JPS61139672A - Production of colloidal copper catalyst solution for electroless plating - Google Patents

Production of colloidal copper catalyst solution for electroless plating

Info

Publication number
JPS61139672A
JPS61139672A JP26127784A JP26127784A JPS61139672A JP S61139672 A JPS61139672 A JP S61139672A JP 26127784 A JP26127784 A JP 26127784A JP 26127784 A JP26127784 A JP 26127784A JP S61139672 A JPS61139672 A JP S61139672A
Authority
JP
Japan
Prior art keywords
ions
soln
copper
electroless plating
bivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26127784A
Other languages
Japanese (ja)
Inventor
Kenji Kobayashi
健治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26127784A priority Critical patent/JPS61139672A/en
Publication of JPS61139672A publication Critical patent/JPS61139672A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To produce a colloidal copper catalyst soln. suitable for use in the electroless plating of an electric insulator by preparing an aqueous soln. contg. Cu ions, gelatin, polyethylene glycol and dimethylaminoborane under specified conditions and by subjecting the soln. to reduction, aging and pH adjustment under specified conditions. CONSTITUTION:An aqueous soln. contg. bivalent Cu ions in the form of copper sulfate or the like gelatin by >=0.8g per 1g bivalent Cu ions and polyethylene glycol having 1,000-100,000 average mol.wt. by >=0.8g per 1g bivalent Cu ions is adjusted to 1-2pH with sulfuric acid or potassium hydroxide. Dimethylaminoborane is added to the aqueous soln. by >=1.2g per 1g bivalent Cu ions. The resulting soln. is heated to 40-70 deg.C to reduce the Cu ions to metallic Cu, and it is further heated to >=70 deg.C, aged for a desired time, and adjusted to 2-4pH. Thus, a catalyst soln. for perfect electro-less plating is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無電解めっき用銅コロイド触媒液の製造方法に
関し、詳しくI/′i電気絶縁物質、特にプラスチック
を活性化して無電解めっきによる金属被覆工程の準備を
行なうだめの銅コロイド触媒液の製造方法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a copper colloidal catalyst solution for electroless plating, and more particularly to a method for activating I/'i electrical insulating materials, particularly plastics, to produce metal by electroless plating. The present invention relates to a method for producing a copper colloidal catalyst liquid for preparation for a coating process.

〔従来の技術〕[Conventional technology]

一般に電子工業においては、プラスチックを無電解めっ
きにより金属被覆し、導電化することが広く行なわれて
いる。例えば印刷配線板の製造においては、銅張りエポ
キシ初詣積層板の表面の所望の位置に貫通孔を形成した
後、貫通孔壁に無電解めっき用触媒を吸着させ、次いで
無電解鋼めっき等の無電解めっきにより貫通孔壁面に金
属被覆を施し貫通孔壁面を導電化することが行なわれて
いる。無電解めっき用触媒としてはパラジウム金属が一
般に使用されており、パラジウム金属の貫通孔壁面への
形成は貫通孔壁面を塩化第一錫と塩化パラジウムの混合
コロイド水溶液に接触させることにより行なう。この貫
通孔壁面へはパラジウム金属と錫化合物が同時に吸着す
る。無電解めっきの触媒となるためには、パラジウム金
属と同時に吸着した錫化合物を塩酸水溶液あるいはホウ
フッ化水素酸溶液に浸漬して除去し、パラジウム金属が
露出するようにしなければならない。
Generally, in the electronics industry, it is widely practiced to coat plastics with metals by electroless plating to make them conductive. For example, in the production of printed wiring boards, after through-holes are formed at desired positions on the surface of a copper-clad epoxy laminate, an electroless plating catalyst is adsorbed onto the walls of the through-holes, and then an electroless plating process such as electroless steel plating is performed. Electrolytic plating is used to apply a metal coating to the wall surfaces of the through holes to make them electrically conductive. Palladium metal is generally used as a catalyst for electroless plating, and the formation of palladium metal on the wall surface of the through hole is carried out by bringing the wall surface of the through hole into contact with a mixed colloidal aqueous solution of stannous chloride and palladium chloride. Palladium metal and a tin compound are simultaneously adsorbed onto the wall surface of this through hole. In order to serve as a catalyst for electroless plating, the tin compound adsorbed at the same time as the palladium metal must be removed by immersion in an aqueous hydrochloric acid solution or a fluoroboric acid solution to expose the palladium metal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のパラジウム金属を用いた無電解めっき用
触媒においては、酸水溶液に浸漬する際錫化合物の除去
と同時にパラジウム金属本除去される場合がある。特に
鋼張りエポキシ樹脂積層板の貫通孔壁のガラス表面から
はパラジウム金属が除去され易く、シばしば貫通孔壁へ
の無電解銅めっき析出不良の原因となっていた。
In the conventional electroless plating catalyst using palladium metal as described above, when immersed in an acid aqueous solution, the palladium metal itself may be removed simultaneously with the removal of the tin compound. In particular, palladium metal is easily removed from the glass surface of the through-hole wall of a steel-clad epoxy resin laminate, often causing poor electroless copper plating deposition on the through-hole wall.

本発明の目的はかかる従来の欠点を除去した新規な無電
解めっき用触媒液の製造方法を提供することにある。
An object of the present invention is to provide a novel method for producing a catalyst liquid for electroless plating that eliminates such conventional drawbacks.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の無電解めっき用触媒液は、2価の銅イオンと平
均分子量1,000〜100,000のポリエチレンダ
レコールと2価の銅イオンと銅イオン1g当り上記ポリ
エチレングリコールの存在下で酸熟成した0、8g以上
のゼラチンを含むpH1〜2、液、温40〜70℃の水
溶液に2価の銅イオン1g当り1.2g以上のジメチル
アミンボランを添加し、2価の銅イオンを金属鋼に還元
した後、さらに液温70・ ℃以上で所望の時間熟成し
た後、水溶液のpHを2〜4に調整して製造される。
The catalyst solution for electroless plating of the present invention is acid-ripened in the presence of divalent copper ions, polyethylene Darecol having an average molecular weight of 1,000 to 100,000, divalent copper ions, and the above-mentioned polyethylene glycol per 1 g of copper ions. 1.2 g or more of dimethylamine borane per 1 g of divalent copper ions is added to an aqueous solution containing 0.8 g or more of gelatin at a pH of 1 to 2 and a temperature of 40 to 70°C. After reducing the aqueous solution to 70.degree. C. or higher for a desired period of time, the pH of the aqueous solution is adjusted to 2 to 4 to produce the aqueous solution.

本発明の鋼コロイド触媒液の製造において、2価の銅イ
オン源としては硫酸鋼あるいは水酸化第二銅が使用でき
、水溶液のpH調整には硫酸および水酸化カリウムが使
用される。本発明の平均分子1tx、ooo〜100,
000のポリエチレンダレコールは2価の銅イオンのジ
メチルアミンボランによる還元速度をコントロールし、
微小鋼金属粒の生成に寄与し、その添加量は2価の銅イ
オン1g当り1〜20gが適当である。ジメチルアミン
ボランにより還元された2価の銅イオンは銅金属粒子と
なりゼラチンにより保護され、コロイド粒子(銅コロイ
ド)を形成する。この後、未反応のジメチルアミンボラ
ンは徐々に加水分解し銅コロイド触媒液のpHが上昇す
る。銅コロイドはpH4以下で安定であり、pHが4を
超えると銅コロイドは凝集沈殿する。よって銅イオンを
完全に金属銅イオンに還元した後、これらの水溶液の温
度を70℃以上にし、未反応のジメチルアミンボランを
完全に加水分解させることが必要である。本発明の銅コ
ロイド触媒液の製造方法によると得られた銅コロイド触
媒液は長期間安定である。
In producing the steel colloidal catalyst liquid of the present invention, sulfuric acid steel or cupric hydroxide can be used as a divalent copper ion source, and sulfuric acid and potassium hydroxide are used to adjust the pH of the aqueous solution. The average molecule of the present invention 1tx, ooo ~ 100,
000 polyethylene Darecol controls the rate of reduction of divalent copper ions by dimethylamine borane,
It contributes to the formation of micro steel metal particles, and the appropriate amount of addition is 1 to 20 g per 1 g of divalent copper ions. Divalent copper ions reduced by dimethylamine borane become copper metal particles and are protected by gelatin to form colloidal particles (copper colloid). Thereafter, unreacted dimethylamine borane is gradually hydrolyzed and the pH of the copper colloid catalyst solution increases. Copper colloid is stable at pH 4 or lower, and when pH exceeds 4, copper colloid coagulates and precipitates. Therefore, after the copper ions are completely reduced to metallic copper ions, it is necessary to raise the temperature of these aqueous solutions to 70° C. or higher to completely hydrolyze unreacted dimethylamine borane. According to the method for producing a copper colloidal catalyst liquid of the present invention, the copper colloidal catalyst liquid obtained is stable for a long period of time.

〔実施例〕〔Example〕

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例−1 ゼラチン10gと平均分子量20,000のポリエチレ
ングリコール5gを約700mtの純水に溶解し温度6
0℃に保持しなから60wt%硫酸水溶液を15mt添
加し、約10分間熟成した。次いで28wt1水酸化ナ
トリウムを25mt添加し、熟成し九ゼラチン水溶液の
pHを1.8に調整した後、硫酸鋼(CuSO4−5H
20)を249g溶解させた。
Example-1 10 g of gelatin and 5 g of polyethylene glycol with an average molecular weight of 20,000 were dissolved in about 700 mt of pure water and heated to a temperature of 6.
While maintaining the temperature at 0° C., 15 mt of a 60 wt % sulfuric acid aqueous solution was added, and the mixture was aged for about 10 minutes. Next, 25mt of 28wt1 sodium hydroxide was added and aged to adjust the pH of the gelatin aqueous solution to 1.8, and then sulfuric acid steel (CuSO4-5H
20) was dissolved in 249g.

次に濃度100g/lのジメチルアミンボラン水溶液を
ttsmt添加し、液温60Cで銅イオンを完全に金属
銅に還元した。次にこれらの水溶液の温度を75℃にし
て2時間熟成し、未反応のジメチルアミンボランを完全
に加水分解させ、更に温度を室温まで冷却し、水溶液の
容量を純水を加えて1tとし、銅コロイド触媒液の濃縮
液を製造した。
Next, ttsm of dimethylamine borane aqueous solution having a concentration of 100 g/l was added, and the copper ions were completely reduced to metallic copper at a liquid temperature of 60C. Next, the temperature of these aqueous solutions was raised to 75°C and aged for 2 hours to completely hydrolyze unreacted dimethylamine borane, and the temperature was further cooled to room temperature, and the volume of the aqueous solutions was made up to 1 t by adding pure water. A concentrated solution of copper colloidal catalyst solution was produced.

実施例−2 実施例−1における平均分子量20,000のポリエチ
レングリコールの代わりに平均分子量1,000〜10
,000の範囲のポリエチレングリコールを使用し、実
施例−1と同様な操作により2種の銅コロイド触媒液の
濃縮液を製造した。
Example-2 Polyethylene glycol with an average molecular weight of 1,000 to 10 was used instead of polyethylene glycol with an average molecular weight of 20,000 in Example-1.
Concentrated solutions of two types of copper colloidal catalyst solutions were produced using polyethylene glycol in the range of .,000 and in the same manner as in Example-1.

実施例−3 実施例−1および実施例−2で製造した銅コロイド触媒
液とそれらの10倍希釈液を準備し、硫酸水溶液で銅コ
ロイド触媒液のpHを2.5に調整゛した。これらの銅
コロイド触媒液に貫通孔の形成された銅張りエポキシ樹
脂積層板を常温で5分間浸漬した後1分間流水で水洗し
、次いで液温25t:、pH=13の無電解銅めっき液
に約10分間浸漬し、貫通孔壁への無電解銅めっきの析
出性を調べた。
Example 3 The copper colloidal catalyst liquids produced in Examples 1 and 2 and their 10-fold dilutions were prepared, and the pH of the copper colloidal catalyst liquids was adjusted to 2.5 with an aqueous sulfuric acid solution. A copper-clad epoxy resin laminate with through-holes formed in these copper colloidal catalyst solutions was immersed for 5 minutes at room temperature, then washed with running water for 1 minute, and then immersed in an electroless copper plating solution with a solution temperature of 25 tons and a pH of 13. The sample was immersed for about 10 minutes, and the precipitation of electroless copper plating on the wall of the through hole was examined.

〔発明の効果〕〔Effect of the invention〕

6一 以上、本発明により貫通孔壁の凹面観察により全ての試
料の貫通孔壁への無電解銅めっきの被覆は完全であるこ
とが確認され本発明の実用性が立証された。
6. Above all, by observing the concave surface of the through-hole walls according to the present invention, it was confirmed that the electroless copper plating on the through-hole walls of all samples was completely covered, thus proving the practicality of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 2価の銅イオンと2価の銅イオン1g当り0.8g以上
のゼラチンと0.8g以上の平均分子量1,000〜1
00,000のポリエチレングリコールを含むpH1〜
2の水溶液に2価の銅イオン1g当り1.2g以上のジ
メチルアミンボランを添加した後、液温40℃から70
℃をこえない範囲で銅イオンを金属銅に還元した後、さ
らに液温70℃以上で所望の時間熟成した後、該水溶液
pHを2〜4に調整する工程から成る無電解めっき用銅
コロイド触媒液の製造方法。
Divalent copper ion and 0.8g or more of gelatin per 1g of divalent copper ion and 0.8g or more of average molecular weight 1,000 to 1
pH 1~ containing 00,000 polyethylene glycol
After adding 1.2 g or more of dimethylamine borane per 1 g of divalent copper ions to the aqueous solution of 2, the liquid temperature was increased from 40°C to 70°C.
A copper colloidal catalyst for electroless plating comprising the steps of reducing copper ions to metallic copper at a temperature not exceeding 70°C, further aging at a liquid temperature of 70°C or higher for a desired period of time, and adjusting the pH of the aqueous solution to 2 to 4. Method of manufacturing liquid.
JP26127784A 1984-12-11 1984-12-11 Production of colloidal copper catalyst solution for electroless plating Pending JPS61139672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26127784A JPS61139672A (en) 1984-12-11 1984-12-11 Production of colloidal copper catalyst solution for electroless plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26127784A JPS61139672A (en) 1984-12-11 1984-12-11 Production of colloidal copper catalyst solution for electroless plating

Publications (1)

Publication Number Publication Date
JPS61139672A true JPS61139672A (en) 1986-06-26

Family

ID=17359580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26127784A Pending JPS61139672A (en) 1984-12-11 1984-12-11 Production of colloidal copper catalyst solution for electroless plating

Country Status (1)

Country Link
JP (1) JPS61139672A (en)

Similar Documents

Publication Publication Date Title
SU747437A3 (en) Solution for activation of non-metallic surface prior to chemical metallization
JP3136539B2 (en) Plating substrate manufactured by direct electroplating of dielectric substrate
JPH0397873A (en) Process for coating plastic product
JPH0151546B2 (en)
US4762560A (en) Copper colloid and method of activating insulating surfaces for subsequent electroplating
JPS61139672A (en) Production of colloidal copper catalyst solution for electroless plating
JPS6123762A (en) Copper colloidal catalytic solution for electroless plating and its manufacture
EP0044878B1 (en) A stable aqueous colloid for the activation of non-conductive substrates and the method of activating
JPS6123764A (en) Copper colloidal catalytic solution for electroless plating and its manufacture
JPS6119784A (en) Copper colloid catalyst solution for electroless plating and its preparation
JPS637380A (en) Catalytic solution of copper colloid for electroless plating and its production
US4968398A (en) Process for the electrolytic removal of polyimide resins
JPS62263972A (en) Colloidal solution for copper catalyst for electroless plating and its production
JPS6123763A (en) Copper colloidal catalytic solution for electroless plating
JPS6119782A (en) Copper colloid catalyst solution
JPS62290879A (en) Catalytic solution of copper colloid for electroless plating and its production
JP3093259B2 (en) Complex compounds having oligomer or polymer properties
JPS6119783A (en) Copper colloid catalyst solution for electroless plating and its preparation
JPS634074A (en) Catalytic solution of copper colloid for electroless plating and its production
JP2982323B2 (en) Method for manufacturing polyimide substrate
EP0221359A1 (en) A process for accelerating Pd/Sn seeds for electroless copper plating
JPS6123765A (en) Copper colloidal catalytic solution for electroless plating and its manufacture
JPS634071A (en) Catalytic solution of copper colloid for electroless plating and its production
JPH06200396A (en) Manufacture of metal-coated polyimide substrate
JPH06316768A (en) Electroless plating method for fluorine containing polyimide resin