JPS61140747A - Method of heat utilization utilizing solar heat and compost fermentation heat - Google Patents

Method of heat utilization utilizing solar heat and compost fermentation heat

Info

Publication number
JPS61140747A
JPS61140747A JP59264107A JP26410784A JPS61140747A JP S61140747 A JPS61140747 A JP S61140747A JP 59264107 A JP59264107 A JP 59264107A JP 26410784 A JP26410784 A JP 26410784A JP S61140747 A JPS61140747 A JP S61140747A
Authority
JP
Japan
Prior art keywords
heat
compost
fermentation
silo
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59264107A
Other languages
Japanese (ja)
Inventor
Ryosuke Hata
良輔 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59264107A priority Critical patent/JPS61140747A/en
Publication of JPS61140747A publication Critical patent/JPS61140747A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)
  • Fertilizing (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

PURPOSE:To utilize part of or all of the collected solar heat for microorganic fermentation so as to utilize the resultant heat for heating a desired object. CONSTITUTION:A heat transmission pipe 3' transmits the heat accumulated in a heat accumulator 5 to a silo 6. The heat transmission pipe 3' is partly laid under the compost 7 buried underground in a greenhouse. Inside the silo 6, the entire part of the stored compost 7 is uniformly heated by the heat transmission pipe 3' laid in its interior. The resultant heat fermentation heat is directly released to the inside of the greenhouse 1, or it can be gradually released when necessary after the recovered heat is temporarily accumulated in the heat accumulator 5 by using the heat transmission pipe 3' laid inside the silo 6 in a reverse manner or by attaching a heat transmission pipe 3' for recovering the heat to the silo 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、コレクタによって年収した太陽熱の少なく
とも一部を利用して堆肥の醗酵を促進させ、この醗酵に
よって供給熱量よりも大巾に増加した熱を環境温度低下
時に大気、水、土壌又はその他の物体の加温に供する方
法、中でも、植物の栽培に特に顕著な効果を期待できる
熱利用方法に関する。なお、この発明で云う堆肥には腐
食前の堆肥材料も含まれる。
[Detailed Description of the Invention] [Field of Industrial Application] This invention utilizes at least a portion of the solar heat generated annually by the collector to promote the fermentation of compost, and this fermentation increases the amount of heat by a large amount compared to the amount of heat supplied. The present invention relates to a method of using heat to warm the air, water, soil, or other objects when the environmental temperature drops, and in particular, to a method of utilizing heat that can be expected to have a particularly remarkable effect on the cultivation of plants. Note that the compost referred to in this invention also includes compost material before decay.

〔従来の技術〕[Conventional technology]

太陽熱コレクタ、熱移送管、蓄熱槽を組合せて得た熱で
住宅や温室内の大気や土壌等の温度を夜間或いは冬期に
上昇させる技術は周知である。また、収集熱を利用して
植物の発育を促進するアイデア及び実験的な試みもあり
、この植物の促進栽培法における蓄熱槽には、人工的な
装置のほが、土中の大地自体を利用することも考えられ
ている。
BACKGROUND OF THE INVENTION Techniques for increasing the temperature of the atmosphere, soil, etc. in a house or greenhouse at night or in winter using heat obtained by combining a solar heat collector, a heat transfer pipe, and a heat storage tank are well known. There are also ideas and experimental attempts to use collected heat to promote plant growth, and the heat storage tank used in this plant cultivation method uses artificial devices and the earth itself in the soil. It is also considered to do so.

即ち、昼間や夏期に大地を暖めておいてその熱を夜間或
いは冬期の育成熱として植物に供するのである。
In other words, the earth is warmed during the day and in the summer, and the heat is then provided to plants as growth heat at night and in the winter.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述の熱利用法は、設備費が高くつく上
、目的物(万物)の加温もきわめて不安定になると云う
欠点がある。例えば、上記の植物裁培法は、貯えた太陽
熱をそのま\利用するので、気象条件、特に、季節によ
って日照時間や光線の強さの変化する太陽の影響を受は
易く、しかも、システム中に様々な伝熱損失要因が存在
することから、短・長期的な熱損失も大きく、従って、
予期した程の成果が得られないのが実情である。
However, the above-mentioned heat utilization method has the disadvantage that the equipment cost is high and the heating of the object (everything) becomes extremely unstable. For example, the above-mentioned plant cultivation method uses stored solar heat as it is, so it is easily affected by weather conditions, especially the sun, whose sunlight hours and intensity of light rays change depending on the season. Since there are various heat transfer loss factors, short- and long-term heat losses are large, and therefore
The reality is that the expected results are not achieved.

また、太陽熱コレクタの容量にこれ等熱損失の程度及び
日照利用の程度を加味すると有効利用できる熱量は少な
く、広域空間等の加熱では大規模な太陽熱コレクタを設
置する必要がある。
Furthermore, when the capacity of the solar collector is taken into account the degree of heat loss and the degree of sunlight utilization, the amount of heat that can be effectively used is small, and it is necessary to install a large-scale solar collector to heat a wide area.

さらに、日照時に得られる太陽熱を、非日照時(例えば
夜間)の供給量に匹摘する量確保するにはそれに見合う
容量の太陽熱コレクタを要するのは当然として更に得ら
れた太陽熱を非日照時に必要な量貯えておく蓄熱器が必
要である。この蓄熱器は通常膨大な設備となり、従って
、一般的には、容量の不足する蓄熱器を設置し、(1)
不足熱量はボイラや電気ヒータ等で補なう。(2)不足
期間中は不足のま\放置する。(3)非日照期間中の供
給熱量を強制的に抑制して加温期間を長びかせると云っ
た方法が採られる。しかし、上記(1)の方法は熱源の
運転経費が必要になり、一方、(21、(3)の方法は
、例えば植物栽培の場合、育成熱が途中で大きく変わる
ので植物の発育に悪影響を及ぼし、極端なケースでは植
物を全滅させる恐れもある。
Furthermore, in order to secure an amount of solar heat obtained during sunshine that is equivalent to the amount supplied during non-sunshine times (for example, at night), it is natural that a solar heat collector with a capacity corresponding to that amount is required. A heat storage device is required to store a sufficient amount of heat. This heat storage is usually a huge amount of equipment, so generally a heat storage with insufficient capacity is installed, and (1)
Make up for the lack of heat with a boiler, electric heater, etc. (2) Leave the shortage as it is during the period of shortage. (3) A method is adopted in which the amount of heat supplied during non-sunshine periods is forcibly suppressed to lengthen the heating period. However, the method (1) above requires operating costs for the heat source, while the methods (21 and (3)), for example, in the case of plant cultivation, have a negative impact on plant growth because the growing heat changes significantly during the process. In extreme cases, it can even wipe out the plant.

コノように、太陽熱のみを利用するシステムには、種々
の問題がつきまとうし、天候不良で日射のない期間があ
ることも考え併せると安定した熱の利用が極めて困難で
あり、これが、太陽熱利用システムの普及を遅らせる最
大の原因の1つとなっている。
Systems that use only solar heat, such as Kono, are plagued with various problems, and when you consider that there are periods of no sunlight due to bad weather, it is extremely difficult to use stable heat. This is one of the biggest reasons for delaying the spread of technology.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、この発明は、集めた太陽熱の一部又は大部分を
堆肥の微生物醗酵に利用することにより堆肥の醗酵を加
温しないときに比較して飛躍的に促進させ、この醗酵に
より増大して得られる熱を目的物の加温に利用するよう
にしたのである。
Therefore, this invention dramatically accelerates the fermentation of compost by using a part or most of the collected solar heat for microbial fermentation of compost compared to when no heating is performed, and this fermentation increases the yield. The heat generated by the system can be used to heat the object.

具体的には、太陽熱コレクタ、蓄熱器、熱移送管の一部
又は全部を組合せて得た熱の少なくとも一部で、サイロ
に入れるか又は土中に埋めた堆肥を加温し、そ出熱で促
進された堆肥の微生物醗酵による熱を直接又は一旦蓄熱
器に貯えた後、場合によってはその熱に太陽熱を加えて
環境温度低下時の大気、水、土壌又はその他の物(雪や
氷も含む)の加温に供するようにした大気等の加温方法
である。
Specifically, at least a portion of the heat obtained by combining some or all of a solar collector, a heat storage device, and a heat transfer pipe is used to heat compost placed in a silo or buried in the soil, and the heat is then released. The heat generated by the microbial fermentation of compost is directly stored or once stored in a heat storage device, and in some cases, solar heat is added to the heat to absorb the heat from air, water, soil, or other materials (including snow and ice) when the environmental temperature drops. This is a method of heating the atmosphere, etc., which is used to heat the atmosphere (including

この方法によって得られる熱は、日照の有無等で急変す
る周囲の温度柴件に対する反応は微生物醗酵の方が緩慢
であるから、太陽熱のみを利用する場合に比して量的に
も期間的壷こも安定している。
The heat obtained by this method can be obtained in terms of quantity and over a period of time, as microbial fermentation reacts more slowly to ambient temperature conditions that change rapidly due to the presence or absence of sunlight, etc., than when only solar heat is used. This is also stable.

また、微生物醗酵は、低温下でも生じるが、他からの熱
で僅かに加温してやると醗酵速度が急激に早まるのが特
徴であるから、日射期間中に得た太陽熱を適当な容量の
蓄熱器に貯え、これを少量宛小出しして醗酵促進に供す
ることで長期間に渡り、安定して増大した微生物醗酵熱
をとり出すことが可能になり、結果として、長期的に安
定した熱の利用、及び蓄熱された太陽熱そのもの\比較
的長い期間の保有利用が可能になる。
Furthermore, microbial fermentation occurs even at low temperatures, but the fermentation rate is characterized by rapidly accelerating when slightly warmed by heat from other sources. By storing this in small amounts and dispensing it to promote fermentation, it becomes possible to extract the increased microbial fermentation heat stably over a long period of time.As a result, the heat can be used stably over a long period of time. And the stored solar heat itself can be retained and used for a relatively long period of time.

このように、本発明によれば、太陽熱のみを利用する場
合に比較してより長時間より安定した熱の供給が可能に
なるので、住宅暖房をはじめとする自然エネルギー利用
形態の好ましい姿を確立し得る。なお、得られた醗酵熱
は、閉鎖空間の暖房や水、土壌、融解させる雪や氷或い
はその他の物体の加温等に利用できるが、上記の特徴を
考えると、植物の育成促進に利用した場合、特に顕著な
効果を期待できる。
As described above, the present invention enables a more stable supply of heat for a longer period of time than when only solar heat is used, thereby establishing a desirable form of natural energy use such as home heating. It is possible. The fermentation heat obtained can be used for heating closed spaces, water, soil, melting snow and ice, or other objects, but considering the above characteristics, it is not possible to use it to promote plant growth. Particularly significant effects can be expected in this case.

即ち、堆肥中の微生物は、僅かの温度上昇により数百〜
数千倍と飛躍的に増加し、醗酵を促進させる。このため
、堆肥から得られる熱量は、システムの設計条件等に左
右されるところはあるが、材料、例えば生野菜の屑等を
含む残飯類を堆肥とした場合も3ケ月程度の期間を要す
るが、周辺の温度を15〜25℃に維持するとはゾ1週
間、早いものは3日程度で醗酵し、この醗酵速度の増進
に応じて醗酵熱も増加する。従って、気象条件の変化や
システム中の伝熱ロスがあっても植物の育成に必要な温
度を安定して維持でき、かつ供給熱量の絶対値の増加に
より作付は飢面積を増やすことも可能になり、栽培効率
の大巾な向上につながる。
In other words, the number of microorganisms in the compost increases by a slight increase in temperature.
It increases dramatically by several thousand times and promotes fermentation. For this reason, the amount of heat obtained from compost depends on the design conditions of the system, etc., but it takes about 3 months even when composting materials such as leftover food including raw vegetable scraps. If the surrounding temperature is maintained at 15 to 25°C, fermentation will take about one week, or as early as three days, and the fermentation heat will increase as the fermentation speed increases. Therefore, even if there are changes in weather conditions or heat transfer losses in the system, the temperature necessary for plant growth can be stably maintained, and by increasing the absolute value of the amount of heat supplied, it is also possible to increase the area under cultivation. This will lead to a significant improvement in cultivation efficiency.

また、熱量の増加に電力、燃料等を使わずに済む上に醗
酵後の富養土化した堆肥残滓も肥料として有効利用でき
るため、経済的でもあり、さらに。
In addition, it is economical because it does not require the use of electricity or fuel to increase the amount of heat, and the compost residue that has been turned into enriched soil after fermentation can be effectively used as fertilizer.

ボイラや電気ヒータを使う時の複雑な制御機構も殆んど
不要なため、信頼性が高く、作業効率も良くなる。
Since there is almost no need for complicated control mechanisms when using a boiler or electric heater, reliability is high and work efficiency is improved.

〔実施例〕〔Example〕

以下に、この発明を植物の促進栽培に利用する場合の実
施の一例を挙げる。
An example of the implementation of this invention in the case of utilizing the invention for accelerated cultivation of plants will be given below.

第1図は温室栽培システムの全体図で、符号1は温室、
2は太陽熱コレクタ、3は温水配管、ヒートパイプ等の
熱移送管、4は熱媒体の循環ポンプ、5は蓄熱器、6は
堆肥を入れたサイロ、3′は蓄熱器に貯えた熱をサイロ
に移送する上記同様の熱移送管を示しており、3′の熱
移送管は温室内の土中に埋めた堆肥7の部分にも敷設さ
れている。
Figure 1 is an overall diagram of the greenhouse cultivation system, where 1 is the greenhouse;
2 is a solar heat collector, 3 is a hot water pipe, a heat transfer pipe such as a heat pipe, 4 is a heat medium circulation pump, 5 is a heat storage device, 6 is a silo containing compost, and 3' is a silo for storing heat stored in the heat storage device. A heat transfer pipe similar to the above is shown, and the heat transfer pipe 3' is also laid in a part of the compost 7 buried in the soil in the greenhouse.

太陽熱コレクタ2、蓄熱器3の構造、設置場所は特に限
定されないが、熱移送管3,3′は、放熱部ではジグザ
グ配管、螺旋配管、放熱フィンの取付けなどによって放
熱性を良くし、一方、放熱部を除く個所では伝熱ロスを
減らすため断熱処理を施してお(のが望ましい。
Although the structure and installation location of the solar heat collector 2 and the heat storage device 3 are not particularly limited, the heat transfer pipes 3 and 3' have good heat dissipation performance in the heat dissipation section by installing zigzag piping, spiral piping, heat dissipation fins, etc. It is desirable to apply insulation treatment to reduce heat transfer loss in areas other than heat dissipation parts.

また、温室内を暖房するサイロ6の大きさ、数は温室の
規模に合わ°せて設置すればよく、その設置場所は、残
耕の防げとならない温室のコーナ部や畝間等を選ぶとよ
い。
In addition, the size and number of silos 6 that heat the greenhouse can be installed according to the scale of the greenhouse, and the installation location should be selected such as in the corners of the greenhouse or between the furrows, where it will not be possible to prevent residual tillage. .

サイロ6内では、内部に引込んだ熱移送管を利用して好
ましくは収容堆肥を全体にまんべんなく加温し、その後
に得られる醗酵熱を直接温室内に放散するか又はサイロ
に引込んだ熱移送管3′を逆用したり或いは図示しない
熱回収用の熱移送管をサイロに取付けたりして回収熱を
一旦蓄熱器5に貯え、それを必要時期に徐々に放出する
Inside the silo 6, preferably, the stored compost is heated evenly throughout the whole using a heat transfer pipe drawn into the silo, and the fermentation heat obtained thereafter is either radiated directly into the greenhouse or the heat drawn into the silo is heated. By reversing the transfer pipe 3' or by attaching a heat transfer pipe (not shown) for heat recovery to the silo, the recovered heat is temporarily stored in the heat storage device 5, and is gradually released when necessary.

堆肥を土中に埋めた場合も前記と同様の方法で堆肥醗酵
熱を一旦蓄熱器に回収してもよい。但しこの場合は、サ
イロに比べ熱回収率が低下することは避けられないので
、得られた熱をそのま\土中に放散して栽培土壌を温め
る方が有利である。
Even when compost is buried in the soil, the compost fermentation heat may be temporarily recovered into a heat storage device in the same manner as described above. However, in this case, it is inevitable that the heat recovery rate will be lower than in silos, so it is more advantageous to heat the cultivation soil by dissipating the obtained heat directly into the soil.

なお、地下暖房の効率的な方法としては次のようなこと
が考えられる。
The following are possible efficient underground heating methods.

その1つは、第2図に示すように畝8間に堆肥7と加温
用の熱移送管3′(図はフィン付きの管である)を埋め
、1個所の発熱部から2条の畝に熱を伝える方法であり
、他の1つは、第3図に示すように、6畝8の直下に堆
肥7と熱移送管3′を埋め、前回使用した鎖線の畝は対
応する移送管への熱媒体の供給を停止して休ませ、実線
で示す一方の畝のみを加温し、これを交互に繰返すか又
は双方の畝を個別に同時に加温する方法である。勿論、
これ以下にも効率の良い方法があればその方法の採用も
可能である。
One method is to bury the compost 7 and heating heat transfer tubes 3' (the figure shows tubes with fins) between the ridges 8, as shown in Figure 2, and connect two lines from one heat generating part. The other method is to bury the compost 7 and the heat transfer pipe 3' directly under the 6th ridge 8, as shown in Fig. In this method, the supply of heat medium to the tube is stopped and the pipe is allowed to rest, and only one of the ridges shown by the solid line is heated, and this is repeated alternately or both ridges are individually heated at the same time. Of course,
If there is a more efficient method than this, it is also possible to adopt that method.

この地下暖房方式では、醗酵後の堆肥の残滓をそのまま
土中に残して植物に養分として供することができる。
With this underground heating system, the compost residue after fermentation can be left in the soil and provided as nutrients to plants.

なお、この発明は、従来利用されていなかった醗酵熱、
即ち、家庭用の残飯や生ゴミをバクテリア醗酵させる技
術は既にあるが、このような技術において無駄に捨てら
れていた熱を太陽熱で醗酵速度を上げて増加させ、有効
に利用するところに大きな特徴を有し、先に述べた構成
を満たしていればその目的を達成できる。しかし、得ら
れる効果をより一層高めるには、堆肥中に太陽熱と一緒
に空気を強制導入するのが望ましい。適量の空気を導入
すれば微生物の活動の更なる活発化により堆肥の醗酵速
度を著しく高めることができ、逆に醗酵が進み過ぎて発
熱量が過剰となったときには空気と太陽熱の供給量を絞
ることによって醗酵を抑制できると云う具合に熱量の制
御が可能になるからである。これを更に説明すると、微
生物には空気即ち主として酸素を好む好気性菌と、好ま
ない嫌気性菌とがおり、例えばサイロ中での醗酵には主
に好気性菌が、土中では嫌気性が利用される。
In addition, this invention utilizes fermentation heat, which has not been used in the past.
In other words, there are already technologies for bacterial fermentation of household leftovers and food scraps, but the major feature of this technology is that it effectively utilizes the heat that would otherwise have been wasted by increasing the fermentation speed using solar heat. If the above-mentioned configuration is satisfied, the purpose can be achieved. However, in order to further enhance the effect obtained, it is desirable to forcefully introduce air together with solar heat into the compost. By introducing an appropriate amount of air, the fermentation rate of compost can be significantly increased by further activating the activity of microorganisms, and conversely, when the fermentation progresses too much and the calorific value becomes excessive, the amount of air and solar heat supplied can be reduced. This is because the amount of heat can be controlled to the extent that fermentation can be suppressed. To further explain this, there are two types of microorganisms: aerobic bacteria that prefer air (mainly oxygen) and anaerobic bacteria that do not. used.

従って、土中であるなしを問わず好気性菌を利用する場
合には空気の導入が極めて好ましいことなのである。ま
た、醗酵制御面では、空気の供給により増進抑制ともに
行えるケースがあり、従って、サイロ中又は土中のいず
れの場合も醗酵速度の増進、抑制制御がある程度可能に
なる。
Therefore, when using aerobic bacteria, whether in soil or not, it is extremely preferable to introduce air. In addition, in terms of fermentation control, there are cases where both acceleration and suppression can be achieved by supplying air, and therefore, it is possible to increase and suppress the fermentation rate to some extent whether in a silo or in the soil.

なお、空気の強制導入は熱移送管3′に多数の空気噴出
孔を設けた空気輸送管を併設する等して簡単に実現でき
る。
Note that the forced introduction of air can be easily realized by, for example, providing an air transport pipe provided with a large number of air blowing holes in the heat transfer pipe 3'.

また、図のシステムは堆肥サイロを温室内に設けている
が、サイロ6や土中の堆肥7を温室近傍に配し、そこか
ら回収した堆肥醗酵熱を温室内に導入することもできる
Further, although the system shown in the figure has a compost silo installed in the greenhouse, it is also possible to place the silo 6 and the compost 7 in the soil near the greenhouse, and introduce the compost fermentation heat recovered from there into the greenhouse.

さらに、堆肥の醗酵によって得た熱を、温室外で栽培す
る植物に供することも可能である。このときには周囲の
大気を暖めても意味がないので土壌を温めるとよい。
Furthermore, it is also possible to provide the heat obtained by fermenting the compost to plants grown outside the greenhouse. In this case, there is no point in warming the surrounding atmosphere, so it is better to warm the soil.

〔効果〕〔effect〕

以上述べたこの発明の方法によれば、外部の温度条件に
短期的にはさほど影響を受けない堆肥の微生物醗酵によ
る発熱作用を、太陽熱による加温で急速に加速増大させ
ることにより従来そのま\使用されていた太陽からの年
収熱を大巾に増加さ壌又はその他の物体の加温に供する
ので、高価な設備を使わずに、また、気象条件等に殆ん
ど左右されずに長期間安定した熱の供給ができる。
According to the above-described method of the present invention, the exothermic effect of microbial fermentation of compost, which is not significantly affected by external temperature conditions in the short term, is rapidly accelerated and increased by heating by solar heat. The annual heat generated from the sun, which was previously used, is greatly increased and used to heat soil or other objects, so it can be used for long periods of time without using expensive equipment and almost unaffected by weather conditions. Provides stable heat supply.

従って、得られた堆肥醗酵熱を植物の促成栽培に供する
場合には、より広大な面積の作付けが可能になり、さら
に植物周辺の大気温度や土壌温度を安定して維持でき、
植物の栽培効率を大巾に高めることかできる。
Therefore, when the obtained compost fermentation heat is used for forced cultivation of plants, it is possible to cultivate a larger area, and the air and soil temperatures around the plants can be stably maintained.
Plant cultivation efficiency can be greatly increased.

また、植物の育成熱として使う場合は勿論、それ以外の
加温に利用する場合も、加温に供する熱の温度増加に殆
んど費用がか\らず、その上、醗酵後の堆肥残滓を有機
肥料として有効利用できるため経済効果も高まる。
In addition, not only when used as heat for growing plants, but also when used for other heating purposes, there is almost no cost involved in increasing the temperature of the heat used for heating, and in addition, the compost residue after fermentation is can be used effectively as organic fertilizer, increasing the economic effect.

た熱の利用分野は特に限定されない。The field of use of the heat is not particularly limited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の方法による植物の温室栽培システ
ムの一例を示す線図、第2図及び第3図は土壌加温の効
果的な例を示す断面図である。
FIG. 1 is a diagram showing an example of a greenhouse cultivation system for plants according to the method of the present invention, and FIGS. 2 and 3 are cross-sectional views showing effective examples of soil heating.

Claims (5)

【特許請求の範囲】[Claims] (1)太陽熱コレクタ、蓄熱器、熱移送管、これ等の一
部又は全部を組合せて得た熱の少なくとも一部でサイロ
の中に入れるか又は土中に埋めた堆肥を加温し、その熱
で促進された堆肥の微生物醗酵による熱を、直接又は一
旦蓄熱器に貯えた後、環境温度低下時に大気、水、土壌
又はその他の物(万物)の加温に供することを特徴とす
る太陽熱と堆肥醗酵熱を利用した熱利用方法。
(1) At least part of the heat obtained from a solar collector, a heat storage device, a heat transfer pipe, or a combination of some or all of these is used to heat the compost placed in a silo or buried in the soil. Solar heat is characterized in that the heat generated by heat-accelerated microbial fermentation of compost is used directly or once stored in a heat storage device to heat the air, water, soil, or other things (all things) when the environmental temperature drops. and a heat utilization method using compost fermentation heat.
(2)上記堆肥中に醗酵制御のための空気を強制導入す
ることを特徴とする特許請求の範囲第(1)項記載の太
陽熱と堆肥醗酵熱を利用した熱利用方法。
(2) A heat utilization method using solar heat and compost fermentation heat according to claim (1), characterized in that air is forcibly introduced into the compost for fermentation control.
(3)上記堆肥醗酵熱を育成熱として植物に供すること
を特徴とする特許請求の範囲第(1)項又は第(2)項
記載の太陽熱と堆肥醗酵熱を利用した熱利用方法。
(3) A heat utilization method using solar heat and compost fermentation heat according to claim (1) or (2), characterized in that the compost fermentation heat is provided to plants as growing heat.
(4)上記サイロ又は土中堆肥を温室近傍に配置し、回
収した堆肥醗酵熱を温室内に導入することを特徴とする
特許請求の範囲第(3)項記載の太陽熱と堆肥醗酵熱を
利用した熱利用方法。
(4) Utilizing solar heat and compost fermentation heat according to claim (3), characterized in that the silo or soil compost is placed near a greenhouse and the recovered compost fermentation heat is introduced into the greenhouse. How to use heat.
(5)上記サイロ又は土中の堆肥を温室内に配し、堆肥
醗酵熱を直接温室内の大気又は土壌の加温に供すること
を特徴とする特許請求の範囲第(3)項記載の太陽熱と
堆肥醗酵熱を利用した熱利用方法。
(5) Solar heat according to claim (3), characterized in that the compost in the silo or in the soil is placed in a greenhouse, and the compost fermentation heat is directly used to heat the atmosphere or soil in the greenhouse. and a heat utilization method using compost fermentation heat.
JP59264107A 1984-12-13 1984-12-13 Method of heat utilization utilizing solar heat and compost fermentation heat Pending JPS61140747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59264107A JPS61140747A (en) 1984-12-13 1984-12-13 Method of heat utilization utilizing solar heat and compost fermentation heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59264107A JPS61140747A (en) 1984-12-13 1984-12-13 Method of heat utilization utilizing solar heat and compost fermentation heat

Publications (1)

Publication Number Publication Date
JPS61140747A true JPS61140747A (en) 1986-06-27

Family

ID=17398600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59264107A Pending JPS61140747A (en) 1984-12-13 1984-12-13 Method of heat utilization utilizing solar heat and compost fermentation heat

Country Status (1)

Country Link
JP (1) JPS61140747A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0965264A1 (en) * 1998-06-18 1999-12-22 Martin Buchholz Device and method for transferring and using heat and/or waste water from greenhouses and solid-state fermentators
JP2012210189A (en) * 2011-03-31 2012-11-01 National Agriculture & Food Research Organization Agricultural greenhouse
CN103363676A (en) * 2012-03-31 2013-10-23 绍兴虞林生物科技有限公司 Solar fermenting and heat supplying system
CN104089416A (en) * 2014-07-15 2014-10-08 东南大学 Solar water heater system capable of providing sunlight greenhouse heat-storage and ventilation functions
GB2598885A (en) * 2020-07-15 2022-03-23 Cyril Suan Ho Dinh Systems for a greenhouse

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0965264A1 (en) * 1998-06-18 1999-12-22 Martin Buchholz Device and method for transferring and using heat and/or waste water from greenhouses and solid-state fermentators
JP2012210189A (en) * 2011-03-31 2012-11-01 National Agriculture & Food Research Organization Agricultural greenhouse
CN103363676A (en) * 2012-03-31 2013-10-23 绍兴虞林生物科技有限公司 Solar fermenting and heat supplying system
CN104089416A (en) * 2014-07-15 2014-10-08 东南大学 Solar water heater system capable of providing sunlight greenhouse heat-storage and ventilation functions
GB2598885A (en) * 2020-07-15 2022-03-23 Cyril Suan Ho Dinh Systems for a greenhouse

Similar Documents

Publication Publication Date Title
CN102986479A (en) System for comprehensively utilizing energy sources in greenhouse
CN110268882A (en) Novel agricultural Greenhouse System and solar energy accumulation energy supplying system
CN202435897U (en) Energy integrated utilization system in greenhouse
CN101433177A (en) Self-heating type organic mass cultivation system of winter greenhouse
Jaffrin et al. Latent heat storage applied to horticulture
CN210491885U (en) Water modular active heat storage sunlight greenhouse
CN111108983A (en) Heat storage and release system and method for sunlight greenhouse
CN210695179U (en) Big-arch shelter based on solar energy heat supply
JPS61140747A (en) Method of heat utilization utilizing solar heat and compost fermentation heat
CN202714041U (en) Composite thermoregulation intelligent soilless culture system
CN107896747B (en) Device and method for utilizing heat energy in sunlight greenhouse
CN108361806B (en) Greenhouse outdoor heating system based on aerobic flora microbial fermentation
CN103214291B (en) Multifunctional compost greenhouse integrated system
CN109601207A (en) Ground assists enhanced greenhouse roof truss solar energy collection thermal desorption system and regulation method
WO2021147399A1 (en) Solar greenhouse heat storage and release system and heat storage and release method
CN212324910U (en) Heat storage and release system of sunlight greenhouse
CN111309072B (en) Sunlight greenhouse temperature control method based on surface cooler-fan
CN211174454U (en) Wind-driven heating energy storage device for sunlight greenhouse
CN201180130Y (en) Aerobic fermentation facilities for organic castoff
CN205030258U (en) Warmhouse booth arable layer geothermol power temperature humidity control device
CN113170687A (en) Greenhouse heating system and heating method
CN207978510U (en) A kind of greenhouse calandria phase-change thermal storage heat-releasing device
CN113340143A (en) Greenhouse underground heat storage system
CN109699354A (en) A kind of solar energy and air energy greenhouse heating system
CN219063790U (en) Comprehensive utilization system for multiple energy sources in greenhouse