JPS61133876A - Super high frequency band probe card - Google Patents

Super high frequency band probe card

Info

Publication number
JPS61133876A
JPS61133876A JP59256079A JP25607984A JPS61133876A JP S61133876 A JPS61133876 A JP S61133876A JP 59256079 A JP59256079 A JP 59256079A JP 25607984 A JP25607984 A JP 25607984A JP S61133876 A JPS61133876 A JP S61133876A
Authority
JP
Japan
Prior art keywords
probe
high frequency
ultra
coaxial line
probe card
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59256079A
Other languages
Japanese (ja)
Inventor
Hiromitsu Hirayama
裕光 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59256079A priority Critical patent/JPS61133876A/en
Publication of JPS61133876A publication Critical patent/JPS61133876A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/18Screening arrangements against electric or magnetic fields, e.g. against earth's field

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

PURPOSE:To facilitate the checking of the operation in the wafer state in a super high frequency area, by fastening a skin conductor of a coaxial line to a metalized layer the same in the positional as a ground conductor formed on the surface facing a wafer. CONSTITUTION:A metalized layer 4 is formed on the surface of a probe card 2 facing a wafer 1 to be measured and electrically connected to a measurement based ground potential. Skin conductors of coaxial lines 5 and 6 for input and output are fastened to the metalized layer 4 of the ground potential and connected to an external measuring system through a connector 3 connected to the coaxial lines. The center conductors of the coaxial lines 5 and 6 are extended to form a probe 7 at the tip thereof and a ground probe 8 is fastened to the probe side end of the coaxial skin conductor. Thus, the length of the probe can be cut to about 2mm to reduce the inductance significantly. In addition, induced high frequency signal line of electric force to be generated from a high frequency probe can be absorbed by the ground conductor of the back of the probe card thereby lessening dielectric noises.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明はプローブカードに関し、特に数Gbit7se
cの超高速動作チェックをウェハ状態で行なうことを可
能とする超高周波帯プローブカードに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a probe card, particularly a multi-Gbit 7SE probe card.
The present invention relates to an ultra-high frequency band probe card that allows ultra-high-speed operation checks of c. to be performed in a wafer state.

〔従来の技術〕[Conventional technology]

マイクロ波応用技術および半導体集積回路技術の進展に
伴ないマイクロ波領域(数Gb己/sec以上)におけ
る超高速論理回路の必要性が高まっている、特に砒化ガ
リウム基板上に形成されたモノリシ、ツタ集積化回路は
、砒化ガリウムの高電子の移動度に起因する高速性から
超高速論理回路に適しており、例えば@GHz以上で動
作するマイクロ波通信用分周回路等において実用化され
つつある。
With the progress of microwave application technology and semiconductor integrated circuit technology, the need for ultra-high-speed logic circuits in the microwave region (several Gb/sec or higher) is increasing, especially for monolithic and ivy formed on gallium arsenide substrates. Integrated circuits are suitable for ultrahigh-speed logic circuits because of their high speed due to the high electron mobility of gallium arsenide, and are being put into practical use, for example, in frequency divider circuits for microwave communications that operate at @GHz or higher.

一方、上記超高速論理回路を低コストで供給するために
は製造工程の早い段階で(例えばウェハ状態で)動作チ
ェックを行ない、工数を低減し、あるいは設計工数の低
減を図ることが必要である。
On the other hand, in order to supply the above-mentioned ultra-high-speed logic circuits at low cost, it is necessary to perform operation checks at an early stage of the manufacturing process (for example, in the wafer state) to reduce the number of man-hours or design man-hours. .

しかるに従来構造のプローブカードに依れば数十にHz
以上の動作チェックは不可能であり、また後述するよう
に、同軸線路を使用する等、高周波化のため特別に設計
されたプローブカードを用いても、高々2〜3 GHz
までしか使用でさす、3GHz以上で動作する分周器環
、超高速論理回路に対するウェハ状態での動作チェック
は不可能である。このためペレッタイズ後適切なパフケ
ージに組立てた後高周波測定を行っているが、多大の工
数を要し、設計工数の低減及び低コスト化の見地から極
めて不具合であった。
However, with a probe card of conventional structure, the frequency is in the tens of Hz.
It is impossible to check the above operation, and as will be explained later, even if a probe card specially designed for high frequencies, such as using a coaxial line, is used, it will not exceed 2 to 3 GHz at most.
It is impossible to check the operation of frequency divider rings and ultra-high-speed logic circuits operating at 3 GHz or higher in the wafer state. For this reason, high-frequency measurements are performed after pelletizing and assembling a suitable puff cage, but this requires a large amount of man-hours and is extremely inconvenient from the standpoint of reducing design man-hours and cost.

次に従来例について更に詳細に説明する。一般に半導体
集積回路をプローブカードによりウェハ状態で高周波測
定を行なう際、次のような点が問題である。
Next, the conventional example will be explained in more detail. Generally, when performing high frequency measurements on semiconductor integrated circuits in a wafer state using a probe card, the following problems arise.

(1)被測定集積回路入力端子の極く近傍まで十分な高
周波特性を有する伝送線路が形成されているが、プロー
ブ部のインダクタンスが一般に高い、従来から広く使用
されているプローブカードにおいては、プローブカード
の一主表面(ウェハ対向面の逆側)よりウェハ面に達す
るプローブを使用しているのでプローブ長が極めて長く
、そのインダクタンスは極めて大きくなる。このため測
定可能周波数は高々数十MHzまでであり、数Gbit
/seaに達する超高速論理回路の高周波測定において
全く用を成さない。
(1) Although a transmission line with sufficient high-frequency characteristics is formed very close to the input terminal of the integrated circuit under test, the inductance of the probe section is generally high in conventional probe cards that have been widely used. Since a probe is used that reaches the wafer surface from one main surface of the card (the side opposite to the wafer facing surface), the probe length is extremely long and its inductance is extremely large. Therefore, the measurable frequency is several tens of MHz at most, and several Gbit.
It is of no use at all in high-frequency measurements of ultra-high-speed logic circuits that reach /sea.

(2)プローブカード上に複数個形成される伝送線路の
接地面は互いに独立に接地されているため、誘導雑音等
が乗畳しやすい。
(2) Since the ground planes of a plurality of transmission lines formed on the probe card are grounded independently of each other, induction noise and the like are likely to be mixed up.

即ち近年同軸線路を用いた高周波プローブカードが使用
され始めたが、第1に複数個存在する同軸線路、各外皮
導体は互いに被測定IC近傍で電気的に接続されていな
い、故に直流的に接地はされていても各同軸線路外皮導
体のプローブ側の端部には、高周波の誘導雑音が乗畳し
、各プローブ間にクロストークが生ずる。また超高周波
用プローブに隣接して接地用プローブが設けられている
が、この接地用プローブはDCプローブと同様な構造を
有しており、また超高周波用同軸線路外皮導体のプロー
ブ側の端部に接続されていないため必然的に接地用プロ
ーブ長が5■以上と極めて長い、このため後述するイン
ダクタンスの低減効果も少ないばかりか誘導雑音を生ぜ
しめる原因ともなる0以上の理由により、同軸線路を用
いた従来構造のプローブカードによっても使用可能周波
数は2〜3GHzまでであり、より高速で動作する超高
速論理回路の動作チェックには使用不能であった。
In other words, in recent years, high-frequency probe cards using coaxial lines have begun to be used, but firstly, there are multiple coaxial lines, and each outer conductor is not electrically connected to each other near the IC under test, so it is difficult to ground in terms of DC. Even if the coaxial line outer conductor is connected to the probe side end of each coaxial line sheath conductor, high-frequency induced noise is superimposed, and crosstalk occurs between the probes. Further, a grounding probe is provided adjacent to the ultra-high frequency probe, but this grounding probe has a similar structure to the DC probe, and the end of the ultra-high frequency coaxial line outer conductor on the probe side Since the grounding probe is not connected to the ground, the length of the grounding probe is inevitably extremely long, more than 5cm.For this reason, the inductance reduction effect described later is not only small, but also causes induction noise. Even with the conventional probe card used, the usable frequency is 2 to 3 GHz, and it cannot be used to check the operation of ultra-high-speed logic circuits that operate at higher speeds.

従って3 GHzHz以上作する超高速論理回路をウェ
ハ状態で動作チェックし、設計効率の改善及び低コスト
化を実現するには従来技術では対応不可能である。
Therefore, it is impossible to check the operation of ultrahigh-speed logic circuits manufactured at 3 GHz or higher in the wafer state, and to improve design efficiency and reduce costs using conventional techniques.

(3)一般に被測定集積回路の入力インピーダンスは測
定系の入力インピーダンス(50Ω)と一致せず、特に
砒化ガリウムICにおいては高インピーダンスである。
(3) In general, the input impedance of the integrated circuit under test does not match the input impedance (50Ω) of the measurement system, and gallium arsenide ICs have particularly high impedance.

従って反射波の悪影響を除去し測定系との整合をとるた
めに、被測定集積回路入力端子の極く近傍において50
Ω終端をする必要がある。
Therefore, in order to eliminate the adverse effects of reflected waves and ensure matching with the measurement system, the
Ω termination is required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記従来技術の問題点に鑑みて提案されたもの
であり、超高速論理回路をウェハ状態で、かつ数Gbi
t/secの超高周波領域の動作チェックを可能とする
超高周波帯プローブカードを提供することを目的とする
The present invention has been proposed in view of the problems of the prior art described above, and is capable of manufacturing ultra-high-speed logic circuits in a wafer state and with a capacity of several Gbi.
It is an object of the present invention to provide an ultra-high frequency band probe card that enables operation check in an ultra-high frequency region of t/sec.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る超高周波帯プローブカードはウェハと対向
する面上に接地導体と同電位を有する金属化層が形成さ
れ、同軸線路の外皮導体が接地導体金属化層と電気的に
同電位となるよう固着されていることを基本的な特徴と
する。
In the ultra-high frequency band probe card according to the present invention, a metallized layer having the same potential as the ground conductor is formed on the surface facing the wafer, and the outer conductor of the coaxial line has the same electrical potential as the ground conductor metallized layer. The basic feature is that it is firmly fixed.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明するe第1図は
本発明の実施例に係る超高周波帯プローブカードの断面
図であり、1は被測定ウェハ、2はプローブカードであ
る。ウェハと対向するプローブカードの面には例えば蒸
着等の方法により金属化R4が形成され、測定系接地電
位と電気的に接続されている。5.6は各々入力用、出
力用同軸線路であり、その外皮導体は接地電位の金属化
層4に半田付または導電性樹脂付等の方法で固着されて
いる。3は同軸線路に接続するコネクタであり、このコ
ネクタを介して外部測定系との接続が成される。
The present invention will be described in detail below with reference to the drawings. Fig. 1 is a sectional view of an ultra-high frequency band probe card according to an embodiment of the present invention, where 1 is a wafer to be measured and 2 is a probe card. A metallization R4 is formed on the surface of the probe card facing the wafer by a method such as vapor deposition, and is electrically connected to the measurement system ground potential. Reference numerals 5 and 6 denote coaxial lines for input and output, respectively, the outer conductors of which are fixed to the metallized layer 4 at ground potential by soldering, conductive resin, or the like. 3 is a connector connected to a coaxial line, and connection with an external measurement system is made through this connector.

また同軸線路5及び6の中心導体は延長され。Also, the center conductors of coaxial lines 5 and 6 are extended.

その先端はエツチング等の方法で成形されプローブ7を
形成している。中心導体は例えばタングステン等で形成
されているため、十分な機械的弾性力をもっている。各
同軸線路外皮導体のプローブ側の端部は、結線用導体線
9に半田付または導電性樹脂付されて互いに結線され、
接地を確実なものとしている。更に各同軸線路外皮導体
のプローブ側の端部に接地用プローブ8が固着され、か
つ超高周波信号用プローブ7にほぼ平行に近接した状態
で形成されている。
The tip of the probe 7 is formed by etching or the like. Since the center conductor is made of, for example, tungsten, it has sufficient mechanical elasticity. The ends of each coaxial line outer conductor on the probe side are connected to each other by soldering or attaching conductive resin to the connecting conductor wire 9,
Ensures grounding. Further, a grounding probe 8 is fixed to the end of each coaxial line outer conductor on the probe side, and is formed approximately parallel to and close to the ultra-high frequency signal probe 7.

第2図は本発明の実施例に係る超高周波帯プローブカー
ドの斜視図である。
FIG. 2 is a perspective view of an ultra-high frequency band probe card according to an embodiment of the present invention.

10は同軸線路5,6と同一の特性インピータンス(本
例では50Ω)を有する同軸線路であり、5゜6と同じ
方法によりズコー゛プカードに固着されている。また同
軸線路IOの中心導体は、入力用同軸線路5の中心導体
7と互いに結線されている。11は直流バイアス供給用
の通常の低周波プローブである。
10 is a coaxial line having the same characteristic impedance as coaxial lines 5 and 6 (50Ω in this example), and is fixed to the scope card in the same manner as 5°6. Further, the center conductor of the coaxial line IO is connected to the center conductor 7 of the input coaxial line 5. 11 is a normal low frequency probe for supplying DC bias.

次に本発明の実施例の作用を説明する。@1図から明ら
かなように同軸線路はプローブカードのウェハに対向す
る面(裏面と称す)に固着されているので、プローブ長
は2層履程度まで低減でき。
Next, the operation of the embodiment of the present invention will be explained. As is clear from Figure 1, the coaxial line is fixed to the surface of the probe card facing the wafer (referred to as the back surface), so the probe length can be reduced to about two layers.

従ってインダクタンスを大幅に低減しうる。Therefore, inductance can be significantly reduced.

またプローブカード裏面には接地導体が形成され、かつ
この接地導体に各回軸線路の外皮導体が接続されている
ので、ウェハ上の被測定集積回路および隣接する高周波
プローブから発生する誘導高周波信号電気力線はプロー
ブカード裏面の接地導体に吸収され、誘電雑音を格段に
軽減し得る。
In addition, a ground conductor is formed on the back of the probe card, and the outer conductor of each axis line is connected to this ground conductor, so that the induced high-frequency signal electric force generated from the integrated circuit to be measured on the wafer and the adjacent high-frequency probe is generated. The wire is absorbed by the ground conductor on the back of the probe card, which can significantly reduce dielectric noise.

更に、各同軸線路の外皮導体のプローブ側の端部は導体
線9により互いに接続されており、接地がより確実にな
されている。
Furthermore, the ends of the outer conductors of each coaxial line on the probe side are connected to each other by conductor wires 9, thereby ensuring more reliable grounding.

次に、プローブ部インダクタンスを更に低減するため、
回軸線路の外皮導体のプローブ側端部に一端を固定され
た接地用プローブ8を、高周波プローブ7の極く近傍に
、かつほぼ平行に設けている。これによってインダクタ
としての高周波プローブから生ずる電気力線の大部分は
、vc地用プローブに吸収することかでさる。即ち高周
波プローブは純粋なインダクタとしてよりはむしら伝送
線路的に作用し、結果としては等価的高周波インピータ
ンスが低下し、極めて有利である。
Next, to further reduce the probe inductance,
A grounding probe 8, one end of which is fixed to the probe-side end of the outer conductor of the rotary line, is provided very close to and substantially parallel to the high-frequency probe 7. As a result, most of the electric lines of force generated from the high frequency probe as an inductor are absorbed by the VC ground probe. That is, the high frequency probe acts more like a transmission line than as a pure inductor, resulting in a lower equivalent high frequency impedance, which is extremely advantageous.

また高周波プσ−プから発生する電力線は、高周波プロ
ーブと接地用プローブとの間に局在化されるため、誘導
雑音をひいては端子間クロストークの低減にも有効であ
る。
Furthermore, since the power line generated from the high-frequency probe is localized between the high-frequency probe and the grounding probe, it is effective in reducing induced noise and, in turn, crosstalk between terminals.

更に、高周波プローブの中心導体と50Ωの特性インピ
ーダンスを有する分岐同軸線路(第2図における10)
の中心導体を接続してインピータンス整合しているので
、反射波等の悪影響を排除できる。
Furthermore, a branch coaxial line (10 in Figure 2) having a characteristic impedance of 50Ω is connected to the center conductor of the high frequency probe.
Since the center conductors of the two are connected for impedance matching, negative effects such as reflected waves can be eliminated.

また分岐用同軸線路の他端を入力インピーダンス50Ω
を有する波形モニタ用alll定器に接続すれば、入力
波形モニタとプローブ先端近傍での50Ω終端が容易に
実現でき極めて有利である。
In addition, the input impedance of the other end of the branch coaxial line is 50Ω.
If the probe is connected to an all-meter waveform monitor having an input waveform monitor, a 50Ω termination near the tip of the probe can be easily realized, which is extremely advantageous.

なお、本発明の実施例に係るMi高周波帯プローブカー
ドの効果を検証するため、砒化カリウム基板上に形成さ
れたモノリシンク超高速分周器の動作チェックをウェハ
状態で行なったところ、最大5.1GHzでの動作チェ
、りか可能であった。但し、この動作最高周波数は分周
器自体の性能上限である。
In order to verify the effectiveness of the Mi high-frequency band probe card according to the embodiment of the present invention, we checked the operation of a monolithic ultra-high-speed frequency divider formed on a potassium arsenide substrate in a wafer state, and found that the maximum frequency was 5.1 GHz. It was possible to check the operation. However, this maximum operating frequency is the upper limit of the performance of the frequency divider itself.

従ってプローブカード使用上限周波数は優に5G)Iz
を越えると考えられる。
Therefore, the upper limit frequency for probe card use is well above 5G)Iz
It is thought that it exceeds.

なお実施例では砒化カリウムを用いたモノリシックIC
を例として説明したが、シリコンを用いたモノリシック
ICのウェハ状態における高周波動作評価にも有効であ
ることは言うまでもない。
In addition, in the example, a monolithic IC using potassium arsenide was used.
Although this has been explained as an example, it goes without saying that the present invention is also effective for evaluating high-frequency operation in a wafer state of a monolithic IC using silicon.

更に微細加圧技術の進歩により、より細径の同軸線路お
よび高周波プローブ長さの低減が実現された場合、本発
明に係るプローブカードの利点がより顕著になることも
明らかである。
Furthermore, it is clear that the advantages of the probe card according to the present invention will become even more pronounced if finer diameter coaxial lines and reduction in the length of high-frequency probes are realized due to advances in micro-pressure technology.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば超高周波領域にお
けるウェハ状態での動作チェックが容易に実現でき、従
って設計工数の低減或いは低コスト化を図ることができ
る。
As described above, according to the present invention, it is possible to easily check the operation in a wafer state in an ultra-high frequency region, and therefore it is possible to reduce the number of design steps and costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る超高周波帯プローブカー
ドの断面図であり、第2図は本発明の実施例に係るプロ
ーブカードの斜視図である。 1・・・半導体ウェハ   2・・・プローブカード3
・・・コネクタ     4・・・接地導体金属化層5
・・・入力信号用セミリジット同軸線路6・・・出力信
号用セミリジット同軸線路7・・・高周波プローブ  
8・・・接地用プローブ9・・・結線用導体線   1
0・・・分岐同軸線路11・・・直流用プローブ
FIG. 1 is a cross-sectional view of an ultra-high frequency band probe card according to an embodiment of the present invention, and FIG. 2 is a perspective view of the probe card according to an embodiment of the present invention. 1... Semiconductor wafer 2... Probe card 3
... Connector 4 ... Ground conductor metallized layer 5
...Semi-rigid coaxial line for input signal 6...Semi-rigid coaxial line for output signal 7...High frequency probe
8... Grounding probe 9... Conductor wire for connection 1
0... Branch coaxial line 11... DC probe

Claims (4)

【特許請求の範囲】[Claims] (1)超高周波信号用プローブがセミリジッド同軸線路
の中心導体により形成され、かつ該同軸線路が固定され
る超高周波帯プローブカードにおいて、 ウェハと対向する面上に接地導体と同電位を有する金属
化層が形成され、前記同軸線路の外皮導体が前記接地導
体金属化層と電気的に同電位となるように固着されてい
ることを特徴とする超高周波帯プローブカード。
(1) In an ultra-high frequency band probe card in which an ultra-high frequency signal probe is formed by the center conductor of a semi-rigid coaxial line and to which the coaxial line is fixed, a metal having the same potential as the ground conductor is formed on the surface facing the wafer. 1. An ultra-high frequency band probe card, characterized in that a layer is formed on the outer conductor of the coaxial line and the outer conductor of the coaxial line is fixed to the ground conductor metallized layer so as to have the same electrical potential.
(2)複数個の前記超高周波信号用同軸線路外皮導体の
プローブ側の端部が互いに同電位となるように結線され
ていることを特徴とする特許請求の範囲第1項記載の超
高周波帯プローブカード。
(2) The ultra-high frequency band according to claim 1, wherein the ends of the plurality of coaxial line outer conductors for ultra-high frequency signals on the probe side are connected to each other so as to have the same potential. probe card.
(3)前記超高周波信号用同軸線路外皮導体の側端部に
その一端が固着され、かつ高周波プローブに近接してほ
ぼ平行に配置された前記外皮導体と同電位の接地用プロ
ーブを有することを特徴とする特許請求の範囲第1項ま
たは第2項記載の超高周波帯プローブカード。
(3) having a grounding probe having the same potential as the outer conductor, one end of which is fixed to a side end of the outer conductor of the coaxial line for ultra-high frequency signals, and which is disposed close to and substantially parallel to the high frequency probe; An ultra-high frequency band probe card according to claim 1 or 2.
(4)超高周波信号プローブ部を形成する前記同軸線路
の中心導体は、該同軸線路と同一の特性インピーダンス
を有する別の同軸線路の中心導体に電気的に接続されて
いることを特徴とする特許請求の範囲第1項〜第3項の
いずれか記載の超高周波帯プローブカード。
(4) A patent characterized in that the center conductor of the coaxial line forming the ultra-high frequency signal probe section is electrically connected to the center conductor of another coaxial line having the same characteristic impedance as the coaxial line. An ultra-high frequency band probe card according to any one of claims 1 to 3.
JP59256079A 1984-12-04 1984-12-04 Super high frequency band probe card Pending JPS61133876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59256079A JPS61133876A (en) 1984-12-04 1984-12-04 Super high frequency band probe card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59256079A JPS61133876A (en) 1984-12-04 1984-12-04 Super high frequency band probe card

Publications (1)

Publication Number Publication Date
JPS61133876A true JPS61133876A (en) 1986-06-21

Family

ID=17287595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256079A Pending JPS61133876A (en) 1984-12-04 1984-12-04 Super high frequency band probe card

Country Status (1)

Country Link
JP (1) JPS61133876A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117769U (en) * 1990-03-19 1991-12-05
WO2002010783A3 (en) * 2000-07-28 2002-04-18 Hei Inc Test systems for wireless-communications devices
JP2005223170A (en) * 2004-02-06 2005-08-18 Mitsubishi Electric Corp Measuring method of high frequency characteristic and high frequency characteristic measuring device used therefor
JP2005524855A (en) * 2002-05-08 2005-08-18 フォームファクター,インコーポレイテッド High performance probe system for testing semiconductor wafers
JP2008045950A (en) * 2006-08-11 2008-02-28 Japan Electronic Materials Corp Probe card
US7683645B2 (en) * 2006-07-06 2010-03-23 Mpi Corporation High-frequency probe card and transmission line for high-frequency probe card
US7764075B2 (en) 2002-05-08 2010-07-27 Formfactor, Inc. High performance probe system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117769U (en) * 1990-03-19 1991-12-05
WO2002010783A3 (en) * 2000-07-28 2002-04-18 Hei Inc Test systems for wireless-communications devices
JP2005524855A (en) * 2002-05-08 2005-08-18 フォームファクター,インコーポレイテッド High performance probe system for testing semiconductor wafers
US7764075B2 (en) 2002-05-08 2010-07-27 Formfactor, Inc. High performance probe system
US8614590B2 (en) 2002-05-08 2013-12-24 Charles A. Miller High performance probe system
JP2005223170A (en) * 2004-02-06 2005-08-18 Mitsubishi Electric Corp Measuring method of high frequency characteristic and high frequency characteristic measuring device used therefor
US7683645B2 (en) * 2006-07-06 2010-03-23 Mpi Corporation High-frequency probe card and transmission line for high-frequency probe card
JP2008045950A (en) * 2006-08-11 2008-02-28 Japan Electronic Materials Corp Probe card

Similar Documents

Publication Publication Date Title
US4593243A (en) Coplanar and stripline probe card apparatus
Jentzsch et al. Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz
JPS61205001A (en) Transmission line
US6727716B1 (en) Probe card and probe needle for high frequency testing
US5583468A (en) High frequency transition from a microstrip transmission line to an MMIC coplanar waveguide
US5959460A (en) High frequency stripline blade probe device and method of probing
US6714113B1 (en) Inductor for integrated circuits
JP2005515658A (en) Ultrafast sampler with non-parallel shock lines
US4739289A (en) Microstrip balun having improved bandwidth
JPS5821901A (en) Circuit matching element
JPH06236788A (en) Socket
US4994771A (en) Micro-connector to microstrip controlled impedance interconnection assembly
US4833521A (en) Means for reducing signal propagation losses in very large scale integrated circuits
JPS5822872B2 (en) High frequency connector
US20020145484A1 (en) Ultrafast sampler with coaxial transition
JPS61133876A (en) Super high frequency band probe card
US4123730A (en) Slot transmission line coupling technique using a capacitor
US5012213A (en) Providing a PGA package with a low reflection line
WO2022241815A1 (en) Preparation and encapsulation process for high-stopband rejection low-pass filter for 5g communications
TW201142299A (en) Probe card
EP0411919B1 (en) Matching circuit for high frequency transistor
JPH09199237A (en) Shielded cable with connector
JPS63152141A (en) Probe card
JPS62502709A (en) Probes or related improvements
US4034321A (en) Method and apparatus for microstrip termination