JPS61143690A - Heat pipe - Google Patents

Heat pipe

Info

Publication number
JPS61143690A
JPS61143690A JP59265604A JP26560484A JPS61143690A JP S61143690 A JPS61143690 A JP S61143690A JP 59265604 A JP59265604 A JP 59265604A JP 26560484 A JP26560484 A JP 26560484A JP S61143690 A JPS61143690 A JP S61143690A
Authority
JP
Japan
Prior art keywords
coil
heat
heat pipe
working liquid
enclosed vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59265604A
Other languages
Japanese (ja)
Inventor
Ryosuke Hata
良輔 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59265604A priority Critical patent/JPS61143690A/en
Publication of JPS61143690A publication Critical patent/JPS61143690A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Abstract

PURPOSE:To control the quantity of heat transport by a method wherein working liquid contained with magnetic particles is sealed in the enclosed vessel of a heat pipe and a coil is located on the outer periphery of the enclosed vessel and the coil is energized. CONSTITUTION:A coil 3 is energized by power source 4. In a heat pipe, working liquid falls down along the inner wall of an enclosed vessel 1 in the direction from a heat releasing or condenser section A to a heat absorbing or evaporator section B by means of gravitation or capillary attraction. However, when a DC current is started in the coil 3, magnetic lines of force 6 are developed in the direction of the arrow along the enclosed vessel 1. Magnetic particles 5 in the working liquid induce the magnetic lines to align in the same N-S direction, resulting in stagnating along the wall of the enclosed vessel 1 against the gravitation or capillary attraction. Accordingly, the magnetic particles 3 hinder the flow of working liquid, resulting in remarkably lowering the heat transportation capacity. When the maximum capacity on the quantity of heat transport is requested, the enclosed vessel 1 may be used without energizing the coil 3 surrounding the enclosed vessel 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱移送量の制御を可能にしたヒートパイプに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat pipe that allows control of the amount of heat transferred.

(従来技術及び解決しようとする問題点)従来のヒート
パイプは、サーモサイフオン型であれループ型であれ移
送する熱量を制御することが困難であった。その理由は
、ヒートパイプは無エネルギー運転をするため、パイプ
の構造、パイプ内に封入する作動流体の種類及びその状
態(圧力と量)で最大移送可能な熱量が決まり、その範
囲において吸熱蒸発部に与えられる熱量と放熱凝縮部の
状態に応じた最大熱量が自然に移送されるからである。
(Prior Art and Problems to be Solved) In conventional heat pipes, whether they are thermosiphon type or loop type, it is difficult to control the amount of heat transferred. The reason is that heat pipes operate without energy, so the maximum amount of heat that can be transferred is determined by the structure of the pipe, the type of working fluid sealed in the pipe, and its conditions (pressure and amount). This is because the maximum amount of heat depending on the amount of heat given to the heat sink and the state of the heat dissipation and condensation section is naturally transferred.

しかるに、例えばヒートパイプで熱を受は入れる温室、
暖房を受ける部屋等は室それ自身が必要とするMhkが
あり、それはヒートパイプが自然に移送してくる熱量と
は異質のものであるから、なんらかの制御が必要であり
、こういうケースは数多(ある。
However, for example, a greenhouse that receives heat using heat pipes,
Rooms that receive heating have their own required Mhk, which is different from the amount of heat naturally transferred by heat pipes, so some kind of control is required, and there are many cases like this ( be.

ヒートパイプは構造的には密閉容器内に作動流体を封入
し、作動流体の気化、液化のサイクルによる自然循環を
利用しているため、上記密閉容器内に例えばバッキング
、7ランジ等を設けこれらに制御機能を入れることが考
えられるが、このようなものを組入れた密閉容器は、リ
ーク等による無保守性の低下やヒートパイプの性能低下
を招くと共に高価になる等の問題があり、従来構造のま
まで熱移送量の制御機構を持たせるということは長年の
課題であった。
Structurally, a heat pipe encloses a working fluid in a sealed container and utilizes natural circulation through a cycle of vaporization and liquefaction of the working fluid. It is conceivable to incorporate a control function, but a sealed container incorporating such a device would have problems such as reduced maintainability due to leaks, reduced performance of the heat pipe, and increased costs, making it difficult to maintain the conventional structure. It has been a long-standing challenge to provide a mechanism for controlling the amount of heat transferred.

(問題点を解決するための手段) 本発明は上述の問題を解消し長年の課題の達成した熱移
送量の制御可能なヒートパイプを提供するもので、その
特徴は磁性粒体を混在させた作動液体をヒートパイプ密
閉容器中に封入し、該密閉容器の外周にコイルを配置し
、該コイルに通電することにより生じる磁界に感応する
前記磁性粒体の感応の程度を通電電流で変化させること
によって熱移送量を制御することにある。
(Means for Solving the Problems) The present invention solves the above-mentioned problems and provides a heat pipe that can control the amount of heat transfer, which has achieved the long-standing problem. A working liquid is sealed in a heat pipe airtight container, a coil is arranged around the outer periphery of the airtight container, and the degree of sensitivity of the magnetic particles that is sensitive to the magnetic field generated by energizing the coil is changed by applying a current. The objective is to control the amount of heat transfer.

(実施例) 第1図は本発明のヒートパイプの実施例の説明図で、サ
ーモサイフオン型ヒートパイプの例を示す。図面におい
て(1)はヒートパイプの密閉容器で、内面にウイグラ
を施してあっても、ウィックなしでも差支えなく、密閉
容器内部には従来の水のような作動液体に超微細な、例
えばサブミクロン単位の磁性粒体をコロイド状に混在又
は沈澱させた作動液体が封入されている。■はヒートパ
イプのフィン、■は上記密閉容器(1)の外周に密閉容
器(1)を包撓して配置した貫通型コイル、(2)はそ
の電源である。なお、(λ)は放1IIIl凝縮部、(
B)は吸熱蒸発部を示す。
(Embodiment) FIG. 1 is an explanatory diagram of an embodiment of the heat pipe of the present invention, showing an example of a thermosiphon type heat pipe. In the drawing, (1) is an airtight container for a heat pipe, which may have a wig on its inner surface or without a wick. A working liquid in which unit magnetic particles are mixed or precipitated in colloidal form is enclosed. (2) is the fin of the heat pipe, (2) is a through-type coil arranged around the outer periphery of the sealed container (1), and (2) is its power source. In addition, (λ) is the radiation 1IIIl condensation part, (
B) shows an endothermic evaporation section.

上述したヒートパイプにおいて熱移送量の最大能力を必
要とするときは、密閉容器(1)を囲繞しているコイル
■に通電することな〈従来通り使用すればよい。この時
作動液体中に混在する磁性粒体はコロイド状となって作
動液体中に一様に分散又は沈澱してγr在しなんらの作
用もなさず、又磁性粒体はヒートパイプの使用条件内で
は固体故、作動液体の気化、凝縮にも影響を及ぼすこと
がなく、ヒートパイプはその熱移送能力を最大に発揮す
る。
When the maximum heat transfer capacity is required in the heat pipe described above, it may be used in the conventional manner without energizing the coil (2) surrounding the closed container (1). At this time, the magnetic particles mixed in the working liquid become a colloid and are uniformly dispersed or precipitated in the working liquid and do not have any effect as γr exists, and the magnetic particles are within the usage conditions of the heat pipe. Because it is a solid, it does not affect the vaporization or condensation of the working liquid, allowing the heat pipe to maximize its heat transfer ability.

一方、ヒートパイプの熱移送量を制御したい時は、電源
(2)によりフィル■に通電する。ヒートパイプでは作
動液体は引力又は毛細管力により放熱凝縮部(A)より
吸熱蒸発部(B)に向って密閉容器(1)の内壁に沿っ
て下降するが、コイル■に直流を通せば第3図のように
密閉容器(1)に沿って矢印の方向の磁力lI■が生じ
、作動液体中の磁性粒体■はこれに感応して図のように
N−8向きを揃え、引力あるいは毛細管力に抗らって密
閉容器(1)の壁に沿って停滞することになる。これに
より磁性粒体(3)が作動液体の流れを阻害し、熱移送
能力は著しく低下することになる。この作用をさらに説
明すると、放熱凝縮部(A)から吸熱蒸発部(B)に戻
ってくるべき作動液体の量が減少すると、吸熱蒸発部(
B)での気化による気化圧力が上昇し、液体の気化温度
が上昇する。その結果吸熱蒸発部での液体温度も上昇し
て熱吸収力が下がり、結果としてヒートパイプ全体の熱
移送量が低下する。即ち熱移送効率が低下するのである
On the other hand, when it is desired to control the heat transfer amount of the heat pipe, electricity is applied to the filter (2) using the power source (2). In a heat pipe, the working liquid descends along the inner wall of the closed container (1) from the heat dissipating condensing section (A) toward the endothermic evaporating section (B) due to gravity or capillary force, but if a direct current is passed through the coil As shown in the figure, a magnetic force lI■ is generated along the closed container (1) in the direction of the arrow, and the magnetic particles ■ in the working liquid respond to this and align themselves in the N-8 direction as shown in the figure, causing an attractive force or capillary It resists the force and becomes stagnant along the wall of the closed container (1). As a result, the magnetic particles (3) obstruct the flow of the working liquid, and the heat transfer ability is significantly reduced. To further explain this effect, when the amount of working liquid that should return from the heat dissipation condensing section (A) to the endothermic evaporation section (B) decreases, the endothermic evaporation section (
The vaporization pressure due to the vaporization in B) increases, and the vaporization temperature of the liquid increases. As a result, the temperature of the liquid in the endothermic evaporation section also rises, and the heat absorption capacity decreases, resulting in a decrease in the amount of heat transferred throughout the heat pipe. That is, the heat transfer efficiency decreases.

従って制御したい条件に比例してコイル(Jに通電する
電流を制御すれば、ヒートパイプの熱移送量を変化させ
ることができる。これは従来のヒートパイプの構造を変
化させることなく、密閉容器(1)の外周にコイル■を
配置しその磁化力を変えるのみでよいので、経済性及び
容器の密閉無保守性にすぐれたものといえる。
Therefore, by controlling the current flowing through the coil (J) in proportion to the conditions to be controlled, the heat transfer amount of the heat pipe can be changed. Since it is only necessary to arrange the coil (1) around the outer periphery of 1) and change its magnetizing force, it can be said to be excellent in economical efficiency and maintenance-free sealing of the container.

上記の説明でも明らかなように、ヒートパイプの密閉容
器(りは薄ければ鉄のような磁性体金属でも使用できな
いことはないが、密閉容1 (11内に磁化力を十分及
ぼし制御を容易にするには非磁性体金属、例えばステン
レス、銅、アルミニウム又はこれらの複合体を使用する
のが好ましい。
As is clear from the above explanation, it is not impossible to use magnetic metals such as iron as long as the heat pipe's airtight container (11) is thin; It is preferable to use a non-magnetic metal, such as stainless steel, copper, aluminum, or a composite thereof.

第2図は本発明のヒートパイプの他の実施例の説明図で
ループ型ヒートパイプの例を示す。図面において[相]
は作動液体の液槽、GOは加熱部、63は岐僧(ト)か
ら放熱凝縮部0)を経て液槽のに至るループ状の密閉配
管である。このようなループ型ヒートパイプでは加熱部
ODによって加熱された液層(ト)中の作動液体は気化
蒸発して密閉配管Q7)を矢印(4)の方向に進行し、
放熱凝縮部GEで冷却されて液体となって矢印<1!1
)の方向に進行し液槽(ト)に至る自然循環作用を行な
う。
FIG. 2 is an explanatory diagram of another embodiment of the heat pipe of the present invention, showing an example of a loop type heat pipe. [phase] in drawings
1 is a liquid tank for the working liquid, GO is a heating section, and 63 is a loop-shaped sealed pipe that runs from the pipe through the heat dissipation and condensation section 0) to the liquid tank. In such a loop type heat pipe, the working liquid in the liquid layer (G) heated by the heating part OD evaporates and evaporates and travels in the direction of the arrow (4) through the closed pipe Q7).
It is cooled in the heat dissipation condensation section GE and becomes a liquid as shown by the arrow <1!1
) and reaches the liquid tank (g), performing a natural circulation action.

このようなループ型ヒートパイプにおいて、前記作動液
体は極微細な磁性粒体をコロイド状に分散させた作動液
体を使用し、前記密閉配管■の液体の通路(6)の途中
に貫通型コイル■を配置する。
In such a loop heat pipe, a working liquid in which ultrafine magnetic particles are colloidally dispersed is used as the working liquid, and a through-type coil (2) is installed in the middle of the liquid passage (6) of the sealed pipe (2). Place.

この際コイル■に[源(2)により通電することにより
、作動液体中の磁性粒体が磁界に感応して磁化され、管
壁に停滞して液体の流れを阻害することは前述の第1図
の場合と全く同様で、コイルへの通電電流を変化させる
ことにより作動液体の流れ、即ちヒートパイプの熱移送
量を制御できるのである。
At this time, when the coil (2) is energized by the source (2), the magnetic particles in the working liquid become magnetized in response to the magnetic field, become stagnant on the tube wall, and obstruct the flow of the liquid. Just like the case shown in the figure, the flow of the working liquid, that is, the amount of heat transferred through the heat pipe, can be controlled by changing the current applied to the coil.

第1図〜第3図ではコイルとして貫通型コイルを用いた
場合について説明したが、第4図(イ)のように密閉容
器(1)の外でらせん状のコイルを形成して密閉容器(
1)を囲繞するCT型コイル(3′)を用いても同様の
制御を行ない得るのは勿論である。この場合磁界(G′
)は密閉容器(1)を囲繞する方向に生ずるので、磁性
粒体■は第4図(ロ)の方向に磁化されて密閉容器(1
)の壁にくっつく力で浮遊することになる。なお、この
方式ではCT型コイル(3′)の内部に磁気コアを存在
させれば、通電による磁界が一層強力となるのでより効
果的である。
In Figs. 1 to 3, we have explained the case where a through-type coil is used as the coil, but as shown in Fig. 4 (a), a spiral coil is formed outside the closed container (1).
It goes without saying that similar control can be performed using the CT type coil (3') surrounding 1). In this case, the magnetic field (G′
) is generated in the direction surrounding the closed container (1), so the magnetic particles (■) are magnetized in the direction shown in FIG.
) will float due to the force of sticking to the wall. Note that this method is more effective if a magnetic core is present inside the CT type coil (3') because the magnetic field generated by energization becomes even stronger.

以上の説明はいずれも通電電流を直流としたが、これを
商用周波の交流に置き換えてもある程度の制御力がある
ことが確認された。これはコイルによる交番磁界によっ
て磁性粒体が激しく振動させられ、そのエネルギが正常
な作動流体の流れにとって抵抗になるからだと推測され
る。
In all of the above explanations, direct current was used as the current, but it was confirmed that even if this was replaced with commercial frequency alternating current, a certain degree of control power could still be achieved. It is assumed that this is because the magnetic grains are violently vibrated by the alternating magnetic field generated by the coil, and the resulting energy acts as resistance to the normal flow of the working fluid.

なお、作動液体中に混在させる磁性粒体は小さければ小
さい程よく、サブミクロン単位以下であることが望まし
いが、ある種の設計や(作動液体の種類、熱移送量)制
御範囲によってはそれより大きくても差支えない。
The smaller the magnetic particles mixed in the working fluid, the better, preferably submicron size or less, but depending on the type of design and control range (type of working fluid, amount of heat transfer), it may be larger than that. There is no problem.

又外部より与える磁界の強さが十分に強い場合には通常
は沈澱して液体と共に移動しない程度の大きさの磁性粒
体でもよく、この場合は外部から磁界が与えられるとそ
の部位に磁気浮上して捕捉され、前述の如き制御機能を
発揮することになる。
In addition, if the strength of the magnetic field applied from the outside is strong enough, magnetic particles of a size that will usually settle and not move with the liquid may be used. The control function as described above will be performed.

もとよりこれらの比較的粒径の大きいものから非常に微
細なものまで混在させて使用することも可能である。
Of course, it is also possible to use a mixture of these particles ranging from relatively large particles to very fine particles.

(発明の効果) 以上詳細に説明したように、本発明のヒートパイプによ
れば、従来のヒートパイプの構造を変更することなく、
容易にかつ経済的にヒートパイプの熱移送量を制御し得
る利点を有するものである。
(Effects of the Invention) As explained in detail above, according to the heat pipe of the present invention, without changing the structure of the conventional heat pipe,
This has the advantage that the amount of heat transferred through the heat pipe can be controlled easily and economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はいずれも本発明のヒートパイプの実
施例の説明図、第3図は第1図のヒートパイプの作用の
説明図、第4図は本発明の他の実施例の説明図(イ)及
びその作用の説明図(→である。 1・・・密閉容器、3.3’・・・コイル、4・・・電
源、5・・・磁性粒体、e、e’・・・磁力線、10・
・・液槽、+2・・・密閉配管、 13・・・放熱凝縮
部、A・・・放熱V縮部、B・・・吸熱蒸発部。
1 and 2 are both explanatory diagrams of an embodiment of the heat pipe of the present invention, FIG. 3 is an explanatory diagram of the action of the heat pipe of FIG. 1, and FIG. 4 is an explanatory diagram of another embodiment of the present invention. Explanatory diagram (A) and explanatory diagram of its action (→. 1... Airtight container, 3.3'... Coil, 4... Power source, 5... Magnetic particles, e, e' ...Magnetic field lines, 10.
...Liquid tank, +2... Sealed piping, 13... Heat dissipation condensation section, A... Heat dissipation V condensation section, B... Endothermic evaporation section.

Claims (4)

【特許請求の範囲】[Claims] (1)磁性粒体を混在させた作動液体をヒートパイプ密
閉容器中に封入し、該密閉容器の外周にコイルを配置し
、該コイルに通電することにより生じる磁界に感応する
前記磁性粒体の感応の程度を通電電流で変化させること
によって熱移送量を制御することを特徴とするヒートパ
イプ。
(1) A working liquid mixed with magnetic particles is sealed in a heat pipe airtight container, a coil is arranged around the outer periphery of the airtight container, and the magnetic particles are sensitive to the magnetic field generated by energizing the coil. A heat pipe characterized by controlling the amount of heat transfer by changing the degree of sensitivity with the applied current.
(2)コイルが密閉容器を包撓する円形コイル(貫通型
コイル)又は密閉容器の外でらせん状のコイルを形成し
て密閉容器を囲繞するコイル(CT型コイル)であるこ
とを特徴とする特許請求の範囲第1項記載のヒートパイ
プ。
(2) The coil is characterized by being a circular coil that wraps around the hermetic container (through-type coil) or a coil that forms a spiral coil outside the hermetic container and surrounds the hermetic container (CT-type coil). A heat pipe according to claim 1.
(3)CT型コイルの内部に磁気コアを存在させたこと
を特徴とする特許請求の範囲第2項記載のヒートパイプ
。 (3)コイルは少くとも作動液体が存在している部位に
配置されていることを特徴とする特許請求の範囲第1項
記載のヒートパイプ。
(3) The heat pipe according to claim 2, characterized in that a magnetic core is present inside the CT type coil. (3) The heat pipe according to claim 1, wherein the coil is disposed at least in a region where a working liquid is present.
(4)少くともコイルの存在する部位の密閉容器管材が
非磁性体金属であることを特徴とする特許請求の範囲第
1項記載のヒートパイプ。
(4) The heat pipe according to claim 1, wherein the closed container tube material at least in the portion where the coil is present is made of a non-magnetic metal.
JP59265604A 1984-12-17 1984-12-17 Heat pipe Pending JPS61143690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59265604A JPS61143690A (en) 1984-12-17 1984-12-17 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59265604A JPS61143690A (en) 1984-12-17 1984-12-17 Heat pipe

Publications (1)

Publication Number Publication Date
JPS61143690A true JPS61143690A (en) 1986-07-01

Family

ID=17419435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59265604A Pending JPS61143690A (en) 1984-12-17 1984-12-17 Heat pipe

Country Status (1)

Country Link
JP (1) JPS61143690A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425935C (en) * 2004-03-02 2008-10-15 鸿富锦精密工业(深圳)有限公司 Heat pipe
US20080264068A1 (en) * 2004-12-03 2008-10-30 Shinichi Nakasuka Magnetic Convection Heat Circulation Pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425935C (en) * 2004-03-02 2008-10-15 鸿富锦精密工业(深圳)有限公司 Heat pipe
US20080264068A1 (en) * 2004-12-03 2008-10-30 Shinichi Nakasuka Magnetic Convection Heat Circulation Pump

Similar Documents

Publication Publication Date Title
Rashidi et al. Applications of nanofluids in condensing and evaporating systems: a review
US5179259A (en) Inverted frustum shaped microwave heat exchanger using a microwave source with multiple magnetrons and applications thereof
JP2006512557A (en) Method and apparatus for generating cold and heat by electromagnetic heat effect
Heydarian et al. Experimental investigation of paraffin nano-encapsulated phase change material on heat transfer enhancement of pulsating heat pipe
CA1191208A (en) Magnetic refrigerator
US4956534A (en) Inverted frustum shaped microwave heat exchanger and applications thereof
JP3082195B1 (en) Insulated double container
US5231834A (en) Magnetic heating and cooling systems
Firouzfar et al. Investigation of heat pipe heat exchanger effectiveness and energy saving in air conditioning systems using silver nanofluid
JPS61143690A (en) Heat pipe
US5265444A (en) Inverted frustum shaped microwave heat exchanger using a microwave source with multiple magnetrons and applications thereof
Paroutoglou et al. A PCM based cooling system for office buildings: a state of the art review
JPH0814779A (en) Heat pipe
JP2011043313A (en) Heater
CN116031219A (en) Chip cooling system and control method thereof
CN100368742C (en) Natural convection heat transfer type room-temperature magnetic Refrigerator
Sabir et al. Experimental study of capillary-assisted water evaporators for vapour-absorption systems
JPH06185762A (en) Cooling or heating method
JPS5937598Y2 (en) Heat exchanger
JPH0130078B2 (en)
JPH04350910A (en) Electric apparatus
JPS6335180A (en) Magnetic fluid driving device
JPS5849797B2 (en) heat pipe
CN113339911B (en) Cold storage tank device
WO2021240712A1 (en) Circulation circuit and air conditioning system provided therewith