JPS61134454A - Non-timbering construction of reinforced concrete building - Google Patents

Non-timbering construction of reinforced concrete building

Info

Publication number
JPS61134454A
JPS61134454A JP25718584A JP25718584A JPS61134454A JP S61134454 A JPS61134454 A JP S61134454A JP 25718584 A JP25718584 A JP 25718584A JP 25718584 A JP25718584 A JP 25718584A JP S61134454 A JPS61134454 A JP S61134454A
Authority
JP
Japan
Prior art keywords
construction
stress
steel
reinforced concrete
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25718584A
Other languages
Japanese (ja)
Inventor
館林 利雄
真一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP25718584A priority Critical patent/JPS61134454A/en
Publication of JPS61134454A publication Critical patent/JPS61134454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄骨造又は鉄骨鉄筋コンクリート造(以下
SRC造と略す)建物の構築、特に床スラブ施工の分野
において実施される無支保工化工法に係り、さらにいえ
ば、ブレストレス導入によるSRC梁の無支保工化工法
に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention relates to an unsupported construction method that is used in the construction of steel frame or steel reinforced concrete (hereinafter referred to as SRC) buildings, particularly in the field of floor slab construction. More specifically, the present invention relates to a construction method for converting SRC beams into unsupported structures by introducing braceless beams.

(従来技術とその問題点) 従来、SRC造建物の床スラブ施工においては、通常第
5図に示したように階下の梁下A及び床版下Bにこれら
を支持する支保工C・・・を多数林立させ、もって施工
時荷重に必要十分な強度を確保することが行なわれた。
(Prior art and its problems) Conventionally, in the construction of floor slabs for SRC buildings, as shown in Fig. 5, shoring C... A large number of them were installed in a forest to ensure sufficient strength to withstand the load during construction.

しかし、これでは支保工C・・・を設置するために工期
が長期化する欠点があった。
However, this had the disadvantage of prolonging the construction period due to the installation of shoring C...

そこで従来、工期の短縮を図るため、ミツコースラブや
オースト等の無支保工化が行なわれてきた。しかし、第
6図に示したように、大梁下Aについては依然支保工C
・・・が不可欠であった。その理由は、鉄骨部分のみで
は施工時荷重に対しての強度が不足するためである。
Therefore, in order to shorten the construction period, unsupported constructions such as mitsukose slabs and austs have been used in the past. However, as shown in Figure 6, there is still support C for the lower beam A.
...was essential. The reason for this is that the steel frame alone lacks the strength to withstand the load during construction.

結局、梁下Aの支保工をも不要とし、階下の支保工を皆
無とするためには、一般的には設計時点で鉄骨を厚肉と
し梁鉄骨の強度を上げるほかな一゛く、そうでなければ
支保工を使用するの二者択一の途しかなかったのが実情
である。
In the end, in order to eliminate the need for shoring under the beam A, and to eliminate the need for shoring at all downstairs, the only way to do so is to increase the strength of the steel beam by increasing the thickness of the steel frame at the time of design. Otherwise, the only option was to use shoring.

(発明の目的) そこで、この発明の目的は、ブレストレス導入の手段に
より、鉄骨を厚肉とすることなく、施工時荷重に対して
横架材たる鉄骨部分が必要十分な強度を満足するものと
なし、もって階下の支保工を皆無となし得るSRC造建
物の無支保工化工法を提供することにある。
(Objective of the Invention) Therefore, the object of the present invention is to provide a steel frame, which is a horizontal member, with sufficient strength to withstand the load during construction, by introducing brace stress, without making the steel frame thick. Therefore, the object of the present invention is to provide a construction method for making an SRC building unsupported, thereby completely eliminating the need for supporting below floors.

(発明の構成) 上記目的を達成するために、この発明のSRC造建物の
無支保工化工法は、SRC造建物の構築施工法において
、横架材たる鉄骨梁の下弦材(下部フランジ)に、施工
時荷重に対して必要十分な強度を満足しその撓みを防止
する大きさのブレストレスを付与し、しかる後にスラブ
の施工を行なう構成とされている。
(Structure of the Invention) In order to achieve the above object, the unsupported construction method for SRC buildings of the present invention is applied to the lower chord members (lower flanges) of steel beams, which are horizontal members, in the construction method of SRC buildings. The structure is such that a breast stress of a size that satisfies the necessary and sufficient strength against the load during construction and prevents deflection is applied, and then the slab is constructed.

(実施例) さらに、図示した実施例により詳細に説明する。(Example) Further details will be explained with reference to illustrated embodiments.

第1図はこの発明の無支保工化工法による床スラブの施
工要領を示している。即ち、階下の床版下Bはもとより
、大梁下Aについても支保工は一切使用されておらず、
皆無とされている。
FIG. 1 shows the procedure for constructing a floor slab using the unsupported construction method of the present invention. In other words, no shoring was used at all, not only under the floor slab B, but also under the girder A.
It is said that there are no such cases.

第2図と第3図A、Bは、この発明の無支保工化工法の
要部として、横架材の鉄骨部分たる大梁中央部材(H形
鋼)1の詳細を示している。即ち大梁中央部材1のフラ
ンジ(下弦材)1aにおける左右両端部にブラケット2
.3を固着して設け、その間にPC鋼線4を張設し、ナ
ツト5で締め付けて予め引張力をかけ、もってコンクリ
ート打設時の施工時応力とは逆向きのブレストレスをか
けている。
2 and 3A and 3B show details of a girder center member (H-beam) 1, which is a steel frame portion of a horizontal member, as a main part of the unsupported construction method of the present invention. That is, brackets 2 are installed at both left and right ends of the flange (lower chord member) 1a of the girder central member 1.
.. 3 are fixedly provided, and a PC steel wire 4 is stretched between them, and is tightened with a nut 5 to apply a tensile force in advance, thereby applying a brace stress in the opposite direction to the stress at the time of concrete pouring.

即ち、施工時荷重に対して大梁中央部材1が必要強度を
満足し撓みを防止する大きさのブレストレスを付与して
おくのであり、PC鋼線4によって付与するブレストレ
スにより、大梁中央部材1には施工時応力とは逆向きの
偏心モーメントが生じるのである。
In other words, a breast stress of a size that allows the central beam member 1 to satisfy the required strength and prevent deflection against the load during construction is applied. An eccentric moment occurs in the opposite direction to the stress during construction.

ところで、第4図A、B、Cは必要ブレストレスPの大
きさの算出方法及びその考え方について示している。以
下にこれを略述する。
By the way, FIGS. 4A, B, and C show a method of calculating the size of the required breast stress P and its concept. This will be briefly explained below.

まず第4図Aは施工時荷重(コンクリート、鉄骨、鉄筋
の自重+施工時荷重(80kg/ln’) )による応
力図を示している。かくして施工荷重時の応力を算定し
、0点、D点、E点のモーメントを算出する。
First, Fig. 4A shows a stress diagram due to the construction load (self weight of concrete, steel frame, and reinforcing bars + construction load (80 kg/ln')). In this way, the stress at the time of construction load is calculated, and the moments at point 0, point D, and point E are calculated.

次に、第4図Bはブレストレス導入時の応力図を示して
いる。即ちD点のモーメントMo=0となるようなブレ
ストレス(偏心モーメン)Mp)を与えているのである
。かくしてMD =MP となる条件を設定し、その時
の0点の応力度を検討し、それが許容応力内の場合にそ
のMpを決定するのである。
Next, FIG. 4B shows a stress diagram when introducing breath stress. In other words, a breath stress (eccentric moment Mp) is provided such that the moment Mo at point D becomes 0. In this way, the condition that MD = MP is set, the stress degree at the zero point at that time is examined, and if it is within the allowable stress, the Mp is determined.

第4図Cは、上記Mo=Mpの条件では0点の応力度が
許容応力内におさまらない場合に、許容応力内におさま
る範囲の偏心モーメン)  sMをブレストレスとして
導入した場合の応力図を示している。かくして、D点の
応力度が大梁中央部材1の応力度を満足し、撓みが制限
内におさまるSMを決定するのである。
Figure 4C shows the stress diagram when the eccentric moment (sM) in the range that falls within the allowable stress when the stress at the 0 point does not fall within the allowable stress under the condition of Mo = Mp mentioned above is introduced as the breath stress. It shows. In this way, an SM is determined in which the stress degree at point D satisfies the stress degree of the central beam member 1 and the deflection is within the limits.

なお、上記の方法で求めた必要ブレストレスPは、通常
の施工においてはマイクロコンピュータ−の処理により
即座に出力し実施することが可能である。
In addition, the required breast stress P determined by the above method can be immediately output and implemented through microcomputer processing in normal construction.

(作用効果) 以上に詳述したとおり、この発明の無支保工化工法によ
れば、横架材たる鉄骨梁に対してブレストレスを付与す
ることにより、設計時点での鉄骨を厚肉とすることなく
、階下の支保工を皆無とすることができる。よって、支
保工の設置を要しない分だけ工期の大幅な短縮化が図れ
る。
(Function and Effect) As detailed above, according to the unsupported construction method of the present invention, the thickness of the steel frame at the time of design can be increased by applying breath stress to the steel beam that is the horizontal member. It is possible to eliminate the need for supporting structures downstairs. Therefore, the construction period can be significantly shortened by not requiring the installation of shoring.

のみならず、鉄骨工作時点で容易に施工できるブレスト
レス導入の方法に依るので、施工性、安全性の向上が図
れる。
In addition, since it relies on the method of introducing braces that can be easily installed at the time of steel frame work, it is possible to improve workability and safety.

しかも、施工時の梁の撓みが減少されるので、これによ
る品質確保ないし向上を期待できる。
Furthermore, since the deflection of the beam during construction is reduced, quality can be expected to be ensured or improved.

この発明の工法は、特にロングスパン構造での効果が大
きいのである。
The construction method of this invention is particularly effective for long span structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の無支保工化工法による施工状況を示
した立面図、第2図は鉄骨梁のブレストレス導入の構造
を示した正面図、第3図Aは第2図のm部拡大図、第3
図Bは同A図の右側面図、第4図A、B、Cは鉄骨梁の
架橋時応力図及びブレストレス導入時の応力図、第5図
と第6図は従来の床スラブ施工図である。
Figure 1 is an elevation view showing the construction situation using the unsupported construction method of this invention, Figure 2 is a front view showing the structure of the steel beam with brace stress introduced, and Figure 3A is the m of Figure 2. Enlarged view of section, 3rd
Figure B is a right side view of Figure A, Figures 4 A, B, and C are stress diagrams of steel beams during bridge construction and stress diagrams when introducing breath stress, and Figures 5 and 6 are construction diagrams of conventional floor slabs. It is.

Claims (1)

【特許請求の範囲】[Claims] (1)鉄骨造又は鉄骨鉄筋コンクリート造建物の構築施
工法において、 横架材たる鉄骨梁(1)の下弦材(1a)に、施工時荷
重に対し所定の強度を満足する大きさのブレストレスを
予め付与し、しかる後に床スラブの施工を行なうことを
特徴とする鉄骨鉄筋コンクリート造建物の無支保工化工
法。
(1) In the construction method of steel frame or steel reinforced concrete buildings, the bottom chord (1a) of the steel beam (1), which is the horizontal member, is provided with a brace of a size that satisfies the specified strength against the load during construction. A construction method for converting a steel-framed reinforced concrete building into an unsupported building, which is characterized by applying the floor slab in advance and then constructing the floor slab.
JP25718584A 1984-12-04 1984-12-04 Non-timbering construction of reinforced concrete building Pending JPS61134454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25718584A JPS61134454A (en) 1984-12-04 1984-12-04 Non-timbering construction of reinforced concrete building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25718584A JPS61134454A (en) 1984-12-04 1984-12-04 Non-timbering construction of reinforced concrete building

Publications (1)

Publication Number Publication Date
JPS61134454A true JPS61134454A (en) 1986-06-21

Family

ID=17302858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25718584A Pending JPS61134454A (en) 1984-12-04 1984-12-04 Non-timbering construction of reinforced concrete building

Country Status (1)

Country Link
JP (1) JPS61134454A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134117U (en) * 1989-04-11 1990-11-07
JPH04131466A (en) * 1990-09-20 1992-05-06 Takenaka Komuten Co Ltd Building
JP2012127089A (en) * 2010-12-14 2012-07-05 Kurosawa Construction Co Ltd Composite structural beam using outer cable system tension steel material together
JP2013096148A (en) * 2011-11-01 2013-05-20 Japan Steels Group Kk Temporary passage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138644A (en) * 1983-01-25 1984-08-09 新日本製鐵株式会社 Constructon of synthetic floor consisting of pc beam or ps beam and deck plate floor slab concrete

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138644A (en) * 1983-01-25 1984-08-09 新日本製鐵株式会社 Constructon of synthetic floor consisting of pc beam or ps beam and deck plate floor slab concrete

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134117U (en) * 1989-04-11 1990-11-07
JPH04131466A (en) * 1990-09-20 1992-05-06 Takenaka Komuten Co Ltd Building
JP2012127089A (en) * 2010-12-14 2012-07-05 Kurosawa Construction Co Ltd Composite structural beam using outer cable system tension steel material together
JP2013096148A (en) * 2011-11-01 2013-05-20 Japan Steels Group Kk Temporary passage

Similar Documents

Publication Publication Date Title
US11111664B2 (en) Method of introducing prestress to beam-column joint in triaxial compression
KR100447013B1 (en) Beam system composed of asymmetric steel section with web hole and concrete
JPS61134454A (en) Non-timbering construction of reinforced concrete building
JPS62146342A (en) Reinforced steel bar beam
JP2827851B2 (en) Prestressed steel beam
JPS5873650A (en) Apparatus for reinforcing opening of concrete structure
JPS61165452A (en) Concrete filled steel beam
JP3348548B2 (en) Refractory beam
JP2000248685A (en) Beam member for steel framing structure
JPH08120770A (en) Bar arranging structure of reinforced concrete member
JPH01268947A (en) Beam with reinforced concrete end and steel central structure
JPH01137034A (en) Framework of composite building construction
JP3026112B2 (en) Pin-jointed steel frame structure using two parallel girders
JPH04302607A (en) Composite girder and girder part of bridge beam
JPH047435A (en) Steel framed reinforced concrete rigid-framed structure using partially precast beam
Kolston et al. Diaphragms in seismic resistant buildings: Section D
JP2545017B2 (en) Tension force Externally supported composite beam
JPH0480443A (en) Continuous small beam structure
JP2948490B2 (en) Precast concrete member end support structure
Naillon Discussion of “Behavior of Prestressed Composite Steel Beams”
JP2691278B2 (en) String form support method
SU1043278A1 (en) Ferroconcrete girder
JPS6055144A (en) Iron skeletal column and beam connecting apparatus
SU949108A1 (en) Device for connecting metal truss to pillar
JPH05287842A (en) Prestressed synthetic beam