JPS61139639A - Manufacture of sintered-type rare earth magnet - Google Patents

Manufacture of sintered-type rare earth magnet

Info

Publication number
JPS61139639A
JPS61139639A JP59261686A JP26168684A JPS61139639A JP S61139639 A JPS61139639 A JP S61139639A JP 59261686 A JP59261686 A JP 59261686A JP 26168684 A JP26168684 A JP 26168684A JP S61139639 A JPS61139639 A JP S61139639A
Authority
JP
Japan
Prior art keywords
rare earth
sintering
sintered
cooling
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59261686A
Other languages
Japanese (ja)
Other versions
JPH0121219B2 (en
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP59261686A priority Critical patent/JPS61139639A/en
Publication of JPS61139639A publication Critical patent/JPS61139639A/en
Publication of JPH0121219B2 publication Critical patent/JPH0121219B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the magnet having superior magnetic properties, obviating the necessity of ageing, by cooling the compact under specific conditions after sintering, when manufacturing the magnetic alloy represented by R2T14B (where R is Nd, or Y and rare earth elements mainly composed of Nd, and T is Fe, or transition metals mainly composed of Fe) by powder metallurgy. CONSTITUTION:When manufacturing the magnetic alloy represented by the general formula R2T14B by powder metallurgy, the compact after sintering is cooled slowly to <= 550 deg.C at 30-500 deg.C/hr cooling rate and then cooled rapidly to form the magnetic alloy. In this way, the necessity of ageing after sintering is removed and the sintered-type magnet having superior magnetic properties can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Nd、FeおよびBを主成分とし。[Detailed description of the invention] [Industrial application field] The main components of the present invention are Nd, Fe, and B.

一般式R,,T、、B (R,はイッ) IJウムおよ
び希土類元素、Tは遷移金属を表わす)で示される希土
類磁石の製造方法に関し、%に焼結型磁石の製造方法に
関するものである。
Regarding the manufacturing method of rare earth magnets represented by the general formula R,,T,,B (R, represents IJium and rare earth element, T represents transition metal), % relates to the manufacturing method of sintered magnets. be.

〔従来技術〕[Prior art]

この種の焼結型希土類磁石の製造は、一般に次のように
して行なわれる。
This type of sintered rare earth magnet is generally manufactured as follows.

まず、原料を真空中または不活性雰囲気中でアーク溶解
または高周波溶解し、得られた合金をショークラッシャ
ー、鉄乳鉢あるいはロールミル等で粗粉砕した後、ボー
ルミル、振動ミルあるいはジェットミル等で微粉砕する
。この粉末を磁場配向し圧縮成形して成形体を得る。こ
の成形体を、不活性雰囲気中にて1通常1000〜11
50°Cの温度で焼結する。得られた焼結体はその磁石
特性を改善するために1通常600℃近傍の温度で2時
効処理され、焼結型希土類磁石を得ている。
First, the raw materials are arc melted or high frequency melted in a vacuum or inert atmosphere, and the resulting alloy is coarsely crushed using a show crusher, iron mortar, roll mill, etc., and then finely crushed using a ball mill, vibration mill, jet mill, etc. . This powder is oriented in a magnetic field and compression molded to obtain a molded body. This molded body is heated in an inert atmosphere to a concentration of 1,000 to 11
Sinter at a temperature of 50°C. The obtained sintered body is subjected to an aging treatment at a temperature usually around 600° C. to improve its magnetic properties, thereby obtaining a sintered rare earth magnet.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

上記したように、従来の方法では、焼結後に時効処理全
必要としており、その分工程数が増加し、かつ製造設備
を必要とする問題点があった。。
As described above, in the conventional method, aging treatment is required after sintering, which increases the number of steps and requires manufacturing equipment. .

時効処理を施さず、焼結後、単に冷却したままでは、高
い磁石特性を呈する磁石は得られなかった。
If the material was simply cooled after sintering without aging treatment, a magnet exhibiting high magnetic properties could not be obtained.

〔問題点を解決する手段〕[Means to solve problems]

本発明は、焼結後に1時効処理を必要とせず、′しかも
高い磁石特性を呈する焼結型磁石を得ることを目的とす
るものである。
The object of the present invention is to obtain a sintered magnet that does not require an aging treatment after sintering and exhibits high magnetic properties.

本発明者は9時効処理工程を省略するために。In order to omit the 9 aging treatment steps.

焼結終了後の冷却条件について種々検討したところ、一
定の冷却条件の下では9時効処理を施すことなく、高い
磁石特性を呈する磁石が得られることを究明した。
As a result of various studies on the cooling conditions after sintering, it was found that a magnet exhibiting high magnetic properties could be obtained under certain cooling conditions without performing aging treatment.

本発明は、この新規な知見にもとづくものである。The present invention is based on this new finding.

本発明は、一般式R2T14B (ここで、RはNd。The present invention is based on the general formula R2T14B (where R is Nd.

あるいはNdヲ主成分とするイツトリウムおよび希土類
元素、TはFe、あるいはFe k主成分とする遷移金
属、Bはホウ素である。)で表わされる希土類磁石合金
を粉末冶金法によって製造す、る方法において、成形体
を焼結後、30〜b/時間の冷却□速度にて550℃以
下の温度迄徐冷した後、急冷して希土類磁石合金を得る
ことを特徴とする焼結型希土類磁石の製造方法である。
Alternatively, Nd is the main component of yttrium and a rare earth element, T is Fe or Fe, a transition metal is the main component, and B is boron. ) In the method of manufacturing a rare earth magnetic alloy represented by the formula by powder metallurgy, the molded body is sintered and then slowly cooled to a temperature of 550°C or less at a cooling rate of 30 to 1000 b/hr, and then rapidly cooled. This is a method for producing a sintered rare earth magnet, characterized in that a rare earth magnet alloy is obtained by

本発明者の研究によれば、焼結完了後、急冷開始前に徐
冷を行なうと、急冷開始温度が700℃近傍から徐冷の
効果が現われ、磁石特性の改善が行なわれる。しかしな
がら、急冷開始温度が550℃より高いと、その効果が
顕著ではなく。
According to research conducted by the present inventors, when slow cooling is performed after sintering is completed and before the start of rapid cooling, the effect of slow cooling appears from a rapid cooling start temperature of around 700° C., and the magnetic properties are improved. However, when the quenching start temperature is higher than 550°C, the effect is not significant.

550℃以下とすると高い磁石特性のものが得られる。If the temperature is 550° C. or lower, high magnetic properties can be obtained.

従って夕、冷開始温度ヲ550℃以下としだ。Therefore, in the evening, the temperature at which the cold starts will be below 550℃.

なお、金属層の生成反応は100℃以下の温度。Note that the metal layer formation reaction takes place at a temperature of 100°C or lower.

では極めて遅くなることが知られており、磁石特性の低
下の割合は非常に小さくなる。従って急冷開始温度の下
限は特に規定する必要はない。
It is known that the rate of deterioration in magnetic properties is extremely small. Therefore, there is no need to particularly specify the lower limit of the quenching start temperature.

工業上は室温近傍が急冷開始温度の低温側の有効な限界
である。
Industrially, the effective low temperature limit of the quenching start temperature is around room temperature.

また焼結完了後から、急冷開始迄の徐冷の冷却速度につ
いては、冷却速度が500℃/時間より遅い場合に徐冷
の効果が現れる。しかし、冷却速度が遅いと冷却時間が
長くなるので、工業的な利益から見て、冷却速度の下限
は60°C/時間とする。
Regarding the cooling rate of slow cooling from the completion of sintering to the start of rapid cooling, the effect of slow cooling appears when the cooling rate is slower than 500° C./hour. However, if the cooling rate is slow, the cooling time becomes long, so from the viewpoint of industrial benefits, the lower limit of the cooling rate is set to 60°C/hour.

以下2本発明の実施例について述べる。Two embodiments of the present invention will be described below.

wt%、Bが1.3 wt%、残部Feとなる様に、ア
ルゴン雰囲気中で、高周波加熱により溶解し、インゴッ
トを得た。
The ingot was melted by high frequency heating in an argon atmosphere so that the content of B was 1.3 wt% and the balance was Fe.

次にこの合金を粗粉砕した後、ボールミルを用いて平均
粒径約5μmに微粉砕した。 この粉末を10KQeの
磁界中1jOn/、L2の圧力で成形した。この成形体
i 1080℃で真空中1時間保持した後、 Ar中1
時間保持し焼結した。その後。
Next, this alloy was coarsely ground, and then finely ground to an average particle size of about 5 μm using a ball mill. This powder was molded in a magnetic field of 10KQe at a pressure of 1jOn/L2. After holding this molded body i in vacuum at 1080°C for 1 hour, it was heated in Ar
It was held for a time and sintered. after that.

100〜1080℃まで60℃/時間の冷却速度で徐冷
し、水中へ急冷した。
The mixture was gradually cooled to 100 to 1080°C at a cooling rate of 60°C/hour, and then rapidly cooled into water.

その結果を第1図に示す。徐冷の効果は700℃近傍よ
り認められ、550℃近傍以下での急冷で磁石特性は顕
著に向上している。
The results are shown in FIG. The effect of slow cooling is recognized from around 700°C, and the magnetic properties are significantly improved by rapid cooling at around 550°C or lower.

を作成した。この成形体を1080℃で真空中1時間保
持した後+ Ar中1時間保持し焼結した。
It was created. This molded body was held at 1080° C. in vacuum for 1 hour and then held in +Ar for 1 hour to sinter.

その後、焼結温度から400℃まT、 30〜800℃
/時間の冷却速度で連続的に冷却した後、水中へ急冷し
た。
Then, from the sintering temperature to 400℃, 30 to 800℃
After continuous cooling at a cooling rate of /hour, quenching into water was performed.

その結果を第2図に示す。冷却速度が500℃/時間以
下で磁石特性は著しく向上している。
The results are shown in FIG. Magnetic properties are significantly improved when the cooling rate is 500° C./hour or less.

以上の実施例は、不純物程度の他の希土類元素を含むN
dfr:合金原料として使用したR−Fe・B系磁石に
ついて述べているが、焼結後の冷却条件の効果は、 N
d、 Fe、 B ′ff:主成分とするR2T14B
系磁石合金であれば、十分に期待できることは、容易に
推察できる。
In the above embodiment, N containing other rare earth elements to the extent of impurity
dfr: This article describes the R-Fe・B magnet used as an alloy raw material, but the effect of cooling conditions after sintering is
d, Fe, B'ff: R2T14B as main component
It can be easily inferred that this type of magnet alloy can be fully expected.

本発明について1以上詳しく説明したが、 Nd。Although the present invention has been described in detail at least once, Nd.

Fe、Bi主成分とするR2T、4B系磁石合金を粉末
冶金法によって製造する方法において、焼結後。
After sintering in a method for producing an R2T, 4B magnet alloy containing Fe and Bi as main components by powder metallurgy.

焼結体全30〜500’Cフ時間の冷却速度にて、55
0℃以下の温度まで徐冷した後、急冷することにより、
著しく磁石特性が向上する。また、この発明により製造
工程の簡素化(時効処理の省略)も実現され、工業上非
常に有益である。
The entire sintered body was cooled at a cooling rate of 30 to 500'Cf hours.
By slowly cooling to a temperature of 0°C or less, and then rapidly cooling,
Magnetic properties are significantly improved. Furthermore, the present invention also simplifies the manufacturing process (omission of aging treatment), which is very useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1における焼結後の急冷開始温度と磁
石特性の関係を示す。 第2図は、実施例2における焼結後の徐冷速度と磁石特
性の関係を示す。
FIG. 1 shows the relationship between the quenching start temperature after sintering and magnetic properties in Example 1. FIG. 2 shows the relationship between the slow cooling rate after sintering and the magnetic properties in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 1、一般式R_2T_1_4B(ここで、RはNd、あ
るいはNdを主成分とするイットリウムおよび希土類元
素、TはFeあるいはFeを主成分とする遷移金属、B
はほう素である)で表わされる希土類磁石合金を粉末冶
金法によって製造する方法において、成形体を焼結後、
30〜500℃/時間の冷却速度にて550℃以下の温
度迄徐冷した後、急冷して希土類磁石合金を得ることを
特徴とする焼結型希土類磁石の製造方法。
1. General formula R_2T_1_4B (here, R is Nd or yttrium and rare earth elements mainly composed of Nd, T is Fe or a transition metal mainly composed of Fe, B
In a method for manufacturing a rare earth magnet alloy represented by boron) by a powder metallurgy method, after sintering the compact,
A method for producing a sintered rare earth magnet, which comprises slowly cooling to a temperature of 550°C or less at a cooling rate of 30 to 500°C/hour, and then rapidly cooling to obtain a rare earth magnet alloy.
JP59261686A 1984-12-13 1984-12-13 Manufacture of sintered-type rare earth magnet Granted JPS61139639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261686A JPS61139639A (en) 1984-12-13 1984-12-13 Manufacture of sintered-type rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261686A JPS61139639A (en) 1984-12-13 1984-12-13 Manufacture of sintered-type rare earth magnet

Publications (2)

Publication Number Publication Date
JPS61139639A true JPS61139639A (en) 1986-06-26
JPH0121219B2 JPH0121219B2 (en) 1989-04-20

Family

ID=17365311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261686A Granted JPS61139639A (en) 1984-12-13 1984-12-13 Manufacture of sintered-type rare earth magnet

Country Status (1)

Country Link
JP (1) JPS61139639A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184626A (en) * 1984-03-02 1985-09-20 Namiki Precision Jewel Co Ltd Manufacture of permanent magnet alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184626A (en) * 1984-03-02 1985-09-20 Namiki Precision Jewel Co Ltd Manufacture of permanent magnet alloy

Also Published As

Publication number Publication date
JPH0121219B2 (en) 1989-04-20

Similar Documents

Publication Publication Date Title
JPS62206801A (en) Manufacture of rare earth magnet
JPS6348805A (en) Manufacture of rare-earth magnet
JPS61139639A (en) Manufacture of sintered-type rare earth magnet
JPH0576161B2 (en)
JPH0568841B2 (en)
JPS62282417A (en) Manufacture of rare earth magnet
JP2725004B2 (en) Manufacturing method of permanent magnet
JPS63157844A (en) Manufacture of permanent magnet material
JP3138927B2 (en) Rare earth magnet manufacturing method
JPS59126733A (en) Manufacture of rare earth element-cobalt magnet
JPS594107A (en) Manufacture of rare earth and cobalt group magnetic material
JPH0122970B2 (en)
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JPS62167842A (en) Production of rare earth magnet
JPH0426524B2 (en)
JPS6263645A (en) Production of permanent magnet material
JPS5848606A (en) Production of permanent magnet of rare earths
JPH03247703A (en) Manufacture of permanent magnet
JPS5874005A (en) Permanent magnet
JPS6230843A (en) Production of magnet containing rare earth element
JPS6150310A (en) Sintered type rare-earth magnet
JPH0457741B2 (en)
JPS6068603A (en) Manufacture of rare-earth cobalt magnet
JPS6293908A (en) Manufacture of rare-earth magnet
JPS63157845A (en) Manufacture of permanent magnet material