JPS61130303A - Hydrogenation of conjugated diene polymer - Google Patents

Hydrogenation of conjugated diene polymer

Info

Publication number
JPS61130303A
JPS61130303A JP59252148A JP25214884A JPS61130303A JP S61130303 A JPS61130303 A JP S61130303A JP 59252148 A JP59252148 A JP 59252148A JP 25214884 A JP25214884 A JP 25214884A JP S61130303 A JPS61130303 A JP S61130303A
Authority
JP
Japan
Prior art keywords
catalyst
supported
carrier
conjugated diene
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59252148A
Other languages
Japanese (ja)
Other versions
JPH0578562B2 (en
Inventor
Yoichiro Kubo
洋一郎 久保
Kiyomori Oura
清護 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP59252148A priority Critical patent/JPS61130303A/en
Publication of JPS61130303A publication Critical patent/JPS61130303A/en
Publication of JPH0578562B2 publication Critical patent/JPH0578562B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a highly active Pd catalyst which can selectively hydrogenate the C=C bonds in a conjugated diene polymer, by using a catalyst obtained by allowing a porous carrier to support Pd and a promotor which is a solution of a compound containing a specified element. CONSTITUTION:A supported catalyst obtained by allowing a porous carrier to support Pd and a promotor obtained by dissolving a compound containing at least one element selected from the group consisting of the elements of Groups IA, IIA, IVA, VA, VIA and VIIA of the periodic table, Cu, Al, B, Sn, Ce and La in a solvent are used in the hydrogenation of the C=C bonds in a conjugated diene polymer in a solvent. The amount of Pd supported on the carrier is 0.001-30wt%, preferably, 0.01-10wt%, based on the carrier. Examples of the compounds containing said elements include carboxylates, acetylacetonates, nitrates and carbonates of the elements.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は共役ジエン系重合体の炭素−炭素二重結合を水
素化する方法に関するものでらる。更に詳しくは、担体
担持パラジウム触媒と反応溶媒に溶解した特定な元素を
含む化合物助触媒として併用することを特徴とする高活
性、高選択性を有する共役ジエン系重合体の水素化方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for hydrogenating carbon-carbon double bonds in a conjugated diene polymer. More specifically, it relates to a method for hydrogenating a conjugated diene polymer having high activity and high selectivity, which is characterized by using a carrier-supported palladium catalyst and a compound containing a specific element dissolved in a reaction solvent as a co-catalyst.

(従来の技術) 一般に共役ジエン系(4)重合体は弾性体として広(工
業的に利用されている。しかし、これらの重合体は重合
体鎖中および/iたは側鎖に共役ジエンに帰因する炭素
−炭素二重結合を有し、これは加硫等に有効に利用され
る反面、耐候性、耐酸化性、耐熱性等に劣る欠点ともな
っている。これらの欠点は、重合体鎖中の炭素−炭素二
重結合を水素化して不飽和二重結合をなくすことによっ
て大幅に改良される。
(Prior art) In general, conjugated diene-based (4) polymers are widely used as elastic bodies (industrially).However, these polymers contain conjugated diene in the polymer chain and /i or side chain. It has carbon-carbon double bonds, which can be used effectively for vulcanization, etc., but it also has drawbacks such as poor weather resistance, oxidation resistance, heat resistance, etc. These drawbacks are A significant improvement is achieved by hydrogenating the carbon-carbon double bonds in the chain to eliminate unsaturated double bonds.

かかる目的で不飽和二重結合を水素化する方法は数多(
提案されておシ、これらの反応に用いられる触媒として
は(1)ニッケル、コバルト、鉄、チタニウム、ロジウ
ム等の有機酸塩おるいはアセチルアセトン塩と有機アル
ミニウム、亜鉛、リチウム等の還元剤を溶媒中で反応し
て得られるいわゆるチーグラー型の均一系触媒あるいは
(2)ニッケル。
There are many methods for hydrogenating unsaturated double bonds for this purpose (
The catalysts used in these reactions are (1) organic acid salts such as nickel, cobalt, iron, titanium, rhodium, etc. or acetylacetone salts and reducing agents such as organic aluminum, zinc, lithium, etc. in a solvent; The so-called Ziegler-type homogeneous catalyst or (2) nickel obtained by reacting inside.

白金、パラジウム、ロジウム、ルテニウム等ノ金属をカ
ーボン、7リカ、アルミナ、クリ力アルミナ等の多孔性
担体に担持された担体担持触媒とが一般に知られている
A carrier-supported catalyst in which metals such as platinum, palladium, rhodium, and ruthenium are supported on a porous carrier such as carbon, hexachloride, alumina, and alumina is generally known.

(発明が解決しようとする問題点) 前者のチーグラー型触媒は一般に、水素化活性を発現さ
せるために混合した触媒成分をあらかじめ還元する必要
があり、更に還元された触媒自体が酸素や水分く対して
安定性を欠き、取扱い方が困難であり、再現性にも問題
がある。
(Problems to be Solved by the Invention) Generally speaking, the former Ziegler type catalyst needs to reduce the mixed catalyst components in advance in order to develop hydrogenation activity, and furthermore, the reduced catalyst itself has a high resistance to oxygen and moisture. They lack stability, are difficult to handle, and have problems with reproducibility.

一方後者の担体担持触媒は一般に高温高圧での水素によ
る還元および反応が必要であり、一般に選択性に劣る◇ これらを改善する手段として担体上に触媒金属と同時に
助触媒金属を担持して活性を上げ、選択性を向上させる
方法が提案されている(特開昭54−77689.特開
昭56−81305.  特開昭56−81506等)
On the other hand, the latter carrier-supported catalyst generally requires reduction and reaction with hydrogen at high temperature and high pressure, and is generally inferior in selectivity ◇ As a means to improve this, a co-catalyst metal is supported on the carrier at the same time as the catalyst metal to increase the activity. A method for improving the selectivity has been proposed (JP-A-54-77689, JP-A-56-81305, JP-A-56-81506, etc.).
.

ところで、担体担持触媒を調製する方法として一般に■
含浸法と■イオン交換法がある。前者は担体に5〜10
重量−程度までは触媒金属を担持可能と言われているが
、前述の助触媒金属を触媒金属と所望の割合で担持させ
るに娘含浸速度、沈降速度等の条件が厳しくコントロー
ルされていなければならず、再現性が劣る0特に少スケ
ールで見い出した条件を大スケールへスケールアップす
る際に多大の困難を伴うのが一般である0一方後者のイ
オン交換法では、担体側にイオン交換できる基を有する
担体に限定される(シリカ。
By the way, as a method for preparing a catalyst supported on a carrier, generally
There are two methods: impregnation method and ■ion exchange method. The former is 5 to 10 on the carrier.
Although it is said that it is possible to support the catalyst metal up to a certain weight, conditions such as daughter impregnation rate and sedimentation rate must be strictly controlled in order to support the above-mentioned co-catalyst metal in the desired ratio with the catalyst metal. In general, it is very difficult to scale up conditions found on a small scale to a large scale.On the other hand, in the latter ion exchange method, a group capable of ion exchange is added to the support side. (silica).

アルミナ@tQ、)と共に、一般に含浸法と比較して担
持される触媒金属量は少ない0また助触媒金属を併用す
る際、担持工程に訃いてイオン状態になっていないと使
用できず、使用できる金属塩が限定される。
Along with alumina @tQ,), the amount of catalyst metals supported is generally smaller than in the impregnation method.0Also, when using co-catalyst metals, they cannot be used unless they are in an ionic state due to the support process, and cannot be used. Metal salts are limited.

以上のように、重合体中の炭素−炭素二重結合を水素化
する触媒としてチーグラー型触媒にしても担体担持触媒
にしても解決すべき問題は多い。
As described above, there are many problems to be solved whether a Ziegler type catalyst or a supported catalyst is used as a catalyst for hydrogenating carbon-carbon double bonds in a polymer.

(問題点を解決するための手段) 本発明者等は先に共役ジエン系に)重合体の水素化触媒
としてパラジウムと共に助触として特定の元素を同一の
担体に担持させた触媒が高活性。
(Means for Solving the Problems) The present inventors first discovered that a catalyst for hydrogenating a polymer (conjugated diene system) in which palladium and a specific element as a co-catalyst were supported on the same carrier had high activity.

高選択性を有することを見い出した(特開昭56−81
505、特開昭56−81506)。
discovered that it has high selectivity (Japanese Unexamined Patent Publication No. 56-81
505, Japanese Unexamined Patent Publication No. 56-81506).

しかしながら、この担持触媒についても前記の触媒調製
上の問題点が存在する◎ 本発明者等は前記の問題点を改善すべ(鋭意検討した結
果、パラジウム担体担持触媒と特定の元素を含む均一系
助触媒とを併用した触媒は高活性。
However, this supported catalyst also has the above-mentioned problems in catalyst preparation. The inventors of the present invention have found that the above-mentioned problems should be improved (as a result of intensive study, a palladium-supported catalyst and a homogeneous support containing a specific element were found. Catalysts used in combination with catalysts are highly active.

高選択性を有すると共に再現性よ(触媒調製できること
を見い出し本発明を完成するに到った。
It was discovered that the catalyst can be prepared with high selectivity and reproducibility, and the present invention has been completed.

従って、本発明の目的は共役ジエン系重合体の水素化に
おいて、高活性を有すると同時に重合体鎖中あるいは側
鎖中の炭素−炭素二重結合を選択的に水素化し得るpa
系触媒を提供することにある。
Therefore, an object of the present invention is to provide a PA that has high activity and can selectively hydrogenate carbon-carbon double bonds in polymer chains or side chains in the hydrogenation of conjugated diene polymers.
The objective is to provide a system catalyst.

本発明のこの目的は共役ジエン系重合体の炭素−炭素二
重結合を溶媒中で水素化するに際し、パラジウムを多孔
性担体に担持させた担体担持触媒と、周期律表1A、 
IIA、 IVA、 VA、 ”iIA、 HA 及び
■族ならびに銅、アルミニウム、ホウ素、錫。
This object of the present invention is to provide a carrier-supported catalyst in which palladium is supported on a porous carrier, and a carrier-supported catalyst in which palladium is supported on a porous carrier when hydrogenating a carbon-carbon double bond of a conjugated diene polymer in a solvent.
Groups IIA, IVA, VA, IIA, HA and ■ as well as copper, aluminum, boron, tin.

セリウム及びランタンから選択される少な(とも1種の
元素を含む化合物を助触媒として溶媒に溶解1.f停田
子/、?″kにth遣ぜられふ。
A compound containing a small amount of an element selected from cerium and lanthanum is dissolved in a solvent as a cocatalyst and sent to 1.f.

このような溶媒可溶性の特定の元素を含む化合物を助触
媒に用いることは、助触媒/触媒のモル比を正確に、再
現性よ(所望の値に設定でき、活性を再現するのに効果
が大きい0 本発明のパラジウム担持触媒は通常の担体担持触媒の調
製法に従えば良く、特に制限されない0例えばパラジウ
ム元素あるいはパラジウムのノ・ロゲン化物、酸化物、
水酸化物、酸塩化物、硫酸化物、炭酸化物等の塩の水溶
液等に活性炭、シリカ等の通常水素化反応に使用される
担体を浸漬することによって担持させることができる。
Using a compound containing such a specific solvent-soluble element as a cocatalyst makes it possible to accurately and reproducibly set the cocatalyst/catalyst molar ratio to a desired value, which is effective in reproducing activity. Large 0 The palladium-supported catalyst of the present invention may be prepared by a conventional method for preparing a catalyst supported on a carrier, and is not particularly limited.
It can be supported by immersing a carrier commonly used in hydrogenation reactions, such as activated carbon or silica, in an aqueous solution of salts such as hydroxides, acid chlorides, sulfates, and carbonates.

担体へのパラジウムの担持量は担体当シ11.001〜
30重量%であシ、好ましくはa、oi〜10重量%で
ある。担持されるパラジウムが余りにも少なすぎると反
応時使用する担体担持触媒量が多すぎて系内の攪拌が困
難になり、触媒の分散が悪くなり触媒が有効に使われな
(なる〇一方担持量が多     :すぎると担体上の
パラジウムの分散が悪くなり、またパラジウム粒子径も
大きくなり、触媒活性が低下する。
The amount of palladium supported on the carrier is 11.001~
It is 30% by weight, preferably a, oi to 10% by weight. If the amount of supported palladium is too small, the amount of catalyst supported on the carrier used during the reaction will be too large, making it difficult to stir the system, resulting in poor dispersion of the catalyst and the catalyst not being used effectively. Too much amount: If the amount is too large, the dispersion of palladium on the carrier will be poor, the palladium particle size will also become large, and the catalytic activity will decrease.

本発明で使用する助触媒は周期律表1A、IIA、MA
、VA、MA、■A、■族ならびに銅、アルミニウム、
ホウ素、錫、セリウム及びランタンから選択される少な
(とも1種の元素を含み、かつ水素化反応に使用する溶
媒に可溶な化合物である。
The co-catalyst used in the present invention is 1A, IIA, MA of the periodic table.
, VA, MA, ■A, ■ group as well as copper, aluminum,
It is a compound that contains at least one element selected from boron, tin, cerium, and lanthanum, and is soluble in the solvent used in the hydrogenation reaction.

このような化合物としては、該元素のカルボン酸塩、ア
セチルアセトン塩、硝酸塩、炭酸塩、オルト酸(ホウ酸
、タングステン酸、モリブデン酸などの)、などが代表
的化合物として例示されるが、水素化反応に使用する溶
媒に可溶な化合物であれば上記の化合物に限定されない
Representative examples of such compounds include carboxylates, acetylacetone salts, nitrates, carbonates, and ortho acids (boric acid, tungstic acid, molybdic acid, etc.) of the element, but hydrogenated The compound is not limited to the above compounds as long as it is soluble in the solvent used in the reaction.

助触媒として使用される元素のパラジウムに対する原子
比はo、ooi〜1の範囲にあり、好ましくはo、oo
s〜[lL5である。担体担持触媒の使用量はパラジウ
ム量で重合体当り5〜2000 PP!!1の範囲にあ
り、好ましくは10〜1000 ppmである。
The atomic ratio of the element used as cocatalyst to palladium is in the range o,ooi to 1, preferably o,ooi
s ~ [lL5. The amount of palladium used for the catalyst supported on the carrier is 5 to 2000 PP per polymer! ! 1, preferably 10 to 1000 ppm.

2000 ppm以上使用することはできるが経済的で
ない。
Although it is possible to use more than 2000 ppm, it is not economical.

本発明で使用される共役ジエン系重合体は共役ジエンモ
ノマーが、1.s−フタジエン、2.5−ジメチルブタ
ジェン、インプレン、1.5−ペンタジェン等から選ば
れた1種またはそれ以上のモノマーで、全モノマー中0
〜100重量%、および/またはエチレン性不飽和モノ
マーが、不飽和ニトリル、たとえばアクリロニトリル、
メタクリロニトリルなど、モノビニリデン芳香族炭化水
素たとj=ハ、スfレン、アルキルスチレン(o−、m
+。
The conjugated diene polymer used in the present invention has a conjugated diene monomer that contains 1. One or more monomers selected from s-phtadiene, 2,5-dimethylbutadiene, imprene, 1,5-pentadiene, etc., with 0% of all monomers
~100% by weight and/or the ethylenically unsaturated monomer is an unsaturated nitrile, e.g. acrylonitrile,
Monovinylidene aromatic hydrocarbons such as methacrylonitrile, j=ha, sfrene, alkylstyrene (o-, m
+.

p−メチルスチレン、エチルスチレンナト)、ジメチル
アミノスチレン、スチレンスルホン酸など、不飽和カル
ボン酸またはそのエステル、たとえばアクリル酸、メタ
アクリル酸、クロトン酸、イタコン酸、マレイン酸また
はアクリル酸メチル、アクリル酸エチル、アクリル酸ブ
チル、アクリル酸2−エチルヘキシル、メタアクリル酸
メチルなど、ビニルピリジンおよびビニルエステルたと
えば酢酸ビニルなどから選ばれた1種またはそれ以上の
モノマーで全モノマー中0〜90重量%で構成された共
役ジエン重合体および/または共役ジエン共重合体であ
る。
unsaturated carboxylic acids or their esters, such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid or methyl acrylate, acrylic acid One or more monomers selected from vinyl pyridine and vinyl esters such as vinyl acetate, such as ethyl, butyl acrylate, 2-ethylhexyl acrylate, and methyl methacrylate, and are composed of 0 to 90% by weight of the total monomers. conjugated diene polymer and/or conjugated diene copolymer.

これらの働重合体は乳化重合、溶液重合、塊状重合など
いずれの重合方式で製造されたものであっても良く、具
体的にはポリイソプレン、ポリブタジェン、ステレンー
ブメジエン(ランダムアルいはブロック)共重合体、ア
クリロニトリル−ブタジェン(ランダムあるいは交互)
共重合体等が挙げられる。
These working polymers may be produced by any polymerization method such as emulsion polymerization, solution polymerization, or bulk polymerization. ) copolymer, acrylonitrile-butadiene (random or alternating)
Examples include copolymers.

水素化反応はこれらの重合体を溶媒に溶解して溶液状態
で行う。重合体の濃度は1〜70重is、好ましくは1
〜40重量%である。溶媒としては触媒に悪影響を与え
ず、水素化される重合体を溶解するものであれば特に制
限はされないが、ベンゼン、トルエン、キシレン、ヘキ
サン、7クロヘキサン、テトラヒドロフラン、アセトン
、メチルエチルケトン、7クロヘキサノン、酢酸エチル
等が一般に使用される。溶液重合で製造された重合体は
重合体セメントのま\で水素化することもできる。
The hydrogenation reaction is carried out in a solution state by dissolving these polymers in a solvent. The concentration of the polymer is between 1 and 70 polymers, preferably 1
~40% by weight. The solvent is not particularly limited as long as it does not adversely affect the catalyst and dissolves the polymer to be hydrogenated, but examples include benzene, toluene, xylene, hexane, 7-chlorohexane, tetrahydrofuran, acetone, methyl ethyl ketone, 7-chlorohexanone. , ethyl acetate, etc. are commonly used. Polymers produced by solution polymerization can also be hydrogenated in the polymer cement.

水素化反応はオートクレーブ中で実施され、反応温度は
0〜300°C1好ましくは20〜150°Cである。
The hydrogenation reaction is carried out in an autoclave, and the reaction temperature is 0-300°C, preferably 20-150°C.

選択的水素化反応が進行し、望ましくない副反応を抑え
るためには150°C以下の温度が好ましい。
A temperature of 150° C. or lower is preferred in order to allow the selective hydrogenation reaction to proceed and to suppress undesirable side reactions.

水素圧は特に限定されるものではないが、通常大気圧〜
300 kg/ex”の範囲で行なわれ、好ましくは5
〜200 kl/(がである。500 kf/菌1以上
は設備上、操作上から実用的でない〇 水素化された重合体は耐候性、耐オゾン性、耐熱性、耐
寒性等に憬れ、広い分野での使用が可能である〇 以下実施例により本発明を具体的に説明する。
Hydrogen pressure is not particularly limited, but is usually between atmospheric pressure and
300 kg/ex”, preferably 5
~200 kl/(is. 500 kf/bacteria 1 or more is not practical from the equipment and operational standpoint. Hydrogenated polymers have poor weather resistance, ozone resistance, heat resistance, cold resistance, etc., and are widely used. The present invention will be explained in detail with reference to Examples below.

重合体の水素化率はヨウ素価法によシ求めた。以下の実
施例では触媒量とは担体と触媒の合計量を意味している
The hydrogenation rate of the polymer was determined by the iodine value method. In the following examples, the amount of catalyst means the total amount of carrier and catalyst.

実施例1 シリカ(メルク社製品MerckogeIS工20(I
Aを使用)を担体としてpaを担持させた担体担持触媒
単独および担体担持触媒と同時に第1表に記載の元素の
各酢酸塩を助触媒に用いてアクリロニトリル−ブタジェ
ン共重合体(以下NBRと略す)の水素化を行った。供
用系の場合は各元素とP(Lとの原子比を0.05:1
で行った0担体担持触媒は塩化パラジウム(pac4)
のアンモニア水溶液中に7リカを浸漬し、充分含浸させ
念ものを使用した。なお、いずれの場合にも担体当りの
pa担持量は2重液チである。
Example 1 Silica (Merckoge IS 20 (I)
Acrylonitrile-butadiene copolymer (hereinafter abbreviated as NBR) was prepared by using a carrier-supported catalyst alone and simultaneously with a carrier-supported catalyst using each acetate of the elements listed in Table 1 as a co-catalyst. ) was hydrogenated. In the case of a commercial system, the atomic ratio of each element and P (L) is 0.05:1.
The catalyst supported on the 0 carrier was palladium chloride (pac4).
7.7 Lika was immersed in an aqueous ammonia solution to thoroughly impregnate it and then used as a detergent. In any case, the amount of pa supported per carrier is double liquid.

(水素化方法) 容量100dのオートクレーブにテトラヒドロフラン4
5?にNBR(結合アクリロニトリル量34.0重量%
、ML1+4 100℃−49)57を溶解した溶液に
助触媒として用いる各種酢酸塩を溶解しP改担持触媒を
α06257(ポリマー100重量部当9担持触媒12
5重量部に相当する〕仕込んだ。系内全窒素置換後水素
にて50kf/c11t に加圧し、55°Cで4時間
水素化反応を行った。結果を第1表に示す◇いずれの場
合にもニトリル基の還元は認められなかった。
(Hydrogenation method) Add 4 liters of tetrahydrofuran to an autoclave with a capacity of 100 d.
5? and NBR (bound acrylonitrile amount 34.0% by weight)
, ML1+4 100℃-49) 57 was dissolved in various acetate salts used as co-catalysts, and the P-supported catalyst was prepared using α06257 (9 supported catalysts 12 per 100 parts by weight of polymer).
5 parts by weight]. After purging the entire system with nitrogen, the pressure was increased to 50 kf/c11t with hydrogen, and a hydrogenation reaction was carried out at 55°C for 4 hours. The results are shown in Table 1.◇Reduction of the nitrile group was not observed in any case.

第1表 (ただしA4Zrに関しては酸化物の酢酸塩を使用。) 実施例2 助触媒としてCs C30s 、HB Os 、−M2
O3゜H,WO2,>よびに、 H,S b、 o、を
使用する以外は実施例′1と同様にしてNBHの水素化
を行った〇結果を第2表に示す。いずれの触媒を用いて
も=iトリル基の還元は認められなかった。
Table 1 (However, for A4Zr, the oxide acetate is used.) Example 2 Cs C30s, HB Os, -M2 as promoters
Table 2 shows the hydrogenation of NBH in the same manner as in Example '1 except that O3°H, WO2, > and H, S b, o were used. No reduction of the =i tolyl group was observed using any of the catalysts.

第2堀 実施例3 助触媒としてそれぞれニッケル、コバルト、鉄の硝酸塩
、銅のナフテン酸およびステアリン酸塩を各元素とパラ
ジウムとの原子比が0.05:1になるよ、うに使用し
た。
Second Moat Example 3 Nitrate of nickel, cobalt, and iron, and naphthenic acid and stearate of copper were used as cocatalysts so that the atomic ratio of each element to palladium was 0.05:1.

これらの触媒の活性を調べる為に容量100dのオート
クレーブにテトラハイドロフラン37%に3?のポリブ
タジェン(シス−14含[98%。
To examine the activity of these catalysts, 37% tetrahydrofuran and 3% tetrahydrofuran were placed in an autoclave with a capacity of 100 d. of polybutadiene (containing cis-14 [98%.

vb1+4i oaC−40)を溶解した溶液に上記助
眩媒として用いる金属塩を浴解しpa触媒Q、0525
ン(シリカにPdを2重量%担持、ポリマー100砿量
部当り担持触媒t 75]i量部に相当する)を士込ん
だ。系内を窒素置換後水素にて50 kg/cs”で加
圧し、80℃で5時間水素化反応を行った。
The metal salt used as the anti-glare medium was dissolved in a solution of OA C-40) to prepare pa catalyst Q, 0525.
(2% by weight of Pd supported on silica, corresponding to 75]i parts of supported catalyst per 100 parts of polymer) was added. After replacing the inside of the system with nitrogen, the system was pressurized with hydrogen at 50 kg/cs'' and a hydrogenation reaction was carried out at 80° C. for 5 hours.

古来を第3表に示す。The ancient history is shown in Table 3.

第3表 実施例4 助触媒としてそれぞれ銅、モリブデン、マンガン、バナ
ジウム、チタン、ニッケル、コバルト及び鉄のアセチル
アセトン塩を各元素とパラジウムとの原子比が0.05
:1になるように使用した。
Table 3 Example 4 Acetylacetone salts of copper, molybdenum, manganese, vanadium, titanium, nickel, cobalt, and iron were used as promoters, respectively, and the atomic ratio of each element to palladium was 0.05.
:1.

これらの触媒の活性を調べる為に容量100−のオート
クレーブにアセトン45?1CNBu(結合アクリロニ
トリル4Q、9%、  M L 1+410 QC埋5
1)5y−を溶解した溶液に上記アセチルアセトン塩を
溶解し、pa触媒t−ci、0625f仕込んだ(シリ
ヵに2重量% Paを担持、ポリマー100重量部当り
担持触媒t25重量部に相当する)0系内を窒素置換後
、水素にて50 kti/ax”に加圧し、55°Cで
4時間水素化反応を行った0結果を第4表に示す。いず
れの場合にもニトリル基の還元は認められなかった。
To investigate the activity of these catalysts, acetone 45?1CNBu (bonded acrylonitrile 4Q, 9%, M L 1 + 410 QC buried 5
1) The above acetylacetone salt was dissolved in a solution of 5y-, and a pa catalyst t-ci, 0625f was charged (2% by weight of Pa supported on silica, corresponding to 25 parts by weight of supported catalyst t per 100 parts by weight of polymer)0 After purging the system with nitrogen, the pressure was increased to 50 kti/ax" with hydrogen, and the hydrogenation reaction was carried out at 55°C for 4 hours. The results are shown in Table 4. In either case, the reduction of the nitrile group was I was not able to admit.

第4表 (ただしMo、 V、 Tiはそれぞれ酸化物のアセチ
ルアセトン塩を使用) 実施例5 助触媒としてそれぞれ銅、コバルト及びニッケルのアセ
チルアセトン塩を使用する際、各元素とパラジウムとの
原子比をQ、01. ClO2,0,1,0,2と変化
させた。
Table 4 (For Mo, V, and Ti, each uses an oxide acetylacetone salt.) Example 5 When using acetylacetone salts of copper, cobalt, and nickel as cocatalysts, the atomic ratio of each element to palladium is Q. , 01. It was changed to ClO2, 0, 1, 0, 2.

これらの触媒の活性を調べる為に実施例4と同様にして
NBRの水素化反応を行った。結果を第5表に示す。い
ずれの触媒を用いてもニトリル基の還元は認められなか
った。
In order to examine the activity of these catalysts, a hydrogenation reaction of NBR was carried out in the same manner as in Example 4. The results are shown in Table 5. No reduction of nitrile groups was observed using any of the catalysts.

第5表 実施例6 活性炭(太田薬品社製 白鷺A)を担体に用いたpa担
持触媒(pac/、の水溶液中に活性炭を浸漬し、活性
炭中へ十分含浸させた後、ホルマリン−力性ソーダで還
元して担体担持触媒として使用。担体当りのP(Lの担
持量は1重量%)?、用い、助触媒としてそれぞれセリ
ウム、鉄及び銅の硝酸塩を用いた0各元素とpaとの原
子比は0.1:1である。
Table 5 Example 6 Activated carbon (Shirasagi A manufactured by Ota Pharmaceutical Co., Ltd.) was immersed in an aqueous solution of a PA-supported catalyst (PAC/, manufactured by Ota Pharmaceutical Co., Ltd.), and after sufficiently impregnating it into the activated carbon, formalin-hydrolytic soda was added. and used as a catalyst supported on a carrier.The amount of P per carrier (the amount of L supported is 1% by weight) was used, and the atoms of each element and pa using cerium, iron, and copper nitrates as cocatalysts, respectively. The ratio is 0.1:1.

これらの触媒の活性を調べる為に、テトラハイドロフラ
ン37ンに31のポリイソグレン(クスt4含量97チ
 ML1+4100℃−80,工Rと略記)、およびス
チレン−ブタジェンランダム共重合体(結合スチレン量
23.5重量%、MLj+4100℃−50,SBRと
略記する)をそれぞれ溶解し、容量1001Ljのオー
トクレーブに上記P4触媒0.1051を助触媒と共に
仕込んだ。系内を窒素で置換後水素で50 kp/ax
”に加圧後90℃で5時間水素化反応を行った。この反
応をそれぞれ各3回行った。
In order to investigate the activity of these catalysts, we added 31 polyisogrene (Kust4 content: 97%, ML1+4100℃-80, abbreviated as Engineering R) and styrene-butadiene random copolymer (combined styrene content: 23%) to 37% of tetrahydrofuran. 0.5% by weight, MLj+4100°C-50, abbreviated as SBR) were respectively dissolved, and 0.1051% of the above P4 catalyst was charged together with a promoter into an autoclave having a capacity of 1001Lj. After replacing the system with nitrogen, 50 kp/ax with hydrogen
After pressurizing to 90°C, hydrogenation reaction was carried out for 5 hours at 90°C. This reaction was carried out three times each.

結果を第6表に示す。いずれの触媒でもSBR中の結合
スチレンのベンゼン核は還元されなかった。
The results are shown in Table 6. None of the catalysts reduced the benzene nucleus of bound styrene in SBR.

比較例 比較の為に助触媒をpaと同時担持した系の活性と再現
性を工RとSBHの水素化により調べた。
Comparative Example For comparison, the activity and reproducibility of a system in which a co-catalyst was co-supported with PA was investigated by hydrogenation of R and SBH.

活性炭を担体として、これにパラジウム単独およびPa
と同時にセリウム、鉄及び銅のそれぞれを担持させた。
Using activated carbon as a carrier, palladium alone and Pa
At the same time, cerium, iron, and copper were each supported.

各元素源としてそれぞれの塩化物を用い、これらの水溶
液に活性炭を浸漬し、活性炭中に十分含浸させ、ホルマ
リン−力性ソーダで還元して担体担持触媒として使用し
た。併用系の場合は各元素とパラジウムとの原子比を0
.1:1で行った。またいずれの場合にも担体当りのp
aは1重量%である。
Each chloride was used as a source of each element, and activated carbon was immersed in these aqueous solutions to be sufficiently impregnated into the activated carbon, which was then reduced with formalin-hydrohydric soda and used as a carrier-supported catalyst. In the case of a combination system, the atomic ratio of each element and palladium should be 0.
.. It was 1:1. In both cases, p per carrier
a is 1% by weight.

これらの同時担持触媒を用いそれぞれ3回づつ実施例6
と同様にして水素化反応を行ない触媒活性及び再現性を
調べた。結果を第6表に示す0実施例6の触媒は再現性
は良好であるが、同時担持触媒については再現性が悪(
、銅化合物を助触媒に使用した場合には触媒活性も低下
することがわかった。
Example 6 using these co-supported catalysts three times each
A hydrogenation reaction was carried out in the same manner as above, and the catalytic activity and reproducibility were investigated. The results are shown in Table 6. The catalyst of Example 6 has good reproducibility, but the reproducibility of the co-supported catalyst is poor (
It was found that the catalytic activity also decreased when a copper compound was used as a co-catalyst.

Claims (1)

【特許請求の範囲】[Claims] 共役ジエン系重合体の炭素−炭素二重結合を溶媒中で水
素化するに際し、パラジウムを多孔性担体に担持させた
担体担持触媒と、周期律表 I A、IIA、IVA、VA、
VIA、VIIA及びVIII族ならびに銅、アルミニウム、ホ
ウ素、錫、セリウム、ランタンから選択される少なくと
も1種の元素を含む化合物を溶媒に溶解し、助触媒とし
て使用することを特徴とする共役ジエン系重合体の水素
化方法。
When hydrogenating the carbon-carbon double bond of a conjugated diene polymer in a solvent, a carrier-supported catalyst in which palladium is supported on a porous carrier, and periodic table IA, IIA, IVA, VA,
A conjugated diene-based polymer characterized in that a compound containing Group VIA, VIIA and VIII and at least one element selected from copper, aluminum, boron, tin, cerium and lanthanum is dissolved in a solvent and used as a co-catalyst. Hydrogenation method of coalescence.
JP59252148A 1984-11-29 1984-11-29 Hydrogenation of conjugated diene polymer Granted JPS61130303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59252148A JPS61130303A (en) 1984-11-29 1984-11-29 Hydrogenation of conjugated diene polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252148A JPS61130303A (en) 1984-11-29 1984-11-29 Hydrogenation of conjugated diene polymer

Publications (2)

Publication Number Publication Date
JPS61130303A true JPS61130303A (en) 1986-06-18
JPH0578562B2 JPH0578562B2 (en) 1993-10-29

Family

ID=17233145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252148A Granted JPS61130303A (en) 1984-11-29 1984-11-29 Hydrogenation of conjugated diene polymer

Country Status (1)

Country Link
JP (1) JPS61130303A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368381A2 (en) * 1988-11-09 1990-05-16 Shell Internationale Researchmaatschappij B.V. Hydrogenation process
JP2004506787A (en) * 2000-08-25 2004-03-04 クレイトン・ポリマーズ・リサーチ・ベー・ベー Method for making selectively hydrogenated block copolymer of vinyl aromatic hydrocarbon and conjugated diene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368381A2 (en) * 1988-11-09 1990-05-16 Shell Internationale Researchmaatschappij B.V. Hydrogenation process
JP2004506787A (en) * 2000-08-25 2004-03-04 クレイトン・ポリマーズ・リサーチ・ベー・ベー Method for making selectively hydrogenated block copolymer of vinyl aromatic hydrocarbon and conjugated diene

Also Published As

Publication number Publication date
JPH0578562B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
CN1130265C (en) Catalyst capable of using on carrier in organic compound conversion reaction
US6627578B2 (en) Catalyst for selective hydrogenation
WO2017201644A1 (en) Palladium-based supported hydrogenation catalyst and preparation method therefor and application thereof
US6248924B1 (en) Process for reacting an organic compound in the presence of a supported ruthenium catalyst
JPS59161415A (en) Hydrogenation of carbon-carbon double bond in unsaturated polymer
TW200906487A (en) Alumina having a complex pore structure, and catalyst and process for selective hydrogenation of cracking gasoline
JPH0474141A (en) Production of cycloolefin
WO2024008171A1 (en) Transition-metal-based dehydrogenation catalyst for low-carbon alkane, and preparation method therefor and use thereof
JP6345267B2 (en) Process for preparing polymers having amino groups using heterogeneous iron catalysts
JPS61130303A (en) Hydrogenation of conjugated diene polymer
CN1110472C (en) Improved process for hydrogenation of maleic acid to 1,4-butanediol
US2917466A (en) Platinum metal catalysts
CN115259985A (en) Method for catalyzing selective hydrogenation of acetylene by using monatomic catalyst
JPS615036A (en) Production of alcohol
JPS6335642B2 (en)
JPS6335641B2 (en)
CN1344585A (en) Noble metal catalyst method of resisting CO poisoning
EP2329879A1 (en) Catalyst for selective hydrogenation of acetylene compounds in 1,3-butadiene, method for producing the same and method of using the same
EP3437737A1 (en) Method for preparing dispersion of metal-containing particles and method for producing hydrogenated conjugated diene polymer
JPS59228937A (en) Catalyst for selectively hydrogenating poly-unsaturated organic compound.
JPH0655077A (en) Catalyst for isomerization of hydrocarbon and method for isomerizing hydrocarbon with the same
US5750457A (en) Solid acid catalyst for paraffin conversion and process for paraffin conversion using the same
CN117466698A (en) Alkyne selective hydrogenation method
JP3422062B2 (en) Method for producing diacetoxybutene
Auer et al. The Synthesis of Amines by Catalytic Hydrogenation of Nitro Compounds

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees