JPS61144678A - Image forming method - Google Patents

Image forming method

Info

Publication number
JPS61144678A
JPS61144678A JP26786884A JP26786884A JPS61144678A JP S61144678 A JPS61144678 A JP S61144678A JP 26786884 A JP26786884 A JP 26786884A JP 26786884 A JP26786884 A JP 26786884A JP S61144678 A JPS61144678 A JP S61144678A
Authority
JP
Japan
Prior art keywords
layer
photoreceptor
photoconductive layer
conductive layer
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26786884A
Other languages
Japanese (ja)
Other versions
JPH0513515B2 (en
Inventor
Masatoshi Kimura
正利 木村
Junzo Nakajima
淳三 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26786884A priority Critical patent/JPS61144678A/en
Publication of JPS61144678A publication Critical patent/JPS61144678A/en
Publication of JPH0513515B2 publication Critical patent/JPH0513515B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/065Arrangements for controlling the potential of the developing electrode

Abstract

PURPOSE:To make sharp development with a low developing bias voltage possible by exposing a photosensitive body consisting of a transparent substrate, transparent conductive film and photoconductive film deposited with a dotty conductive film from the transparent substrate side in accordance with an image pattern so that the potentials of the transparent conductive film and the dotty conductive film are made equal. CONSTITUTION:The developing bias voltage is impressed between the transparent conductive layer 32 and the 1st developing machine 36 and the development is executed by the toner frictionally and electrostatically charged positive. The exposing in accordance with the image pattern is executed at the same time by a laser light source 38. Photocarriers are generated in the exposed photoconductive layer 33 and the electrons arrive at conductive dots 34 via the layer 33 so that the potentials of the layer 32 and the dots 34 are made approximately the same. Namely, the conductive dots 34 are eventually developed by the developing bias voltage. The development is therefore equiv. to the development of the recording medium having infinite photosensitive body capacity and the substantially dark image is obtd. The developing bias voltage is thereby decreased and since the apparently high electric field is formed to the peripheral part of the dotty electrodes, the dark and sharp imaging is made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は画像形成方法に係り、特に画像光を照射された
感光体にトナー像を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image forming method, and particularly to a method of forming a toner image on a photoreceptor irradiated with image light.

〔従来の技術〕[Conventional technology]

従来、光を用いた画像形成方法に関しては、電子写、真
記録が広く知られている。
Conventionally, electrophotography and photographic recording are widely known as image forming methods using light.

この方法は、第3図(al乃至第3図(C1に印字原理
を示すように、感光体1を予めコロナ放電器2により一
様に帯電した後、矢印Aに示すように光を照射して静電
潜像3を形成し、その後、磁気ブラシ現像機4により帯
電トナー5を潜像部に付着させ、可視像6を得ている。
In this method, as shown in Figures 3 (al to 3 (C1) showing the printing principle, the photoreceptor 1 is uniformly charged in advance by a corona discharger 2, and then light is irradiated as shown by arrow A. to form an electrostatic latent image 3, and then a magnetic brush developing device 4 causes charged toner 5 to adhere to the latent image area to obtain a visible image 6.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような電子写真記録方法では、感光体1を一様に帯
電するためにコロナ放電器2が必要である。コロナ放電
器2には数KVという高圧電源が必要であると共に、コ
ロナ放電器2を設置している周囲の大気の湿度が高いと
放電しやすく、湿度が低下すると放電し難いという欠点
があり、設置されている周囲の大気の湿度とか、塵埃の
影響を受けやすく、信頼性が劣る問題点があった。
In such an electrophotographic recording method, a corona discharger 2 is required to uniformly charge the photoreceptor 1. The corona discharger 2 requires a high-voltage power source of several KV, and has the disadvantage that it is easy to discharge when the humidity of the atmosphere around the corona discharger 2 is high, and difficult to discharge when the humidity is low. The problem was that it was easily affected by the humidity and dust in the air around it, making it less reliable.

またこのコロナ放電器2を用いて感光体1を帯電する際
、コロナ放電器2の放電によってオゾンガスが発生し、
このオゾンガスが人体に悪影響を及ぼすので問題が多い
Further, when the photoreceptor 1 is charged using this corona discharger 2, ozone gas is generated by the discharge of the corona discharger 2,
This ozone gas has many problems because it has a negative effect on the human body.

そこで本発明者のうちの一人は、特願昭59−1682
08号公報により、両極性に帯電可能な感光体と第1現
像機間に電圧を印加するとともに、現像機と対向する側
より画像パターンに対応して光照射を行い、感光体にト
ラップ電荷を形成する。その後、第2現像機を用い、こ
の第2現像機と感光体間に第1現像機の場合とは逆方向
に電圧を印加して光照射をされない箇所に付着したトナ
ーを除去してコロナ放電器を用いずに画像形成する方法
を提案した。
Therefore, one of the inventors of the present invention filed a patent application in 1682
According to No. 08, a voltage is applied between a bipolarly chargeable photoreceptor and a first developing device, and light is irradiated from the side facing the developing device in accordance with the image pattern to trap charges on the photoreceptor. Form. Then, using a second developing machine, a voltage is applied between the second developing machine and the photoreceptor in the opposite direction to that of the first developing machine to remove toner attached to areas that are not irradiated with light and release corona. We proposed a method for forming images without using electrical equipment.

このような画像形成方法について第4図(a)乃至第4
図(f)を用いながら説明する。まず第4図(alに示
すように透明基体11、透明導電層12、光導電層13
を順次積層形成して感光体14を形成し、この光導電層
13上に絶縁性トナーとキャリアからなる二成分現像剤
を磁気ブラシ現像vIA15により搬送し、第1の磁気
ブラシ現像機15のスリーブと透明導電層12間に於い
て、透明導電層12側に負の電荷が注入されるような電
圧を印加し、この状態で透明基体11側より矢印Bに示
すように光を照射する。光導電層13の露光された部分
は内部でホトキャリアが発生し、磁気ブラシ現像機15
と透明導電層12間の電界に依ってキャリアの中の電子
が光導電層重3の表面に到達し、透明導電層12と光導
電層13の電位がほぼ同じになる。
Regarding such an image forming method, FIGS. 4(a) to 4
This will be explained using Figure (f). First, as shown in FIG. 4 (al), a transparent substrate 11, a transparent conductive layer 12, a photoconductive layer
are sequentially laminated to form a photoreceptor 14, and a two-component developer consisting of an insulating toner and a carrier is conveyed onto this photoconductive layer 13 by a magnetic brush developer VIA 15, and is transferred to the sleeve of the first magnetic brush developer 15. A voltage is applied between the transparent conductive layer 12 and the transparent conductive layer 12 so that a negative charge is injected into the transparent conductive layer 12 side, and in this state, light is irradiated from the transparent substrate 11 side as shown by arrow B. Photocarriers are generated inside the exposed portion of the photoconductive layer 13 and the magnetic brush developing device 15
Electrons in the carriers reach the surface of the photoconductive layer 3 due to the electric field between the transparent conductive layer 12 and the transparent conductive layer 12, and the potentials of the transparent conductive layer 12 and the photoconductive layer 13 become approximately the same.

即ち、この第1磁気ブラシ現像機15は、現像バイアス
電圧Vblで現像する過程となる。このため現像された
トナ一層の持つ電荷と同じ量の逆極性の電荷(負電荷)
が誘起される。この時の付着トナー量M、Iは第(1)
式で表される。
That is, the first magnetic brush developing device 15 is in the process of developing with the developing bias voltage Vbl. Therefore, the same amount of charge (negative charge) as the charge of the developed toner layer has the opposite polarity.
is induced. At this time, the amount of adhered toner M, I is the (1st)
Expressed by the formula.

M、 1 − δ p  (2go   at  Vb
  +  7f)*  )  ”  ・・・・・・・・
・・・・・・・・・・・・(1)但しδ−トナーの質量
、p=)す一層の充填率、ρ、−画像部の付着トナ一層
の体積電荷密度、ε〇−真空の誘電率、ε1=トナ一層
の比誘電率を示す。
M, 1 − δ p (2go at Vb
+7f)*)” ・・・・・・・・・
・・・・・・・・・・・・(1) However, δ - mass of toner, p = filling rate of one layer, ρ, - volumetric charge density of one layer of adhered toner in image area, ε〇 - vacuum Dielectric constant, ε1 = specific dielectric constant of the toner layer.

現像バイアス電圧V&Iが印加された状態で、画像露光
が停止すると、キャリアの移動がほぼな(なり、そのた
め光導電層13の比抵抗は上昇し、はぼ完全な絶縁体と
なる。このため光導電層表面に誘起された電荷はトラッ
プ電荷となり、移動できなくなる。一方非露光部では、
光導電層13を介して現像バイアス電圧’/klで現像
されることとなる。
When image exposure is stopped while the developing bias voltage V&I is applied, the movement of carriers becomes almost non-existent, and as a result, the specific resistance of the photoconductive layer 13 increases and becomes almost a perfect insulator. Charges induced on the surface of the conductive layer become trapped charges and cannot move.On the other hand, in the non-exposed area,
Development is carried out via the photoconductive layer 13 at a developing bias voltage '/kl.

この時の付着トナー量に対応したトナーと逆極性の電荷
が、透明導電層12に誘起される。この時の付着トナー
量は第(2)式で表される。
At this time, a charge having a polarity opposite to that of the toner corresponding to the amount of adhered toner is induced in the transparent conductive layer 12. The amount of adhered toner at this time is expressed by equation (2).

Ms+=((εyd/gi)+((εyd/ε J)2
+2  ε 0  ε r  V  h  r  / 
 P  h  )  垂 )  −−−−−(2)但し
、64−光導電層の非誘電率、d=光導電層の膜厚、ρ
、=背景部の付着トナ一層の体積電荷密度を示す。
Ms+=((εyd/gi)+((εyd/ε J)2
+2 ε 0 ε r V h r /
P h ) ----(2) However, 64 - non-permittivity of the photoconductive layer, d = film thickness of the photoconductive layer, ρ
,=indicates the volumetric charge density of a single layer of adhered toner in the background area.

この第1現像機15による第1現像過程に於けるトナ一
層上の表面電位、および付着トナー量は第4図(b)、
および第4図(C)のように表される。更に第4図(d
)に示すように第2現像機16による第2現像過程では
、現像バイアス電圧V&2を、第1現像過程の場合に比
して感光体に対して逆バイアスとする。すると非露光部
の帯電トナーは、電界に依って現像機16に回収され始
める。これと同時に透明導電層12上に誘起されていた
電荷もアース電極側に移動し、遂に透明導電層12上に
誘起されていた自由電子は消滅する。一方露光部では、
一部の帯電トナーが、現像機16と光導電層13間の電
界の作用により回収される。然し、光導電層13内にト
ラップされている電子は移動できないため、回収された
電荷量に対応して透明導電層12上に同じ極性の電荷が
誘起される。
The surface potential on the toner layer and the amount of adhered toner in the first developing process by the first developing device 15 are shown in FIG. 4(b).
and is expressed as shown in FIG. 4(C). Furthermore, Figure 4 (d
), in the second developing process by the second developing device 16, the developing bias voltage V&2 is set to a reverse bias with respect to the photoreceptor compared to the case of the first developing process. Then, the charged toner in the non-exposed area begins to be collected by the developing device 16 due to the electric field. At the same time, the charges induced on the transparent conductive layer 12 also move toward the ground electrode, and the free electrons induced on the transparent conductive layer 12 finally disappear. On the other hand, in the exposed area,
A portion of the charged toner is recovered by the action of the electric field between the developer 16 and the photoconductive layer 13. However, since the electrons trapped in the photoconductive layer 13 cannot move, charges of the same polarity are induced on the transparent conductive layer 12 in response to the amount of recovered charge.

光を照射しない時の光導電層13の容量は小さいため、
僅かな正電荷に対しても、光導電層13上の表面電位は
大きく変化し、現像バイアス電圧Vb2と釣り合うよう
になる。そして最早これ以上の露光部のトナーは静電的
に回収されなくなり、露光部のみ帯電トナーが残り、ト
ナー画像が形成される。第4図(e)は、第2現像過程
に於けるトナ一層上の表面電位を示し、第4図(f)で
は第2現像過程に於ける付着トナー量を示す。
Since the capacity of the photoconductive layer 13 is small when no light is irradiated,
Even with a small amount of positive charge, the surface potential on the photoconductive layer 13 changes greatly and becomes balanced with the developing bias voltage Vb2. The toner in the exposed area is no longer electrostatically collected, and the charged toner remains only in the exposed area, forming a toner image. FIG. 4(e) shows the surface potential on the toner layer in the second developing process, and FIG. 4(f) shows the amount of adhered toner in the second developing process.

即ち、上記した如く、このような画像形成法に於いては
、トラップ電荷が重要な働きを示している。ここで本発
明者等は、トラップ電荷が感光体内部でどのように分布
するかを、実験的に確かめた。その結果を第5図に示す
That is, as described above, in such an image forming method, trapped charges play an important role. Here, the present inventors experimentally confirmed how the trapped charges are distributed inside the photoreceptor. The results are shown in FIG.

第5図は第1現像後の、露光部に対応するトナ一層上の
表面電位V*  ()ナー電圧)を横軸に採り、帯電ト
ナーを窒素ガスで吹き飛ばした直後の感光体の表面電位
Vs()ラップ電圧)を縦軸に採り、このトナー電圧V
、とトラップ電圧Vsとの関係を示す。図で三角形21
A、 21B、 21C・・・・・は、透明基体上に透
明導電膜、及び光導電膜を積層形成した感光体を用いた
場合のトナー電圧とトラップ電圧との関係を実測した値
を示し、また実線22は付着トナーの電荷量に対応した
トラップ電荷が、光導電層13の表面に分布していると
仮定して求めた理論値を示したものである。更に破線で
示す曲線23は、付着トナーの電荷量に対してトラップ
電荷が光導電層13の厚さ方向に対して均一に分布して
いると仮定して求めた理論値である。
FIG. 5 shows the surface potential V* () toner voltage) on the toner layer corresponding to the exposed area after the first development on the horizontal axis, and the surface potential Vs of the photoreceptor immediately after the charged toner is blown away with nitrogen gas. (wrap voltage) is taken on the vertical axis, and this toner voltage V
, and the trap voltage Vs. Triangle 21 in the diagram
A, 21B, 21C... indicate actually measured values of the relationship between toner voltage and trap voltage when using a photoreceptor in which a transparent conductive film and a photoconductive film are laminated on a transparent substrate, A solid line 22 indicates a theoretical value obtained on the assumption that trapped charges corresponding to the amount of charge of the attached toner are distributed on the surface of the photoconductive layer 13. Furthermore, a curve 23 shown by a broken line is a theoretical value obtained on the assumption that the trapped charges are uniformly distributed in the thickness direction of the photoconductive layer 13 with respect to the amount of charge of the attached toner.

このことより曲線23と実測値21A、 21B・・・
・・とが良く一致しており、帯電トナ一層を除去した後
は、トラップ電荷は光導電層内で均一に分布していると
考えられる。このことは光を照射した後、光の照射を停
止した後の感光体容量が見掛は上2倍になったことに相
応し、一定の濃度の印字を得るためには、光導電層13
0表面にトラップ電荷が分布している場合に比して現像
バイアス電圧を2倍以上高くする必要がある。
From this, curve 23 and actual measured values 21A, 21B...
... are in good agreement, and it is considered that the trapped charges are uniformly distributed within the photoconductive layer after one layer of charged toner is removed. This corresponds to the fact that the capacity of the photoreceptor after light irradiation and after stopping light irradiation is apparently doubled.
It is necessary to make the developing bias voltage twice or more higher than in the case where trapped charges are distributed on the zero surface.

ここで感光体の内部にトラップ電荷が一様に分布してい
る場合の感光体の容量が、トラップ電荷が感光体の表面
に分布している感光体の容量の2倍となる理由について
述べる。
Here, the reason why the capacitance of a photoconductor when trapped charges are uniformly distributed inside the photoconductor is twice the capacity of a photoconductor when trapped charges are distributed on the surface of the photoconductor will be described.

第6図に示すように感光体である光導電層13の表面に
トラップ電荷が形成されているとし、この時の光導電層
130表面上の電位Vs 1は第(3)式のようになる
Assume that trapped charges are formed on the surface of the photoconductive layer 13, which is a photosensitive member, as shown in FIG. 6, and the potential Vs 1 on the surface of the photoconductive layer 130 at this time is expressed by equation (3). .

Vs 1−Q/Cs =Q/8g 64d−”・”(3
)但し、Cs=トラップ電荷が表面に形成された光導電
層の容量、d−光導電層の厚さ、ε0=真空の誘電率、
8、=光導電層の比誘電率である。
Vs 1-Q/Cs =Q/8g 64d-”・”(3
) However, Cs = capacitance of the photoconductive layer with trapped charges formed on the surface, d - thickness of the photoconductive layer, ε0 = permittivity of vacuum,
8 = relative permittivity of the photoconductive layer.

ここで第7図に示すようにトラップ電荷量Q(C/rr
r)が光導電層13内に均一に分布しているとすると、
単位体積当たりの電荷密度ρは第(4)式のようになる
Here, as shown in FIG. 7, the amount of trapped charge Q (C/rr
Assuming that r) is uniformly distributed within the photoconductive layer 13,
The charge density ρ per unit volume is expressed by equation (4).

ρ=Q/d・・・・・・・・・・・・・・・・・・・・
(4)この電荷による光導電層表面上の電位Vs2は第
=ρd2/2ε0ε、・・・・・・・・・・・・・・・
(5)第(5)式に第(4)式を代入して第(6)式を
得る。
ρ=Q/d・・・・・・・・・・・・・・・・・・
(4) The potential Vs2 on the surface of the photoconductive layer due to this charge is ρd2/2ε0ε,...
(5) Substitute equation (4) into equation (5) to obtain equation (6).

Vs 2 = 2 Q/ g oe 4 d−1・”=
・・・(6)ここで光導電層13の内部に均一にトラッ
プ電荷が分布されている場合の光導電層の静電容量をC
Vs 2 = 2 Q/ goe 4 d-1・”=
(6) Here, the capacitance of the photoconductive layer when the trapped charges are uniformly distributed inside the photoconductive layer 13 is C.
.

とすると、このC4は第(7)式にて表される。Then, this C4 is expressed by equation (7).

C&−2Q/εo aa d−”””(7)第(7)式
に第(3)式のCsを代入すると、Csは第(8)式で
表される。
C&-2Q/εo aa d-""" (7) When Cs in equation (3) is substituted into equation (7), Cs is expressed by equation (8).

C6−2Cs・・・・・・・・・・(8)即ち、トラッ
プ電荷が均一に分布している光導電層の静電容量C−は
トラップ電荷が表面に分布している光導電層の静電容量
Csの2倍となることが判る。
C6-2Cs... (8) That is, the capacitance C- of a photoconductive layer in which trapped charges are uniformly distributed is the capacitance C- of a photoconductive layer in which trapped charges are distributed on the surface. It can be seen that the capacitance is twice the capacitance Cs.

このようなことより、本発明者等は、光導電層に光を照
射した後、照射を停止した後の感光体の容量を少なくす
るために、このトラップ電荷を光導電層の表面に形成す
る方法を考え、前記した感光体の光導電層の表面に銅箔
を貼りつけた光導電層を用い、この銅箔上に現像された
付着トナ一層を窒素ガスで吹き飛ばした直後のトラップ
電圧を測定した。第3図で丸印24A、24B・・・・
・は、光導電層の表面に銅箔を張りつけた感光体を用い
、この銅箔上に現像された付着トナーを窒素ガスで吹き
飛ばした直後のトラップ電圧を示している。この丸印2
4A、24B・・・・・は曲線22と良く合致している
ので、銅箔を設けた場合は、トラップ電荷が光導電層の
表面に形成されていることが判る。
For this reason, the inventors of the present invention formed trap charges on the surface of the photoconductive layer in order to reduce the capacitance of the photoreceptor after the photoconductive layer was irradiated with light and the irradiation was stopped. We devised a method and used a photoconductive layer with a copper foil attached to the surface of the photoconductive layer of the photoreceptor described above, and measured the trap voltage immediately after blowing away a layer of adhered toner developed on this copper foil with nitrogen gas. did. In Figure 3, circles 24A, 24B...
* indicates the trap voltage immediately after using a photoreceptor with a copper foil pasted on the surface of the photoconductive layer, and blowing away the developed and adhered toner on the copper foil with nitrogen gas. This circle mark 2
Since curves 4A, 24B, . . . match well with curve 22, it can be seen that when a copper foil is provided, trapped charges are formed on the surface of the photoconductive layer.

このようにトラップ電荷が光導電層の表面に存在するい
わゆる界面電荷分布の場合と、トラップ電荷が光導電層
内に均一に分布しているバルク電荷分布の場合とでは、
第2現像過程後に得られる付着トナー量は第(9)式と
第α〔式のように異なる。
In this way, there is a so-called interfacial charge distribution in which trapped charges exist on the surface of the photoconductive layer, and a bulk charge distribution in which trapped charges are uniformly distributed within the photoconductive layer.
The amount of adhered toner obtained after the second development process differs as shown in Equation (9) and Equation α.

即ち、第(9)式はトラップ電荷が光導電層の表面近傍
で分布している場合の第2現像過程後のトナー量を示し
、第Ql)式はトラップ電荷が光導電層のバルク内に均
一に分布している場合の第2現像過程後のトナー量を示
す。
That is, Equation (9) indicates the amount of toner after the second development process when the trapped charges are distributed near the surface of the photoconductive layer, and Equation (Ql) indicates the amount of toner after the second development process when the trapped charges are distributed in the bulk of the photoconductive layer. The amount of toner after the second development process when uniformly distributed is shown.

Mis−δP  (−(ay d/F4)+ ((8r
d/ε4)2+28oε1/ρh  (Vb2+d(2
go grP&VbI”)”/lo 84〕1−−−−
−<9>M5.=δp(−(ay d/28a )+ 
(εTd/2’J) 2+2ag sr/pb  (V
62 +d(2go   #yi9  、 Vb  &
 )  会 / 2 ε o!i)’  ・・・・・0
1 但しM、s−)ラップ電荷が界面電荷分布をしている付
着トナー量を示し、M* * = l”ランプ電荷がバ
ルク電荷分布をしている付着トナー量を示す。
Mis-δP (-(ay d/F4)+ ((8r
d/ε4)2+28oε1/ρh (Vb2+d(2
go grP&VbI")"/lo 84] 1----
-<9>M5. = δp(-(ay d/28a)+
(εTd/2'J) 2+2ag sr/pb (V
62 +d(2go #yi9, Vb &
) meeting / 2 ε o! i)' ...0
1 (M, s-) Wrap charge indicates the amount of adhered toner with interfacial charge distribution, and M* * = l'' ramp charge indicates the amount of adhered toner with bulk charge distribution.

即ち第(9)、第00式に於いては、第4項はトラップ
電荷による潜像電位(トラップ電圧)を示している。こ
の両式の比較から、同じトラップ電荷量(2to 61
1)b VhI)会であるならば、第(9)式の銅箔を
光導電層の上に貼りつけた場合の方が、付着トナー量が
増大していることが判る。
That is, in equations (9) and 00, the fourth term represents the latent image potential (trap voltage) due to the trapped charges. From the comparison of both formulas, it is found that the same trap charge amount (2 to 61
1) b VhI) It can be seen that the amount of adhered toner increases when the copper foil of formula (9) is pasted on the photoconductive layer.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記した実験事項に鑑みてなされたもので、現
像バイアス電圧を低下させた場合でも鮮明な現像が可能
となる画像形成方法は、透明基体上に透明導電層と両極
性に帯電可能でかつドツト状の導電層を被着した光導電
層を積層形成した感光体と、該光導電層に対向した第1
の電極と、該光導電層に対向しかつ第1の電極より所定
の間隔を隔てた第2の電極と、前記感光体を搬送する搬
送機構とを設け、前記第1の電極と感光体間に帯電トナ
ーを搬送し、前記第1の電極と透明導電層間に電圧を印
加するとともに、透明基体側より画像パターンに対応し
て露光することで、前記帯電トナーを感光体の露光部と
非露光部に付着させ、該露光部の位置にて帯電トナーの
電荷によって透明導電層より光導電層を介してドツト状
の導電層に電荷の注入を行って光導電層の表面近傍にト
ラップ電荷を形成し、次いで前記感光体の露光部を前記
第2の電極に対向する位置に搬送後、前記第2電極と感
光体間に第1の電極に印加した電圧と逆極性の電圧を印
加し、非露光部に付着した帯電トナーを静電的に除去す
る本発明の画像形成方法により達成される。
The present invention was made in view of the above-mentioned experimental matters, and an image forming method that enables clear development even when the developing bias voltage is lowered is based on a transparent conductive layer on a transparent substrate and a bipolar charging method. a photoreceptor having a laminated photoconductive layer on which a dot-shaped conductive layer is attached, and a first photoconductor facing the photoconductive layer.
a second electrode that faces the photoconductive layer and is spaced apart from the first electrode by a predetermined distance; and a transport mechanism that transports the photoreceptor; The charged toner is transferred to the exposed area of the photoreceptor and the unexposed area of the photoreceptor by applying a voltage between the first electrode and the transparent conductive layer and exposing the transparent substrate side to light corresponding to the image pattern. At the position of the exposed area, charges of the charged toner are injected from the transparent conductive layer into the dot-shaped conductive layer via the photoconductive layer to form trapped charges near the surface of the photoconductive layer. Then, after transporting the exposed portion of the photoreceptor to a position facing the second electrode, a voltage of opposite polarity to the voltage applied to the first electrode is applied between the second electrode and the photoreceptor, and the This is achieved by the image forming method of the present invention, which electrostatically removes the charged toner adhering to the exposed area.

〔作用〕[Effect]

即ち、本発明の画像形成方法は、透明基体上に透明導電
膜、およびドツト状の導電性膜を被着した光導電膜を設
けて感光体を形成し、この感光体に帯電したトナーを搬
送すると共に、画像パターンに対応して透明基体側より
露光を行って感光体内部にホトキャリアを形成し、この
キャリアの電子が光導電層を介してドツト状の導電性膜
に到達し、透明導電膜とドツト状の導電性膜との電位を
等しくすることで、感光体の容量が無附大の記録体を現
像するのと同様な状態となし、低現像バイアス電圧で鮮
明な現像が行い得るようにしたものである。
That is, in the image forming method of the present invention, a photoreceptor is formed by providing a transparent conductive film and a photoconductive film coated with a dot-shaped conductive film on a transparent substrate, and charged toner is transported onto the photoreceptor. At the same time, exposure is performed from the transparent substrate side in accordance with the image pattern to form photocarriers inside the photoreceptor, and the electrons of these carriers reach the dot-shaped conductive film via the photoconductive layer, forming a transparent conductive layer. By equalizing the potentials of the film and the dot-shaped conductive film, a state similar to developing a recording medium with no large capacity of the photoreceptor is created, and clear development can be performed with a low developing bias voltage. This is how it was done.

〔実施例〕〔Example〕

以下、図面を用いながら本発明の一実施例につき詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の画像形成方法の模式図で、図示するよ
うに厚さ75μmのポリエチレンテレフタレートよりな
る透明基体31上に、酸化インジウムよりなる透明導電
層32を蒸着により形成し、その上に厚さ60μ穎の有
機材料より形成された感光体よりなる光導電層33を塗
布形成する。この光導電層33の上には、厚さ1μmの
導電性の例えば銅等の金属よりなるド・7ト状の導電層
34をマスク蒸着法に依って被着形成して感光体35を
形成する。第2図はこのような感光体35の平面図で図
の33は光導電層で、34はドツト状の導電層である。
FIG. 1 is a schematic diagram of the image forming method of the present invention. As shown in the figure, a transparent conductive layer 32 made of indium oxide is formed by vapor deposition on a transparent substrate 31 made of polyethylene terephthalate with a thickness of 75 μm, and then A photoconductive layer 33 made of a photoreceptor made of an organic material and having a thickness of 60 μm is formed by coating. On this photoconductive layer 33, a dot-shaped conductive layer 34 made of a conductive metal such as copper and having a thickness of 1 μm is deposited by a mask vapor deposition method to form a photoreceptor 35. do. FIG. 2 is a plan view of such a photoreceptor 35, in which 33 is a photoconductive layer and 34 is a dot-shaped conductive layer.

この感光体35のドツト状の導電層34に接触するよう
にして第1の磁気ブラシ現像機36を設置し、この第1
の磁気ブラシ現像機36より所定の距離を隔てて第2の
磁気ブラシ現像@37を設置する。一方図示しないが感
光体35を矢印C方向に搬送する搬送機構を別途設け、
この第1の磁気ブラシ現像1a36に対向して透明基体
31側より画像パターンに対応して光を照射する出力0
.8 mWのヘリウム(He)−ネオン(No)レーザ
光源38を設置する。磁気ブラシ現像機36.37は共
にスリーブ回転方式を用い、スリーブの周速は30cm
/secとする。現像剤は10μ−程度の粒径の絶縁性
トナーと、粒径が10〜15μmの鉄粉であるキャリア
とを重量比でトナーが20%、キャリアが80%となる
ように混合した二成分現像剤を用い、その比電荷は10
μC/gとなるようにした。また感光体35の搬送速度
は10cm/secとなるようにした。
A first magnetic brush developing device 36 is installed so as to be in contact with the dot-shaped conductive layer 34 of the photoreceptor 35, and the first magnetic brush developing device 36 is
A second magnetic brush developer @37 is installed at a predetermined distance from the magnetic brush developer 36. On the other hand, although not shown, a conveyance mechanism for conveying the photoreceptor 35 in the direction of arrow C is separately provided.
Output 0 for irradiating light corresponding to the image pattern from the transparent substrate 31 side facing the first magnetic brush development 1a36
.. An 8 mW helium (He)-neon (No) laser light source 38 is installed. Both magnetic brush developing machines 36 and 37 use a sleeve rotation method, and the peripheral speed of the sleeve is 30 cm.
/sec. The developer is a two-component developer in which an insulating toner with a particle size of about 10 μm and a carrier made of iron powder with a particle size of 10 to 15 μm are mixed in a weight ratio of 20% toner and 80% carrier. The specific charge is 10
It was made to be μC/g. Further, the conveyance speed of the photoreceptor 35 was set to 10 cm/sec.

このような透明導電層32と第1現像機36との間に2
50■の現像バイアス電圧V&Iを印加し、正に摩擦帯
電したトナーにより現像を行うとともに、He−Neレ
ーザ光源38により、画像パターンに対応した露光を行
う。
2 between such a transparent conductive layer 32 and the first developing device 36.
A developing bias voltage V&I of 50 cm is applied to perform development with positively triboelectrically charged toner, and exposure corresponding to an image pattern is performed using a He-Ne laser light source 38.

すると露光部では、露光された光導電層33内でホトキ
ャリアが発生し、電子が光導電層33を介して導電性の
ドツト34に到達し、透明導電層32と導電性のドツト
34との電位がほぼ同じになる。即ち導電性ドツト34
を現像バイアス電圧V&lで現像することとなる。その
ため感光体容量が無限大の記録体を現像することと等価
となり、充分濃い画像が得られる。この時、現像された
帯電トナ一層上の持つ電荷量と同じ量の逆極性の負電荷
が、透明導電層32、および光導電層33を介してドツ
ト状導電層34表面に誘起される。
Then, in the exposed area, photocarriers are generated within the exposed photoconductive layer 33, and electrons reach the conductive dots 34 through the photoconductive layer 33, causing the contact between the transparent conductive layer 32 and the conductive dots 34. The potentials will be almost the same. That is, the conductive dot 34
will be developed with a developing bias voltage V&l. Therefore, this is equivalent to developing a recording medium with an infinite photoreceptor capacity, and a sufficiently dark image can be obtained. At this time, the same amount of negative charges of the opposite polarity as the charge amount on one layer of the developed charged toner is induced on the surface of the dot-shaped conductive layer 34 via the transparent conductive layer 32 and the photoconductive layer 33.

その後、露光が終了すると、光導電層33は高抵抗とな
り、ドツト状導電層34に誘起されていた負電荷はトラ
ップ電荷となり移動できなくなる。一方非露光部に於い
ては、感光体を介して現像バイアス電圧V&lで現像さ
れることとなる。この時は、付着トナー量に対応した逆
極性の負電荷は、透明導電層33上に誘起される。
Thereafter, when the exposure is completed, the photoconductive layer 33 becomes highly resistive, and the negative charges induced in the dot-shaped conductive layer 34 become trapped charges and cannot be moved. On the other hand, the non-exposed area is developed via the photoreceptor at the developing bias voltage V&l. At this time, negative charges of opposite polarity corresponding to the amount of adhered toner are induced on the transparent conductive layer 33.

次に第2現像機37である磁気ブラシ現像機に第13j
!像機の場合とは逆方向のバイアス電圧V&2−−10
0Vを印加し現像する。すると露光部では一部の帯電ト
ナーが電界の作用によって回収される。然し、この時、
ドツト状導電層34上にトラツブされている電子は移動
できないため、回収された帯電トナーの電荷量に応じて
、透明導電層32上に帯電トナーと同極性の正の電荷が
誘起される。
Next, the magnetic brush developing device 13j, which is the second developing device 37,
! Bias voltage V & 2--10 in the opposite direction to that of the imager
Apply 0V and develop. Then, some of the charged toner is collected in the exposed area by the action of the electric field. However, at this time,
Since the electrons trapped on the dot-shaped conductive layer 34 cannot move, positive charges having the same polarity as the charged toner are induced on the transparent conductive layer 32 according to the amount of charge of the collected charged toner.

光を照射しない非露光部での光導電層33の容量は小さ
いため、わずかの正電荷に対しても、光導電層33表面
の表面電位は大きく変化し、現像バイアス電圧Vh2と
釣り合う、そして最早これ以上露光部のトナーは回収さ
れなくなる。
Since the capacitance of the photoconductive layer 33 in the non-exposed area that is not irradiated with light is small, the surface potential of the photoconductive layer 33 changes greatly even with a small amount of positive charge, and the surface potential of the photoconductive layer 33 changes significantly and becomes balanced with the developing bias voltage Vh2. Toner in the exposed area will no longer be collected.

一方、非露光部の正の帯電トナーは、電界に依って徐々
に第2現像機37に回収され始める。これと同時に透明
導電層32上に誘起された電子も徐々にアース側に移動
し、最終的には帯電トナ一層、および透明導電層32上
に誘起されていた自由電子は完全に消滅する。
On the other hand, the positively charged toner in the non-exposed area gradually begins to be collected by the second developing device 37 due to the electric field. At the same time, the electrons induced on the transparent conductive layer 32 also gradually move to the ground side, and eventually the charged toner layer and the free electrons induced on the transparent conductive layer 32 completely disappear.

このようにしてかぶりのない、良好な印字が得られる0
本実施例に於いては印字濃度として0.D。
In this way, good printing without fogging can be obtained.
In this embodiment, the print density is 0. D.

−1,0以上、かぶり濃度として0.0.−0.02以
下のかぶりの無い濃い印字が得られた。また以前本発明
者の内の一人が、特願昭59−168208号公報に提
案した画像形成方法では、0.0.−1.0以上の印字
を得るために現像バイアス電圧Vb r =500 V
以上を必要としたが、本発明の方法によれば、現像バイ
アス電圧がその約172で済む利点が得られた。更にド
ツト状導電層を光導電層33の上に形成しているため、
ドツト状電極の周辺部に見掛は上高い電界が形成される
こととなり、いわゆるエツジ効果が有効に作用し、ベタ
黒に関しても印字の中央部の濃度が薄くなるような、い
わゆる印字の中抜は現象が現れることな(、濃い鮮明な
印字が形成できる効果もある。
-1.0 or more, fog density is 0.0. A dark print with no fog of -0.02 or less was obtained. Furthermore, in an image forming method previously proposed by one of the present inventors in Japanese Patent Application No. 168208/1980, 0.0. In order to obtain a print of −1.0 or more, the developing bias voltage Vb r =500 V
However, the method of the present invention has the advantage that the developing bias voltage is only about 172 volts. Furthermore, since a dot-shaped conductive layer is formed on the photoconductive layer 33,
An apparently high electric field is formed at the periphery of the dot-shaped electrode, and the so-called edge effect works effectively, resulting in the so-called hollow part of the print, where the density of the central part of the print becomes thinner even for solid black prints. There is no phenomenon (but it also has the effect of forming dark and clear prints.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の画像形成方法によれば、コロ
ナ放電器を必要としないため、高電圧が不要であると共
に、装置が設置されている周囲の湿度や粉塵等の条件に
対して影響を及ぼされるのが少なくなり、高信頼度の画
像形成装置が得られる。また簡単なプロセスで、従来の
方法より低い現像バイアス電圧で鮮明な印字画像が得ら
れる効果がある。
As described above, according to the image forming method of the present invention, a corona discharger is not required, so high voltage is not required, and the image forming method is not affected by conditions such as humidity and dust in the surrounding area where the device is installed. Therefore, a highly reliable image forming apparatus can be obtained. Furthermore, the process is simple and has the effect of producing clear printed images with a lower developing bias voltage than conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の画像形成方法の模式図、第2図は本発
明の画像形成方法に用いる感光体の平面図、 第3図(a)乃至第3図(C)は従来の画像形成方法の
模式図、 第4図(al乃至第4図(f)は従来の画像形成方法の
模式図、 第5図は感光体上に金属箔を貼りつけた場合と、貼りつ
けない場合とのトナー電圧と、トラップ電圧との関係曲
線、 第6図は感光体の表面にトラップ電荷が分布している場
合の状態図、 第7図は感光体の内部に均一にトラップ電荷が分布して
いる場合の状態図である。 図に於いて、31は透明基体、32は透明電極、33は
光導電層、34はドツト状導電層、35は感光体、36
は第1現像機、37は第2現像機、38はレーザ光源、
Cは感光体の搬送方向を示す矢印である。 第 7!!1 第3図(Q)       第3図(b)第3図(C) 第4図(リ   第4aa(b)  第4 図(C)第
4図(d)   第4図(e)  第4図(f)→トナ
ー電圧流(V) 第6r!lI 第7図
FIG. 1 is a schematic diagram of the image forming method of the present invention, FIG. 2 is a plan view of a photoreceptor used in the image forming method of the present invention, and FIGS. 3(a) to 3(C) are conventional image forming methods. A schematic diagram of the method, Figure 4 (al to Figure 4(f) are schematic diagrams of the conventional image forming method, and Figure 5 shows the cases in which metal foil is pasted on the photoconductor and the case in which it is not pasted. Relationship curve between toner voltage and trap voltage. Figure 6 is a state diagram when trapped charges are distributed on the surface of the photoreceptor. Figure 7 is a diagram where trapped charges are uniformly distributed inside the photoreceptor. In the figure, 31 is a transparent substrate, 32 is a transparent electrode, 33 is a photoconductive layer, 34 is a dot-shaped conductive layer, 35 is a photoreceptor, 36
is a first developing machine, 37 is a second developing machine, 38 is a laser light source,
C is an arrow indicating the direction of conveyance of the photoreceptor. Seventh! ! 1 Figure 3 (Q) Figure 3 (b) Figure 3 (C) Figure 4 (Re) Figure 4aa (b) Figure 4 (C) Figure 4 (d) Figure 4 (e) Figure 4 (f) → Toner voltage current (V) 6r!lI Figure 7

Claims (1)

【特許請求の範囲】[Claims] 透明基体上に透明導電層と両極性に帯電可能でかつドッ
ト状の導電層を被着した光導電層を積層形成した感光体
と、該光導電層に対向した第1の電極と、該光導電層に
対向しかつ第1の電極より所定の間隔を隔てた第2の電
極と、前記感光体を搬送する搬送機構とを設け、前記第
1の電極と感光体間に帯電トナーを搬送し、前記第1の
電極と透明導電層間に電圧を印加するとともに、透明基
体側より画像パターンに対応して露光することで、前記
帯電トナーを感光体の露光部と非露光部に付着させ、該
露光部の位置にて帯電トナーの電荷によって透明導電層
より光導電層を介してドット状の導電層に電荷の注入を
行って光導電層の表面近傍にトラップ電荷を形成し、次
いで前記感光体の露光部を前記第2の電極に対向する位
置に搬送後、前記第2電極と感光体間に第1の電極に印
加した電圧と逆極性の電圧を印加し、非露光部に付着し
た帯電トナーを静電的に除去することを特徴とする画像
形成方法。
a photoreceptor comprising a transparent conductive layer and a photoconductive layer coated with a bipolarly chargeable dot-shaped conductive layer on a transparent substrate; a first electrode facing the photoconductive layer; A second electrode facing the conductive layer and spaced apart from the first electrode by a predetermined distance, and a transport mechanism for transporting the photoreceptor are provided, and the charged toner is transported between the first electrode and the photoreceptor. By applying a voltage between the first electrode and the transparent conductive layer and exposing the transparent substrate side in accordance with the image pattern, the charged toner is attached to the exposed and non-exposed areas of the photoreceptor. Charges from the charged toner are injected into the dot-shaped conductive layer from the transparent conductive layer through the photoconductive layer at the exposed position to form trapped charges near the surface of the photoconductive layer, and then the photosensitive member After transporting the exposed area to a position facing the second electrode, a voltage of opposite polarity to the voltage applied to the first electrode is applied between the second electrode and the photoreceptor to eliminate the electrical charge attached to the non-exposed area. An image forming method characterized by electrostatically removing toner.
JP26786884A 1984-12-18 1984-12-18 Image forming method Granted JPS61144678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26786884A JPS61144678A (en) 1984-12-18 1984-12-18 Image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26786884A JPS61144678A (en) 1984-12-18 1984-12-18 Image forming method

Publications (2)

Publication Number Publication Date
JPS61144678A true JPS61144678A (en) 1986-07-02
JPH0513515B2 JPH0513515B2 (en) 1993-02-22

Family

ID=17450745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26786884A Granted JPS61144678A (en) 1984-12-18 1984-12-18 Image forming method

Country Status (1)

Country Link
JP (1) JPS61144678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017927A (en) * 2005-06-07 2007-01-25 Fuji Xerox Co Ltd Image formation device and image formation method
JP2010197773A (en) * 2009-02-26 2010-09-09 Ricoh Co Ltd Image carrier, image-forming method, image forming apparatus, and process cartridge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017927A (en) * 2005-06-07 2007-01-25 Fuji Xerox Co Ltd Image formation device and image formation method
JP2010197773A (en) * 2009-02-26 2010-09-09 Ricoh Co Ltd Image carrier, image-forming method, image forming apparatus, and process cartridge

Also Published As

Publication number Publication date
JPH0513515B2 (en) 1993-02-22

Similar Documents

Publication Publication Date Title
JPS62209470A (en) Image forming device
US5394230A (en) Method and apparatus for forming a composite dry toner image
EP0173621B1 (en) Method for forming a toner imager in electrophotographic printing
JPS5898747A (en) Image forming method
US4288515A (en) Process for reversal development using inductively chargeable magnetic powdery developer
US4967236A (en) Charge retention xeroprinting
JPS61144678A (en) Image forming method
JPS61286164A (en) Electronic photographic recorder
JPS6146961A (en) Image forming method
JPH0561627B2 (en)
JPH024900B2 (en)
JPS5948383B2 (en) developing device
JP2850732B2 (en) Image forming device
US3958988A (en) Photoconductors having improved sensitivity by presence of a like polar fields during imaging
JP2853543B2 (en) Image forming device
JPS6151170A (en) Image forming method
JP3006580B2 (en) Image forming device
JPS5538522A (en) Electrophotographic type image recording method
JPS62184486A (en) Image forming device
JPH0664372B2 (en) Image recording apparatus and image forming method
JPH0121319Y2 (en)
JPH0731438B2 (en) Multicolor recorder
JPS6239882A (en) Multi-color recording method
JPS6022354B2 (en) Electrostatic latent image development method
JPS5978379A (en) Electrophotographic method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees