に最適蒸発圧力未満の圧力で運転をすると、
蒸気加減弁全開は達成されるものの、蒸発量の一部はタ
ービンバイパスせざるを得ず、タービン流入量、熱落差
が低下し、出力も減少する。しかして、最適な蒸発圧力
は、蒸気加減弁が全開でかつタービンバイパス量が零で
ある条件を満足する圧力であり、これは任意の表層海水
温度に対して1点のみ存在する。しかも、第3図からも
判るように、表層海水温度が設計点の29.8℃から2
6.8℃、22.8℃と変化すると、そのときの発電端
出力がピークとなる点においても、一点鎖(26,8℃
の場合)および実線(22,8℃の場合)に示すように
、発電端出力は低下する。
In other words, if the evaporation pressure of the working fluid can be made to vary, if the turbine is operated at a pressure that exceeds the optimum evaporation pressure that provides the maximum output for the surface seawater temperature, the turbine will The steam control valve is partially opened,
Output decreases due to increased throttling loss and reduced turbine inlet. Conversely, if you operate at a pressure lower than the optimum evaporation pressure,
Although the steam control valve is fully opened, part of the evaporated amount has to bypass the turbine, reducing the turbine inflow amount and heat drop, and reducing the output. Therefore, the optimal evaporation pressure is a pressure that satisfies the conditions that the steam control valve is fully open and the turbine bypass amount is zero, and this exists at only one point for any given surface seawater temperature. Moreover, as can be seen from Figure 3, the surface seawater temperature has increased by 2 degrees from the design point of 29.8℃.
When the temperature changes from 6.8℃ to 22.8℃, the point where the power generation end output at that time reaches its peak will also change to 26.8℃ and 22.8℃.
) and the solid line (in the case of 22.8°C), the output at the generating end decreases.

このように、温水温度の変化に対して最適な蒸発圧力は
一点づつ存在し、その圧力においては熱落差、タービン
流入最共にそれぞれ最大となるので、発電端出力も最大
となる。
In this way, there is an optimal evaporation pressure for each change in hot water temperature, and at that pressure both the heat drop and the turbine inflow are at their maximum, so the power generation output is also at its maximum.

しかして、発電端出力を常に最大とする最適な蒸発圧力
は、温海水温度が如何なる状態にあっても、蒸気加減弁
が全開状態で絞り損失がなく、かつタービンバイパス量
が零であるときの蒸気圧力に一致するといえる。逆にそ
のようなタービン廻りの運転状態が得られていれば、望
ましい蒸発圧力が得られ、最適な出力状態が達成されて
いることになる。
Therefore, the optimal evaporation pressure that always maximizes the generating end output is the one when the steam control valve is fully open, there is no throttling loss, and the turbine bypass amount is zero, regardless of the temperature of the warm seawater. It can be said that it corresponds to steam pressure. On the other hand, if such an operating state around the turbine is obtained, a desirable evaporation pressure will be obtained and an optimum output state will be achieved.

しかしながら、前記従来のプラントにおいては蒸気加減
弁には調速機能が与えられているだけであるので、常に
蒸気加減弁全開という条件を満すことはできず、温水温
度の如何なる変化に対しても、その温度に対する最大出
力を与える最適蒸発圧力を得ることはできず、タービン
バイパスに蒸発量の一部を逃さざるを得ないか、蒸気加
減弁に絞り損失が発生し、動力回収が完全にはなし得な
いという問題があった。
However, in the conventional plants mentioned above, the steam regulating valve is only provided with a speed regulating function, so it is not possible to satisfy the condition that the steam regulating valve is always fully open, and it cannot respond to any change in hot water temperature. , it is not possible to obtain the optimum evaporation pressure that will give the maximum output for that temperature, and some of the evaporation must be released to the turbine bypass, or throttling loss will occur in the steam control valve, and power recovery will not be complete. The problem was that I couldn't get it.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点に鑑み、表層海水温度の如き温水
温度の変化に際して最適な蒸発圧力が確保でき、通常運
転時においては蒸発量の一部をタービンバイパスライン
に逃すこともなく全量をタービンに流して十分な動力回
収を得ることができるようにした温水利用タービンプラ
ントの制御装置を得ることを目的とする。
In view of these points, the present invention is capable of ensuring optimal evaporation pressure when hot water temperature such as surface seawater temperature changes, and during normal operation, the entire amount of evaporation is transferred to the turbine without letting a part of it escape to the turbine bypass line. The object of the present invention is to obtain a control device for a hot water turbine plant that can obtain sufficient power recovery by flowing water into the water.

〔発明の概要〕[Summary of the invention]

本発明は、ランキンサイクルにより構成される温水利用
タービンプラントにおける制御装置において、蒸気加減
弁の開度を検出する開度検出器と、その蒸気加減弁の弁
開度を制御範囲内の最大開度\とする設定値が設定され
、その設定値と上記開度検出器による弁開信号との偏差
によって前記蒸気加減弁に制御信号を出力する開度設定
調整器とを有することを特徴とする。
The present invention provides a control device for a hot water turbine plant configured with a Rankine cycle, including an opening detector that detects the opening of a steam regulating valve, and a valve opening of the steam regulating valve that is set to a maximum opening within a control range. The present invention is characterized in that it has an opening setting regulator which is set with a set value of \ and outputs a control signal to the steam control valve based on a deviation between the set value and a valve opening signal from the opening detector.

(発明の実施例) 以下、第1図を参照して本発明の一実施例について説明
する。なお、第2図と同一部分については同一符号を付
しその詳細な説明は省略、する。
(Embodiment of the Invention) Hereinafter, an embodiment of the present invention will be described with reference to FIG. Note that the same parts as in FIG. 2 are given the same reference numerals, and detailed explanation thereof will be omitted.

蒸気加減弁4にはその開度を検出する開度検出器17が
設けられており、その開度検出器17によって検出され
た開度信号は、開度設定調整器18に入力される。上記
開度設定調整器18には蒸気加減弁の弁開度を制御範囲
内の最大開度とする設定値が設定されており、そこでそ
の設定値と上記開度信号とが比較され、その偏差信号が
前記蒸気加減弁4に制御信号が出力されるようにしであ
る。すなわち、上記蒸気加減弁4は完全な最大開度では
制御応答性が悪く、しかも完全な最大開度に保持すると
、調速作用時に対応できないので開方向への余裕をもっ
ていることが望ましく、通常的には、完全な最大開度の
90〜95%程度までが制御ll範囲と規定されており
、前gc!設定値は上記制御範囲の最大開度に設定され
ている。
The steam control valve 4 is provided with an opening degree detector 17 for detecting its opening degree, and an opening degree signal detected by the opening degree detector 17 is inputted to an opening degree setting regulator 18 . A setting value is set in the opening setting regulator 18 to set the valve opening of the steam control valve to the maximum opening within the control range, and the setting value and the opening signal are compared, and the deviation The signal is such that a control signal is output to the steam control valve 4. In other words, the control response of the steam control valve 4 is poor at the full maximum opening, and if it is held at the full maximum opening, it will not be able to respond to the speed regulating action, so it is desirable to have some margin in the opening direction. The control range is defined as approximately 90 to 95% of the complete maximum opening, and the control range is defined as 90% to 95% of the complete maximum opening. The set value is set to the maximum opening degree in the control range.

その他の点では、前記第2図に示す従来のものと全く同
一である。すなわち、蒸気加減弁4には、系統周波数増
減などに対する調速機能が調速機により付加されており
、タービンバイパス弁17は、何らかの理由により圧力
設定調整器14の設定値を超えるような器内圧力状態が
発生した異常時のみ開弁じて圧力逃し弁としての機能を
発揮する。
In other respects, it is completely the same as the conventional one shown in FIG. In other words, the steam control valve 4 is provided with a speed control function for dealing with increases and decreases in system frequency, etc., and the turbine bypass valve 17 is used in cases where the pressure inside the steam control valve 17 exceeds the set value of the pressure setting regulator 14 for some reason. It functions as a pressure relief valve by opening only when an abnormal pressure condition occurs.

しかし、プラントの通常運転時においては、開度設定調
整器18の作動により蒸気加減弁4は常に全開状態に維
持され、タービンバイパス弁11は圧力設定調整器14
により全開状態に維持される。
However, during normal operation of the plant, the steam control valve 4 is always kept fully open by the operation of the opening setting regulator 18, and the turbine bypass valve 11 is operated by the pressure setting regulator 14.
It is maintained in a fully open state.

例えば、表層海水温度が或値まで低下し、この時蒸発温
度が不変のままであったとすると、まず蒸発器の交換熱
量が低下し蒸発量が低減する。一方、タービンバイパス
弁11全閏により蒸発量の全量はタービンを通過するが
、凝縮器では流m減少により凝縮圧力(タービン排圧)
の低減となる。
For example, if the surface seawater temperature drops to a certain value and the evaporation temperature remains unchanged at this time, the amount of heat exchanged by the evaporator will first decrease and the amount of evaporation will decrease. On the other hand, the entire amount of evaporation passes through the turbine due to the full leap of the turbine bypass valve 11, but in the condenser, the condensation pressure (turbine exhaust pressure) decreases due to the decrease in flow m.
This results in a reduction in

このため、タービンノズル前圧(蒸気加減弁後圧)も低
下し、さらに蒸気加減弁全開のため絞りも殆ど発生せず
、蒸気加減弁前圧(主蒸気圧力)もつられて低減方向と
なる。したがって、表m海水温度が下がれば、その時点
までの蒸発圧力から次第に蒸発圧力は低減することにな
る。また、一定値の表層海水温度の低下に対して、何ら
かの原因で蒸発圧力が低すぎる圧力で運転されると、蒸
発器の交換熱量、蒸発分ともに増加する。したがって、
その増加した全蒸気が、タービンバイパス弁11が全開
のため、タービンを通過せざるを得す、凝縮器における
凝縮圧力が上昇する。また蒸発圧力が低下しているため
、蒸気の容積流量は増大し、タービンの入口/出口圧力
差が増加しないと全量通過はしないが、タービン排圧(
ζ凝縮圧力)が上昇しているため、タービンノズル前圧
がさらに増加することが要求される。したがって、これ
につられて蒸気加減弁前圧(主蒸気圧力)も増加の方向
となる。換言すれば、低すぎる蒸発圧力で運転しても、
凝縮器側からの一種の封じ込め現象により次第に蒸発圧
力は上昇する。
Therefore, the pressure in front of the turbine nozzle (the pressure after the steam control valve) also decreases, and since the steam control valve is fully open, there is almost no throttling, and the pressure in front of the steam control valve (the main steam pressure) also decreases. Therefore, as the seawater temperature drops, the evaporation pressure will gradually decrease from the evaporation pressure up to that point. Furthermore, if the evaporation pressure is operated at too low a pressure for some reason in response to a constant decrease in surface seawater temperature, both the amount of heat exchanged and the evaporation amount of the evaporator will increase. therefore,
Since the turbine bypass valve 11 is fully open, the increased total steam is forced to pass through the turbine, and the condensation pressure in the condenser increases. Also, since the evaporation pressure has decreased, the volumetric flow rate of steam increases, and the entire amount will not pass through unless the turbine inlet/outlet pressure difference increases, but the turbine exhaust pressure (
ζ condensation pressure) is increasing, which requires a further increase in the turbine nozzle front pressure. Accordingly, the pressure in front of the steam control valve (main steam pressure) also tends to increase. In other words, even if you operate at too low an evaporation pressure,
The evaporation pressure gradually increases due to a kind of containment phenomenon from the condenser side.

このように、成る表層海水温度(温水温度)の変化に対
しては、蒸気加減弁が常時全開状態に制御されているこ
とにより、蒸発圧力は自己平衡性により或一定値に整定
され、最大出力を与える最適圧力となる。
In this way, in response to changes in the surface seawater temperature (hot water temperature), the steam control valve is always controlled to be fully open, so the evaporation pressure is set to a certain constant value due to self-equilibrium, and the maximum output is This is the optimum pressure that gives .

なお、上記実施例におていは、表層海水温度のみが変動
するケースについて説明したが、深層海水温度が変動す
るケースについても全く同様に対応できる。また、海洋
温度差発電システムに限らず、産業廃熱利用発電等、高
熱源もしくは低熱源温度に経時的な変化が伴うような7
ものにも適用できる。さらに、上記実施例においては、
蒸発器の液面制御に関して、動作流体ポンプ出口の蒸発
器レベル調整弁で制御するものを示したが、液面制御を
同ポンプの回転数制御により行なうこともでき、この場
合動作流体の循環量低下時等において同ポンプ動力の所
要動力の低減も果すことができる。
In the above embodiment, a case where only the surface seawater temperature fluctuates has been described, but a case where the deep seawater temperature fluctuates can also be dealt with in exactly the same way. In addition, it is not limited to ocean temperature difference power generation systems, but also power generation using industrial waste heat, etc., where the temperature of high heat source or low heat source changes over time.
It can also be applied to things. Furthermore, in the above embodiment,
Regarding the liquid level control of the evaporator, we have shown that it is controlled by the evaporator level adjustment valve at the outlet of the working fluid pump, but the liquid level can also be controlled by controlling the rotation speed of the same pump, in which case the circulating amount of the working fluid It is also possible to reduce the required power of the pump when the power decreases.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においては蒸気加減弁を通
常弁開度の制御範囲内の最大開度となるようにしたので
、温水温度の全ゆる変化に対して、蒸発圧力が高すぎて
加減弁の絞り損失が発生したり、蒸発圧力が低すぎてタ
ービンバイパスが発生する等の動力回収上のロスが解消
され、蒸気加減弁の調速機能を有したまま、常に最適な
蒸発圧力がその自己平衡性により達成され、温水利用タ
ービンプラントにおける動力回収量を絶えず最大とする
ことができる。
As explained above, in the present invention, since the steam control valve is set to the maximum opening within the control range of the normal valve opening, the evaporation pressure is too high for all changes in hot water temperature. Power recovery losses such as valve throttling loss or turbine bypass caused by too low evaporation pressure are eliminated, and the optimum evaporation pressure is always maintained while maintaining the speed regulating function of the steam control valve. Achieved through self-balancing, power recovery in hot water turbine plants can be consistently maximized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の温水利用タービンプラントの概略系統
図、第2図は従来の温水利用タービンプラントの概略系
統図、第3図は蒸発圧力(蒸発温度)に対する、タービ
ン流人聞、タービン断熱熱落差、および発電端出力の変
化線図である。 2・・・蒸発器、4・・・蒸気加減弁、5・・・タービ
ン、6・・・発電機、7・・・凝縮器、11・・・ター
ビンバイパス弁、12・・・タービンバイパス回路、1
4・・・圧力設定調整器、17・・・同度検出器、18
・・・開度設定調整器。 出願人代理人  猪  股    清 あ1目 第2目 躬3目
Figure 1 is a schematic system diagram of a hot water turbine plant of the present invention, Figure 2 is a schematic diagram of a conventional hot water turbine plant, and Figure 3 is a diagram showing turbine flow rate and turbine insulation with respect to evaporation pressure (evaporation temperature). It is a change diagram of a thermal drop and a power generation end output. 2... Evaporator, 4... Steam control valve, 5... Turbine, 6... Generator, 7... Condenser, 11... Turbine bypass valve, 12... Turbine bypass circuit ,1
4...Pressure setting regulator, 17...Same pressure detector, 18
...Opening setting adjuster. Applicant's agent Kiyoa Inomata, 1st, 2nd, 3rd

Claims (1)

【特許請求の範囲】 1、ランキンサイクルにより構成される温水利用タービ
ンプラントにおける制御装置において、蒸気加減弁の開
度を検出する開度検出器と、その蒸気加減弁の弁開度を
制御範囲内の最大開度とする設定値が設定され、その設
定値と上記開度検出器による弁開度信号との偏差によっ
て前記蒸気加減弁に制御信号を出力する開度設定調整器
とを有することを特徴とする、漏水利用タービンプラン
トの制御装置。 2、蒸気加減弁は、通常の調速機能をも有していること
を特徴とする、特許請求の範囲第1項記載の温水利用タ
ービンプラントの制御装置。 3、温水は表層温海水であることを特徴とする、特許請
求の範囲第1項記載の温水利用タービンプラントの制御
装置。
[Claims] 1. In a control device for a hot water turbine plant configured by a Rankine cycle, an opening detector detects the opening of a steam regulating valve, and the opening of the steam regulating valve is within a control range. and an opening setting regulator that outputs a control signal to the steam control valve based on the deviation between the set value and the valve opening signal from the opening detector. A control device for a turbine plant that utilizes leakage water. 2. The control device for a hot water utilization turbine plant according to claim 1, wherein the steam control valve also has a normal speed regulating function. 3. The control device for a hot water turbine plant according to claim 1, wherein the hot water is surface warm seawater.
JP59267936A 1984-12-19 1984-12-19 Control device for turbine plant using hot water Pending JPS61145305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59267936A JPS61145305A (en) 1984-12-19 1984-12-19 Control device for turbine plant using hot water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59267936A JPS61145305A (en) 1984-12-19 1984-12-19 Control device for turbine plant using hot water

Publications (1)

Publication Number Publication Date
JPS61145305A true JPS61145305A (en) 1986-07-03

Family

ID=17451660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59267936A Pending JPS61145305A (en) 1984-12-19 1984-12-19 Control device for turbine plant using hot water

Country Status (1)

Country Link
JP (1) JPS61145305A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215803A (en) * 1987-03-03 1988-09-08 Hisaka Works Ltd Optimum operation method for heat recovery device
JPH06173613A (en) * 1992-12-07 1994-06-21 Toshiba Corp Turbine control device
CN102116274A (en) * 2011-01-11 2011-07-06 中国海洋大学 Ammonia water reheating-injecting power absorption circulation system driven by temperature difference of seawater
WO2014112326A1 (en) 2013-01-16 2014-07-24 パナソニック株式会社 Rankine cycle device
JP2014185563A (en) * 2013-03-22 2014-10-02 Toshiba Corp Steam valve control device, steam turbine system
KR102006308B1 (en) * 2018-05-30 2019-08-01 비아이피 주식회사 Control Method of Organic Rankine Cycle Power System

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215803A (en) * 1987-03-03 1988-09-08 Hisaka Works Ltd Optimum operation method for heat recovery device
JPH06173613A (en) * 1992-12-07 1994-06-21 Toshiba Corp Turbine control device
CN102116274A (en) * 2011-01-11 2011-07-06 中国海洋大学 Ammonia water reheating-injecting power absorption circulation system driven by temperature difference of seawater
WO2014112326A1 (en) 2013-01-16 2014-07-24 パナソニック株式会社 Rankine cycle device
JPWO2014112326A1 (en) * 2013-01-16 2017-01-19 パナソニックIpマネジメント株式会社 Rankine cycle equipment
US9714581B2 (en) 2013-01-16 2017-07-25 Panasonic Intellectual Property Management Co., Ltd. Rankine cycle apparatus
JP2014185563A (en) * 2013-03-22 2014-10-02 Toshiba Corp Steam valve control device, steam turbine system
US9784118B2 (en) 2013-03-22 2017-10-10 Kabushiki Kaisha Toshiba Steam valve control device and steam turbine system
KR102006308B1 (en) * 2018-05-30 2019-08-01 비아이피 주식회사 Control Method of Organic Rankine Cycle Power System

Similar Documents

Publication Publication Date Title
JPS61145305A (en) Control device for turbine plant using hot water
JPS60222511A (en) Thermal power generating equipment
US4301650A (en) Pressure regulating apparatus for a closed water circuit
JP2918743B2 (en) Steam cycle controller
GB778941A (en) Improvements relating to power plant including a nuclear reactor
JPS6159296A (en) Nuclear power plant
JPS5810103A (en) Turbine controller
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPH0475363B2 (en)
JPH0440527B2 (en)
JPS6237210B2 (en)
JPS59138705A (en) Controller for temperature of supplied water
JPH05272306A (en) Exhaust heat utilizing power generation control device
JPS62324B2 (en)
JPH0327724B2 (en)
JP2531755B2 (en) Water supply control device
JPS6239657B2 (en)
JPH025309Y2 (en)
JPS60206912A (en) Flush preventive method for condensate in rankin cycle system
SU1746202A1 (en) Method of automatic control of heat exchanger operation
JPS6032082B2 (en) Feed water temperature control device
JP3095575B2 (en) Cycle plant
JPS6088878A (en) Geothermal binary cycle plant
CN116667383A (en) Heat pump and low-adding coupling thermal power generating unit frequency modulation system and method
JPS6013903A (en) Turbine controller