JPS6114506A - Optical sensor - Google Patents

Optical sensor

Info

Publication number
JPS6114506A
JPS6114506A JP13562284A JP13562284A JPS6114506A JP S6114506 A JPS6114506 A JP S6114506A JP 13562284 A JP13562284 A JP 13562284A JP 13562284 A JP13562284 A JP 13562284A JP S6114506 A JPS6114506 A JP S6114506A
Authority
JP
Japan
Prior art keywords
output
light
modulation frequency
section
optical sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13562284A
Other languages
Japanese (ja)
Other versions
JPH0423724B2 (en
Inventor
Seiichiro Tamai
誠一郎 玉井
Masao Murata
村田 正雄
Keiichi Kobayashi
圭一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13562284A priority Critical patent/JPS6114506A/en
Publication of JPS6114506A publication Critical patent/JPS6114506A/en
Publication of JPH0423724B2 publication Critical patent/JPH0423724B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Abstract

PURPOSE:To perform optical sensing in the presence of noises due to external light by projecting laser light which has different modulation frequencies upon a work, calculating outputs corresponding to modulation frequencies from reflected light, and calculating their difference. CONSTITUTION:A modulation frequency setting means 14 which sets sections of mutually different modulation frequencies periodically, a means which modulates and projects laser light on the work 5 through said means 15, and the photodetecting means consisting of an interference filter 16, semiconductor position sensor 7, etc., which photodetect reflected light from the work 5 are provided. Further, current-voltage converting circuit 8 and 9 which convert the output of the photodetecting means into an electric signal, filters 17 and 18 which are connected to the circuits 8 and 9 to pass a signal of modulation frequency f1, output sample means 19 and 20 which receive outputs of the filters 18 and 19 and detect an output A corresponding to a section of frequency f1 and an output B corresponding to a section of frequency f2, and an arithmetic means 23 which calculates the difference between the outputs A and B are provided. Then, a filter 16 cuts off the majority of arc light to prevent the sensor 7 and electric signal converting circuits 8 and 9 connected thereto from being saturated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アーク溶接用の光学センサに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical sensor for arc welding.

従来例の構成とその問題点 従来のアーク溶接用光学センサの最大の問題点は、アー
ク光ノイズの影響を受は検出精度が低下することである
Conventional Structure and Problems The biggest problem with conventional optical sensors for arc welding is that detection accuracy is reduced due to the influence of arc light noise.

第1図は、被溶接物(以下ワークという)までの距離を
非接触で検出する光学距離センサの従来例を示すもので
ある。1は10曲変調回路、2はレーザダイオード3を
ドライブするドライブ回路、4はレーザダイオード3の
出力光をスポット光に絞るコリメータレンズ、5はワー
ク、6は集光レンズ、7は半導***置センサ(PSD)
、sと9はオペアンプで構成した電流電圧変換回路、1
0と11はオペアンプなどで構成した10%のバンドパ
スフィルタ、12と13はそれぞれオペアンプなどで構
成した加算回路と引き算回路、14はアナログの割算回
路である。この例における距離検出の原理は、次の通り
である。10kl(Zに変調したレーザスポット光をワ
ーク5に照射し、その像をPSD7で受光すると、PS
D了の結像位置に対応した光電流がPSD7の出力端子
から流れ出る。これを電流電圧変換回路8および9で電
圧に変換L、さらに10匹のバンドパスフィルタ10と
、11を介することにより通常照明光などの外乱光′ノ
イズをカットし、10%に変調したレーザ光信号のみを
取り出す。この各々の出力の和と差をとり、差で和を割
算するとある程度の受光光量の変動に無関係にPSDT
上での結像位置を求めることができる。したがってワー
ク6の変位はPSDY上のスポット光の結像位置の変位
として検知できるので、ワーク5までの距離を検知でき
る。
FIG. 1 shows a conventional example of an optical distance sensor that detects the distance to an object to be welded (hereinafter referred to as a work) in a non-contact manner. 1 is a 10-track modulation circuit, 2 is a drive circuit that drives the laser diode 3, 4 is a collimator lens that focuses the output light of the laser diode 3 into a spot light, 5 is a workpiece, 6 is a condensing lens, 7 is a semiconductor position sensor ( PSD)
, s and 9 are current-voltage conversion circuits composed of operational amplifiers, 1
0 and 11 are 10% band-pass filters made up of operational amplifiers, etc., 12 and 13 are addition circuits and subtraction circuits made up of operational amplifiers, etc., and 14 is an analog division circuit. The principle of distance detection in this example is as follows. When a laser spot light modulated to 10kl (Z) is irradiated onto the workpiece 5 and the image is received by the PSD 7, the PS
A photocurrent corresponding to the imaging position of D ends flows out from the output terminal of the PSD 7. This is converted into voltage by current-voltage conversion circuits 8 and 9, and then passed through 10 band-pass filters 10 and 11 to cut disturbance light noise such as normal illumination light, and laser light modulated to 10%. Extract only the signal. By taking the sum and difference of each of these outputs and dividing the sum by the difference, the PSDT
The imaging position above can be determined. Therefore, the displacement of the workpiece 6 can be detected as a displacement of the imaging position of the spot light on the PSDY, so the distance to the workpiece 5 can be detected.

しかるに、アーク光の場合には、通常照明光に比べ格段
に強度が強く、かつ第2図に示すようにレーザの変調周
波域までその周波数成分が存在するので、第1図に示し
たような従来方法や回路では、バンドパスフィルタを通
した後の信号出力は、第2図に示すようにレーザ光の成
分とアーク光の成分の合成されたものになり、検出精度
が低下することになる。なお、変調周波数はPSDの応
答特性の制限から30klb程度以上には上げられない
However, in the case of arc light, the intensity is much stronger than that of normal illumination light, and as shown in Figure 2, its frequency components exist up to the laser modulation frequency range, so the In conventional methods and circuits, the signal output after passing through a band-pass filter is a combination of laser light components and arc light components, as shown in Figure 2, resulting in a decrease in detection accuracy. . Note that the modulation frequency cannot be increased above about 30 klb due to limitations in the response characteristics of the PSD.

そのため、従来の光学センサをアーク溶接用に適用する
のは困難であった。
Therefore, it has been difficult to apply conventional optical sensors to arc welding.

発明の目的 本発明は、前記従来の欠点を除去するもので、特にアー
ク光などのような外乱光ノイズが大きい環境下での光学
センシングを可能にすることを目的とするものである。
OBJECTS OF THE INVENTION The present invention aims to eliminate the above-mentioned drawbacks of the conventional technology, and particularly aims to enable optical sensing in an environment with large disturbance light noise such as arc light.

発明の構成 この目的を達成するために本発明は、相異なる変調周波
数f の区間と12の区間を周期的に設置 定する変調周波数設定手段と、前記変調周波数設定手段
によりレーザ光を変調しワークに投光する投光手段と、
前記ワークからのレーザ光の反射光を受光する受光手段
と、前記受光手段の出力を電気信号に変換する電気信号
変換手段と、前記電気信号変換手段に接続され前記変調
周波数11  を通すフィルタと、前記フィルタの出力
のうち前記変調周波数11の区間に対応する出力(A)
と前記変調周波数12の区間に対応する出力(B)とを
検出する出力サンプル手段と、前記出力(A)と出力(
B)の差を求める演算手段(1)と、前記演算上 手段(1)の出力から前記受光手段bレーザ光の結像位
置を求める演算手段(II)とから構成した光学センサ
である。
Structure of the Invention In order to achieve this object, the present invention includes a modulation frequency setting means for periodically setting sections of different modulation frequencies f and 12 sections, and a laser beam modulated by the modulation frequency setting means to control the workpiece. a light projecting means for projecting light to;
a light receiving means for receiving reflected light of the laser beam from the workpiece; an electrical signal converting means for converting the output of the light receiving means into an electrical signal; and a filter connected to the electrical signal converting means and passing the modulation frequency 11; Output (A) corresponding to the section of the modulation frequency 11 among the outputs of the filter
and output sampling means for detecting the output (B) corresponding to the section of the modulation frequency 12;
This optical sensor is composed of a calculation means (1) for calculating the difference between the light receiving means B and a calculation means (II) for calculating the imaging position of the laser beam of the light receiving means B from the output of the calculation means (1).

実施例の説明 以下、本発明の実施例につき、図面の第3図〜第5図に
沿って説明する。第1図と同一部分には同一番号を付し
説明を省略する。第3図において、15は変調周波数設
定手段(変調回路)、16は干渉フィルタ、17.18
はバンドパスフィルタ、19.20はサンプルホールド
回路、21.22はA/D変換回路、23は演算手段(
マイクロコ/ビ、−タ)である。そして変調周波数設定
手段15は第5図にその一例を示すような変調周波数f
’=30kJhと変調周波数12−1kH+を合成した
変調周波数を設定するために、発振回路とカウンタ回路
とゲート回路とで構成する。投光手段は波長830 n
mのレーザ光を発生するレーザダイオード3七それらを
ドライブするドライブ回路2とレーザ光を0.8圏φに
絞るコリメータレンズ4で構成する。受光手段は集魚距
離30mnの凸レンズ6と、810 nmから840 
nmの波長の光を通過させる干渉フィルターらとPSD
了とで構成する。この干渉フィルタ16により、第4図
に示すように、アーク光の大部分をカットできるので、
PSD7やそれに接続される電気信号変換回路の飽和を
防止でき、かつレーザ光のアーク光に対するS/Nを飛
躍的に向上させることができる。電気信号変換手段は、
オペアンプなどで構成した電流電圧変換回FNr8およ
び9で構成する。フィルタは、オペアンプなどで構成し
たバンド・くスフイルタ出力をサンプルホールドするサ
ンプルホールド回路19および20(サンプルタイミン
グは、第6図の変調周波敷石 =30匹を区間の略中間
のタイミングで行い、このサンプリング信号はマイクロ
コンピュータ23から出力される)と高速8ビットA/
D変換回路21および22 (A / Dスタートタイ
ミングは、マイクロコンピュータ23だし、アナログ回
路などでも構成することは可能である。マイクロコンピ
ュータ23は、変調周波数設定手段15から、現在の変
調周波数を検出し、出力サンプル手段のタイミングを出
力する。また変調周波数f1=30k)hの区間(第5
図の(tl−t3)区間)でのA/D変換値v1f1・
v2f2と変調周波f2=1曲の区間(第5図のt3の
区間)でのA/D変換値v1f2.v2f2とを読み込
み、(vlfl−v1f2)=Δv1 、(v2f1−
■2f2)=Δv2 の引き算地理を行う。この処理に
よりアーク光のりち干渉フィルタを通過した30kHi
成分(第2図のRP)をカットできる。すなわち変調周
波数f1 =3okの区間では、バンドパスフィルタを
通過してくるのは、30klkに変調したレーザ光と、
同じ(30klbの周波数成分をもつアーク光である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIGS. 3 to 5 of the drawings. Components that are the same as those in FIG. 1 are given the same numbers and their explanations will be omitted. In FIG. 3, 15 is a modulation frequency setting means (modulation circuit), 16 is an interference filter, 17.18
is a band pass filter, 19.20 is a sample hold circuit, 21.22 is an A/D conversion circuit, and 23 is a calculation means (
Microco/Vita). The modulation frequency setting means 15 sets the modulation frequency f, an example of which is shown in FIG.
In order to set a modulation frequency that is a combination of '=30kJh and a modulation frequency of 12-1kHz+, it is composed of an oscillation circuit, a counter circuit, and a gate circuit. The light emitting means has a wavelength of 830n.
It consists of a laser diode 3 which generates a laser beam of m, a drive circuit 2 which drives them, and a collimator lens 4 which focuses the laser beam to 0.8 φ. The light receiving means is a convex lens 6 with a fish collecting distance of 30 mm and a light receiving device of 810 nm to 840 nm.
Interference filters and PSD that pass light with a wavelength of nm
It is composed of the end and the end. This interference filter 16 can cut most of the arc light as shown in FIG.
It is possible to prevent saturation of the PSD 7 and the electric signal conversion circuit connected thereto, and to dramatically improve the S/N of laser light with respect to arc light. The electrical signal conversion means is
It consists of current-voltage conversion circuits FNr8 and FNr9 made up of operational amplifiers and the like. The filter consists of sample-and-hold circuits 19 and 20 that sample and hold the output of a band filter composed of an operational amplifier, etc. signal is output from the microcomputer 23) and high-speed 8-bit A/
D conversion circuits 21 and 22 (The A/D start timing is set by the microcomputer 23, but it can also be configured by an analog circuit. The microcomputer 23 detects the current modulation frequency from the modulation frequency setting means 15, Outputs the timing of the output sampling means.Also, modulation frequency f1=30k)h interval (fifth
A/D conversion value v1f1 in the (tl-t3) interval in the figure)
v2f2 and modulation frequency f2=A/D conversion value v1f2 in the section of one song (section t3 in FIG. 5). v2f2, (vlfl-v1f2)=Δv1, (v2f1-
■ Perform subtraction geography of 2f2)=Δv2. Through this process, 30kHi of arc light passed through the Norichi interference filter.
The component (RP in Figure 2) can be cut. That is, in the section where the modulation frequency f1 = 3ok, what passes through the bandpass filter is the laser light modulated to 30klk,
The same (arc light with a frequency component of 30 klb).

f2=1k)hの区間にバンドパスフィルタを通過して
くるのは30敗の周波数成分をもつアーク′光のみであ
る。したがって、この画周波数域でのバンドパス出力値
を前述のように引き算すれば、アーク光ノイズを除去で
きる。こうして求     ゝめたΔV、とΔv2 と
から(Δv1−Δv2)/(Δv1+ΔV2) = X
  という演算処理をすることにより、受光光量の変動
に無関係に、ワーク5に投光したレーザ光のPSDT上
での結像位置(X)を検出でき、ワークとこのセンサと
の距離を検知することができる。なお、バンドパスフィ
ルタの出力値のサンプリング処理については、複数回デ
ータを取り込んで、その平均値を用いることも有効で、
これらはマイクロコンピュータ23を使用すれば容易で
ある。
In the interval f2=1k)h, only the arc' light having 30 frequency components passes through the bandpass filter. Therefore, by subtracting the bandpass output value in this image frequency range as described above, arc light noise can be removed. From ΔV and Δv2 obtained in this way, (Δv1-Δv2)/(Δv1+ΔV2) = X
By performing this calculation process, the image formation position (X) on the PSDT of the laser beam projected onto the workpiece 5 can be detected regardless of fluctuations in the amount of received light, and the distance between the workpiece and this sensor can be detected. Can be done. Regarding the sampling process of the output value of the bandpass filter, it is also effective to capture data multiple times and use the average value.
These can be easily done by using the microcomputer 23.

本発明センサにより、TIGアーク光近傍のワークまで
の距離測定を行ったところ、3ooAのアーク電流で、
アーク前方15瓢の位置まで検出可能であった。第1図
に示した従来センサでは、600簡以上である。
When the sensor of the present invention was used to measure the distance to the workpiece near the TIG arc light, it was found that at an arc current of 3ooA,
It was possible to detect up to 15 gourds in front of the arc. In the conventional sensor shown in FIG. 1, the distance is more than 600.

発明の効果 継手形状の検出が可能になる。アーク溶接ロボットや自
動溶接機器に本センサを搭載すれば、溶接熱歪みや継手
変動などを正確かつ高速に検出できるので、溶接の高品
質、高効率、省力、低コスト化が図れ、その工業的効果
は犬なるものがある。
Effects of the Invention It becomes possible to detect the joint shape. If this sensor is installed in an arc welding robot or automatic welding equipment, it will be possible to accurately and quickly detect welding thermal distortion and joint fluctuations. The effect is like a dog.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光学センサのブロック図、第2図はアー
ク光とレーザ光の周波数分析特性図、第3図は本発明に
よる光学センサの一実施例のブロック図、第4図は干渉
フィルタによるアーク光カット効果の例を示す周波数分
析特性図、第5図は本発明の光学センサにおけるレーザ
光変調の一例を示す出力特性図である。
Fig. 1 is a block diagram of a conventional optical sensor, Fig. 2 is a frequency analysis characteristic diagram of arc light and laser light, Fig. 3 is a block diagram of an embodiment of the optical sensor according to the present invention, and Fig. 4 is an interference filter. FIG. 5 is a frequency analysis characteristic diagram showing an example of the arc light cutting effect according to the present invention, and FIG. 5 is an output characteristic diagram showing an example of laser light modulation in the optical sensor of the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)相異なる変調周波数f_1の区間とf_2の区間
を周期的に設定する変調周波数設定手段と、前記変調周
波数設定手段によりレーザ光を変調し被溶接物に投光す
る投光手段と、前記被溶接物からのレーザ光の反射光を
受光する受光手段と、前記受光手段の出力を電気信号に
変換する電気信号変換手段と、前記電気信号変換手段に
接続され前記変調周波数f_1を通すフィルタと、前記
フィルタの出力のうち前記変調周波数f_1の区間に対
応する出力(A)と前記変調周波数f_2の区間に対応
する出力(B)とを検出する出力サンプル手段と、前記
出力(A)と出力(B)の差を求める演算手段( I )
と、前記演算手段( I )の出力から前記受光手段上の
レーザ光の結像位置を求める演算手段(II)とから構成
した光学センサ。
(1) a modulation frequency setting means for periodically setting a section of different modulation frequencies f_1 and a section of f_2; a light projection means for modulating a laser beam by the modulation frequency setting means and projecting the light onto the workpiece; a light receiving means for receiving reflected light of the laser beam from the object to be welded; an electrical signal converting means for converting the output of the light receiving means into an electrical signal; and a filter connected to the electrical signal converting means and passing the modulation frequency f_1. , output sampling means for detecting an output (A) corresponding to the section of the modulation frequency f_1 and an output (B) corresponding to the section of the modulation frequency f_2 among the outputs of the filter; and the output (A) and the output. Calculating means (I) for calculating the difference between (B)
and a calculation means (II) for determining the imaging position of the laser beam on the light receiving means from the output of the calculation means (I).
(2)投光手段をコリメータレンズとレーザダイオード
とで構成した特許請求の範囲第(1)項記載の光学セン
サ。
(2) The optical sensor according to claim (1), wherein the light projecting means includes a collimator lens and a laser diode.
(3)受光手段を集光レンズとレーザ光の波長を通す干
渉フィルタと半導***置センサ(PSD)とで構成した
特許請求の範囲第(1)項記載の光学センサ。
(3) The optical sensor according to claim (1), wherein the light receiving means is constituted by a condensing lens, an interference filter that passes the wavelength of laser light, and a semiconductor position sensor (PSD).
(4)出力サンプル手段をサンプルホールド回路とA/
D変換回路とで構成した特許請求の範囲第(1)項記載
の光学センサ。
(4) The output sample means is a sample hold circuit and an A/
An optical sensor according to claim (1), which comprises a D-conversion circuit.
(5)演算手段( I )および(II)をマイクロコンピ
ュータで構成した特許請求の範囲第(1)項記載の光学
センサ。
(5) The optical sensor according to claim (1), wherein the calculation means (I) and (II) are configured by a microcomputer.
JP13562284A 1984-06-29 1984-06-29 Optical sensor Granted JPS6114506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13562284A JPS6114506A (en) 1984-06-29 1984-06-29 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13562284A JPS6114506A (en) 1984-06-29 1984-06-29 Optical sensor

Publications (2)

Publication Number Publication Date
JPS6114506A true JPS6114506A (en) 1986-01-22
JPH0423724B2 JPH0423724B2 (en) 1992-04-23

Family

ID=15156108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13562284A Granted JPS6114506A (en) 1984-06-29 1984-06-29 Optical sensor

Country Status (1)

Country Link
JP (1) JPS6114506A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302314A (en) * 1987-03-26 1988-12-09 Matsushita Electric Works Ltd Photoelectric sensor
JPS6415907U (en) * 1987-07-13 1989-01-26
JPS6448777A (en) * 1987-08-20 1989-02-23 Fuji Xerox Co Ltd After treatment device for copying machine
JPH022902A (en) * 1988-06-14 1990-01-08 Ntt Technol Transfer Corp Posture control sensor
JPH05172738A (en) * 1991-12-24 1993-07-09 Jasco Corp Acoustic cell
JP2008122318A (en) * 2006-11-15 2008-05-29 Yamatake Corp Range finder/speedometer, and distance/speed measurement method
JP2008139059A (en) * 2006-11-30 2008-06-19 Yamatake Corp Distance meter and a distance measuring method
US20180224317A1 (en) * 2017-02-09 2018-08-09 The Boeing Company Fuel Level Sensor Having Dual Fluorescent Plastic Optical Fibers

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302314A (en) * 1987-03-26 1988-12-09 Matsushita Electric Works Ltd Photoelectric sensor
JPS6415907U (en) * 1987-07-13 1989-01-26
JPS6448777A (en) * 1987-08-20 1989-02-23 Fuji Xerox Co Ltd After treatment device for copying machine
JPH022902A (en) * 1988-06-14 1990-01-08 Ntt Technol Transfer Corp Posture control sensor
JPH05172738A (en) * 1991-12-24 1993-07-09 Jasco Corp Acoustic cell
JP2008122318A (en) * 2006-11-15 2008-05-29 Yamatake Corp Range finder/speedometer, and distance/speed measurement method
JP2008139059A (en) * 2006-11-30 2008-06-19 Yamatake Corp Distance meter and a distance measuring method
US20180224317A1 (en) * 2017-02-09 2018-08-09 The Boeing Company Fuel Level Sensor Having Dual Fluorescent Plastic Optical Fibers
US10175087B2 (en) * 2017-02-09 2019-01-08 The Boeing Company Fuel level sensor having dual fluorescent plastic optical fibers
US10451469B2 (en) * 2017-02-09 2019-10-22 The Boeing Company Fuel level sensor having dual fluorescent plastic optical fibers

Also Published As

Publication number Publication date
JPH0423724B2 (en) 1992-04-23

Similar Documents

Publication Publication Date Title
JPS6114506A (en) Optical sensor
US4924105A (en) Optical measuring device with alternately-activated detection
JPH08178647A (en) Photoelectric sensor
JPS6460826A (en) Optical disk recording and reproducing device
JPS6225210A (en) Distance detecting equipment
JPH0638069B2 (en) Differential refractometer
JPS575187A (en) Recorder
JPS614907A (en) Detector for sectional area of welding groove
JPS58150876A (en) Reflecting type light sensor
JPS60220888A (en) Optical sensor
JPH0230659B2 (en)
JPS6323766Y2 (en)
JPH046410A (en) Photoelectric switch
JPS62174209U (en)
JPH03179211A (en) Reflection-type photoelectric switch
SU1518671A1 (en) Method of monitoring roughness of surface
JPH05306906A (en) Traveling object detecting device
JPH06100458B2 (en) Distance measuring device for laser processing machine
JPS57123566A (en) Detector for non-signal recording part of record disk
JPH07280514A (en) Displacement gauge
JPH03166786A (en) Semiconductor laser light emitting surface detector
JPS6080702A (en) Position detector of moving body
JPH02236411A (en) Distance measuring instrument
JPS6156510U (en)
JPS61105806U (en)