JPS61132504A - Production of tin powder - Google Patents

Production of tin powder

Info

Publication number
JPS61132504A
JPS61132504A JP25282484A JP25282484A JPS61132504A JP S61132504 A JPS61132504 A JP S61132504A JP 25282484 A JP25282484 A JP 25282484A JP 25282484 A JP25282484 A JP 25282484A JP S61132504 A JPS61132504 A JP S61132504A
Authority
JP
Japan
Prior art keywords
tin
nitrogen
powder
plasma
tin powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25282484A
Other languages
Japanese (ja)
Inventor
Kiyoaki Nishikiori
錦織 清明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25282484A priority Critical patent/JPS61132504A/en
Publication of JPS61132504A publication Critical patent/JPS61132504A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • C01B21/0761Preparation by direct nitridation of titanium, zirconium or hafnium

Abstract

PURPOSE:A titanium material is irradiated with nitrogen plasma to melt the Ti metal and simultaneously to effect the reaction with nitrogen and the resultant TiN metal is sprayed with an appropriate fluid to enable low-cost, rapid mass-production of TiN powder of various particle sizes as desired. CONSTITUTION:A plasma torch 1 is used to generate nitrogen plasma 2 and Ti rod 3 is irradiated with the nitrogen plasma 2 on its end face to melt the Ti rod 3 and simultaneously to effect its reaction with nitrogen. The resultant TiN metal 4 is sprayed with high-speed nitrogen gas jetted from the slit nozzle 5 to form the objective fine particles of TiN 6. The Ti rod is rotated at a high speed and allowed to react with nitrogen and the resultant TiN melt is sprayed by the centrifugal force of the rotating Ti rod to form a fine powder of TiN 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はTiN粉末の製造方法に係り、より詳細には、
窒素プラズマを利用してTiN粉末を製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing TiN powder, and more specifically,
The present invention relates to a method of manufacturing TiN powder using nitrogen plasma.

(従来の技術及び問題点) 金属及びその化合物の粉末は、主として粉末冶金用に用
いられるが、顔料、塗料用などの各種分野の原料として
も用いられ、種々の形状1粒度・品質等々の性状のもの
が要求されている。
(Prior art and problems) Powders of metals and their compounds are mainly used for powder metallurgy, but they are also used as raw materials for various fields such as pigments and paints. are required.

かへる粉末の製造方法は、原理的、技術的に多種多様で
あり、同一物質の粉末でも製造方法の違いによってその
性状が異なってくるので、所望の粉末に応じた適切な製
造方法を採用する必要がある。
There are a wide variety of manufacturing methods for heating powder in principle and technology, and even powders of the same substance can have different properties depending on the manufacturing method, so adopt the appropriate manufacturing method depending on the desired powder. There is a need to.

この点、主として金色原料に用いられ、超硬工具製造用
などに用いられるTiN粉末は、従来。
In this respect, TiN powder, which is mainly used as a gold raw material and used for manufacturing cemented carbide tools, is conventional.

例えば、チタン酸化物Tie、を水素還元して純Ti粒
、粉末を製造し、更にこれを窒化してTiN粉末を得る
方法により、製造されていた。このような製造方法は、
上記固体還元法により製造された純Ti粒乃至粉末を原
料とするものであるから、TiN粉末は高価となり、ま
た窒化によりTiNにするので反応が遅く、また種々の
粒度のTiN粉末を得ることがむずかしく、安価にTi
N粉末を多量生産することができない等の問題があった
For example, titanium oxide (Tie) is reduced with hydrogen to produce pure Ti grains or powder, which is then nitrided to obtain TiN powder. This manufacturing method is
Since the raw material is pure Ti grains or powder produced by the above-mentioned solid reduction method, TiN powder is expensive, and since it is made into TiN by nitriding, the reaction is slow, and it is difficult to obtain TiN powder of various particle sizes. Difficult and inexpensive Ti
There were problems such as the inability to mass-produce N powder.

(発明の目的) 本発明は、前述の問題点を解決するためになされたもの
であって1種々の粒度のTiN粉末を低コストで迅速、
多量に製造できる新規なTiN粉末の製造方法を提供す
ることを目的とするものである。
(Objective of the Invention) The present invention has been made to solve the above-mentioned problems.
The object of the present invention is to provide a novel method for producing TiN powder that can be produced in large quantities.

(発明の構成) か\る目的達成のため、本発明では、従来の如く純Ti
でしかも粒、粉末状のTi粉末を原料として使用するこ
となく、また純Ti粉末の製造と窒化の如く多工程をと
ることなく、単に単一工程で以て任意形状のTi材を原
料とし窒素プラズマを利用してTiN粉末を製造するも
のであって、その特徴とするところは、窒素プラズマを
Ti材に照射することによってTiを溶解すると同時に
窒素と反応させ、得ら九だ溶融T i Nを適宜流体で
噴霧し、或いは前記Ti材を高速回転させるときはその
遠心力により飛散させてTiN粉末を得ることにある。
(Structure of the Invention) In order to achieve the above object, the present invention uses pure Ti as in the past.
Moreover, without using granular or powdered Ti powder as a raw material, and without requiring multiple steps such as manufacturing pure Ti powder and nitriding, a Ti material of any shape can be used as a raw material in a single process. This method uses plasma to produce TiN powder, and its feature is that by irradiating the Ti material with nitrogen plasma, the Ti is melted and at the same time reacted with nitrogen, resulting in a molten TiN powder. TiN powder is obtained by spraying with a suitable fluid, or by scattering it by centrifugal force when the Ti material is rotated at high speed.

以下に本発明を実施例に基づいて詳述する。The present invention will be explained in detail below based on examples.

まず、yX料とするTi材は棒状、線状、円板状等々の
形状のものを使用できる。したがって、チタンスクラッ
プなどの廃材を成形加工して上記形状で供することもで
きる。また、Ti材は窒素プラズマにより極めて高温で
一旦溶解されるので、従来のような純度の高いTi材を
使用する必要はない。
First, the Ti material used as the yX material can be in the shape of a rod, a line, a disk, or the like. Therefore, waste materials such as titanium scraps can be molded and provided in the above shape. Furthermore, since the Ti material is once melted at an extremely high temperature by nitrogen plasma, there is no need to use a Ti material with high purity as in the prior art.

原料Ti材を溶解する熱源としては、Tiを溶解すると
同時に窒素と反応させてTiNを生成するため、特に窒
素プラズマを利用する必要がある。
As a heat source for melting the raw material Ti material, it is particularly necessary to use nitrogen plasma, since Ti is melted and simultaneously reacted with nitrogen to generate TiN.

窒素プラズマ発生装置は公知の各種型式のものでよく、
電流、窒素流量、プラズマトーチのノズル径などの窒素
プラズマ発生条件を調整することにより、極めて高温(
例、35oO〜4000℃)のエネルギーを原料Ti材
に与え、Tiを溶解と同時に窒素を反応させることがで
きる。
The nitrogen plasma generator may be of various known types;
By adjusting nitrogen plasma generation conditions such as current, nitrogen flow rate, and plasma torch nozzle diameter, extremely high temperatures (
For example, by applying energy of 35oO to 4000C) to the raw Ti material, it is possible to melt the Ti and react with nitrogen at the same time.

なお、原料Ti材は、溶解につれて窒素プラズマ発生装
置との間隔が変化するため、少なくとも一方を移動可能
にして間隔調整を行うことが好ましい。
In addition, since the distance between the raw material Ti material and the nitrogen plasma generator changes as it melts, it is preferable to adjust the distance by making at least one movable.

窒素プラズマを照射した原料Ti材表面では、溶融Ti
が得られると同時に窒素と瞬時に反応し。
On the surface of the raw Ti material irradiated with nitrogen plasma, molten Ti
reacts instantly with nitrogen as soon as it is obtained.

溶融TiNが生成されるが、この溶融TiNは微粉化手
段により噴霧状にされる。
Molten TiN is produced, which is atomized by a pulverization means.

第1の手段としては、スリットノズルなどを使用してN
2ガス、Arガス、圧搾空気又は水などの流体を原料T
i材表面に直接若しくはそこから滴下するTiN液滴に
吹き付け、溶融TiNを噴霧するものである。流体の供
給圧力を変化することにより、得られるTiN粉末の粒
度をコントロールすることができ、圧力を高くする程、
粒度の細かいT i N微粉末が得られる。
The first method is to use a slit nozzle or the like to
Fluid such as 2 gas, Ar gas, compressed air or water is used as raw material T
This method sprays molten TiN directly onto the surface of the i-material or onto TiN droplets dripping from the surface. By changing the fluid supply pressure, the particle size of the TiN powder obtained can be controlled, and the higher the pressure, the more
A fine T i N powder with fine particle size is obtained.

第2の手段としては、ディスク状、棒状などの原料Ti
材を高速回転させて、その表面で瞬時に生成した溶融T
iNを遠心力で飛散するものである。Ti材の回転速度
を増減することにより遠心力の大きさを調整でき、得ら
れるTiN粉末の粒度をコントロールすることができ1
回転速度を高速にする程、粒度の細かいTiN微粉末が
得られる。
As a second means, raw material Ti in a disk shape, a rod shape, etc.
When the material is rotated at high speed, molten T is instantly generated on its surface.
The iN is dispersed by centrifugal force. By increasing or decreasing the rotational speed of the Ti material, the magnitude of the centrifugal force can be adjusted, and the particle size of the TiN powder obtained can be controlled1.
The higher the rotation speed is, the finer the particle size of the TiN powder can be obtained.

このように各種粒度のTiN粉末を製造することができ
るので、用途に応じた粒度のTiN粉末を提供でき、或
いは粒度の大きい粉末を製造後、ボールミル等で粉砕し
て粒度の小さいTiN微粉末として1例えば超硬用に供
するなどの適宜利用も可能である。
Since TiN powder with various particle sizes can be manufactured in this way, it is possible to provide TiN powder with a particle size depending on the application, or after manufacturing a powder with a large particle size, it can be ground in a ball mill etc. to produce fine TiN powder with a small particle size. 1. For example, it can be used as appropriate, such as for use in cemented carbide.

なお、Tiは化学反応性が極めて強く、酸素等の不純物
が混入し易いので、高純度のTiN粉末を得る場合には
、減圧下或いは不活性ガス雰囲気下で行うことが好まし
い。
Note that since Ti has extremely strong chemical reactivity and is easily contaminated with impurities such as oxygen, it is preferable to carry out the process under reduced pressure or in an inert gas atmosphere when obtaining high-purity TiN powder.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

失産員上 第1図に示すように、プラズマトーチ1を用いて窒素プ
ラズマ2を発生させ、この窒素プラズマを原料Ti棒3
の端面に照射して、溶解したTiと窒素ガスとが反応し
て生成されたTiN溶液4を、スリット状のノズル5か
ら噴出する高速N2ガスを霧吹き状態に噴霧して、T 
i N微粉末6を得た。
As shown in FIG.
A TiN solution 4 generated by the reaction of dissolved Ti and nitrogen gas is sprayed in a mist state with high-speed N gas ejected from a slit-shaped nozzle 5.
i N fine powder 6 was obtained.

窒素プラズマ発生装置としては、直流プラズマジェット
炉、高周波誘導プラズマトーチ炉など周知の型式のもの
を使用できる。ここでは直流プラズマジェット類を用い
、直流電源7に接続したプラズマ発生部8にプラズマ発
生用N2ガスを導入し、窒素プラズマ2を発生させた。
As the nitrogen plasma generator, well-known types such as a DC plasma jet furnace and a high frequency induction plasma torch furnace can be used. Here, N2 gas for plasma generation was introduced into a plasma generation section 8 connected to a DC power supply 7 using a DC plasma jet to generate nitrogen plasma 2.

TiN微粉末6は、上記装置の排出部(図示せず)より
回収し、約60μm粒度のものを得た。N2ガスの圧力
を増大させたところ約40μm粒度のTiN微粉末が得
られた。
The TiN fine powder 6 was recovered from the discharge part (not shown) of the above-mentioned apparatus, and obtained had a particle size of about 60 μm. When the pressure of N2 gas was increased, fine TiN powder with a particle size of about 40 μm was obtained.

叉胤旌l 第2図に示すように、原料Ti棒3を高速回転させ、一
方、実施例1・に用いた装置と同様の直流プラズマジェ
ット類を用いて窒素プラズマ2を発生させ、これを高速
回転の原料Ti捧3の上端面に照射した。飛散したTi
N微粉末6を上記装置の排出部(図示せず)より回収し
、約60μ−粒度のものを得た。なお、原料Ti捧3に
代えてディスク状の原料Ti材を使用できる。
As shown in FIG. 2, the raw material Ti rod 3 is rotated at high speed, while nitrogen plasma 2 is generated using a direct current plasma jet similar to the device used in Example 1. Irradiation was applied to the upper end surface of the raw material Ti plate 3 rotating at high speed. Scattered Ti
N fine powder 6 was recovered from the discharge section (not shown) of the above-mentioned apparatus to obtain a powder having a particle size of about 60 .mu.m. Note that a disc-shaped raw Ti material can be used instead of the raw Ti material 3.

(発明の効果) 以上説明したように、本発明では、窒素プラズマにより
Tiを溶解すると同時に窒素と瞬時に反応させて溶融T
iNを適宜流体で噴霧し、或いは遠心力で飛散してTi
N粉末を製造するため1種々の性状のTiN粉末を任意
粒度で、かつ高速多量に生産することができ、低コスト
のTiN粉末を金色顔料又は塗料、超硬工具用などの用
途に応じて提供することができる。また、従来のように
多数工程を要せず、単一工程で、しかも簡単な装置でT
iN粉末を製造することができる。更には、チタンスク
ラップなどの廃材を所望形状に成形したものを原料Ti
材として利用できるので、省資源の効果もある。
(Effects of the Invention) As explained above, in the present invention, Ti is melted by nitrogen plasma and simultaneously reacted with nitrogen to melt the molten T.
Ti is dispersed by spraying iN with an appropriate fluid or by centrifugal force.
To produce N powder, we can produce TiN powder of various properties in arbitrary particle sizes and in large quantities at high speed, and provide low-cost TiN powder for various uses such as gold pigments, paints, and cemented carbide tools. can do. In addition, T
iN powder can be produced. Furthermore, waste materials such as titanium scraps are molded into the desired shape and used as raw material Ti.
Since it can be used as wood, it also has the effect of conserving resources.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は各々本発明の実施例に係るTiN粉
末製造の状況を示す概略説明図である。 1・・・プラズマトーチ、2・・・プラズマ。 3・・・原料Ti棒、   4・・・TiN溶滴。 5・・・流体噴震用ノズル、6・・・TiN微粉末、7
・・・直流電源、    8・・・プラズマ発生部。 第 1 几(1゜ 責5 第2図 訊 ゴ 唄 し7
FIG. 1 and FIG. 2 are schematic explanatory diagrams showing the state of TiN powder production according to an embodiment of the present invention. 1... Plasma torch, 2... Plasma. 3... Raw material Ti rod, 4... TiN droplets. 5... Fluid jet nozzle, 6... TiN fine powder, 7
...DC power supply, 8...Plasma generation section. 1st 几(1゜几5 2nd picture kango song 7

Claims (1)

【特許請求の範囲】 1 Ti材に窒素プラズマを照射することにより、Ti
を溶解すると同時に窒素と反応させ、得られた溶融Ti
Nを適宜流体で噴霧してTiN粉末を得ることを特徴と
するTiN粉末の製造方法。 2 高速回転するTi材に窒素プラズマを照射すること
により、Tiを溶解すると同時に窒素と反応させ、得ら
れた溶融TiNを該回転Ti材の遠心力で飛散せしめて
TiN粉末を得ることを特徴とするTiN粉末の製造方
法。
[Claims] 1. By irradiating the Ti material with nitrogen plasma, Ti
The resulting molten Ti
A method for producing TiN powder, which comprises obtaining TiN powder by spraying N with an appropriate fluid. 2. By irradiating nitrogen plasma onto a Ti material rotating at high speed, Ti is melted and simultaneously reacted with nitrogen, and the resulting molten TiN is scattered by the centrifugal force of the rotating Ti material to obtain TiN powder. A method for producing TiN powder.
JP25282484A 1984-12-01 1984-12-01 Production of tin powder Pending JPS61132504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25282484A JPS61132504A (en) 1984-12-01 1984-12-01 Production of tin powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25282484A JPS61132504A (en) 1984-12-01 1984-12-01 Production of tin powder

Publications (1)

Publication Number Publication Date
JPS61132504A true JPS61132504A (en) 1986-06-20

Family

ID=17242717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25282484A Pending JPS61132504A (en) 1984-12-01 1984-12-01 Production of tin powder

Country Status (1)

Country Link
JP (1) JPS61132504A (en)

Similar Documents

Publication Publication Date Title
US4731110A (en) Hydrometallurigcal process for producing finely divided spherical precious metal based powders
CN112317752A (en) TiZrNbTa high-entropy alloy for 3D printing and preparation method and application thereof
EP0361396B1 (en) Process and apparatus for preparing an amorphous powder of a ceramic or metallic material
AU2003206894B2 (en) Method for producing particle-shaped material
JP2002508441A (en) Method and apparatus for producing fine powder by melt atomization using gas
CN111422874B (en) Method for producing spherical titanium carbide powder by one-step method
US4450885A (en) Process for preparation of granules of low-melting-point metals
US4927456A (en) Hydrometallurgical process for producing finely divided iron based powders
JPS61132504A (en) Production of tin powder
JPH0754019A (en) Production of powder by multistage fissure and quenching
US2271264A (en) Process for the conversion of metals and metal alloys in finely divided form for themanufacture of dental amalgams
Zdujić et al. Production of atomized metal and alloy powders by the rotating electrode process
EP0283960B1 (en) Hydrometallurgical process for producing finely divided spherical low melting temperature metal based powders
US5322642A (en) Method of manufacturing semiconductors from homogeneous metal oxide powder
JPS63266001A (en) Production of composite spherical powder
CN114990541A (en) High-hardness material coating structure and preparation method thereof
JPS61132505A (en) Production of tin powder
JPS61153207A (en) Manufacture of fine metallic powder
WO1993013898A1 (en) Production of atomized powder of quenched high-purity metal
JP2967434B2 (en) Method and apparatus for producing spheroidized particles by high-frequency plasma
JPH06116609A (en) Production of metal powder
JPS6184306A (en) Manufacture of metallic powder
Bonvalot et al. Centrifugal dispersion of superalloy bar samples in an inductive plasma
JPH03193805A (en) Manufacture of metal fine powder
JPH04160023A (en) Production of spherical glass powder