JPS61129648A - Laminate type electrophotographic sensitive body - Google Patents

Laminate type electrophotographic sensitive body

Info

Publication number
JPS61129648A
JPS61129648A JP59250618A JP25061884A JPS61129648A JP S61129648 A JPS61129648 A JP S61129648A JP 59250618 A JP59250618 A JP 59250618A JP 25061884 A JP25061884 A JP 25061884A JP S61129648 A JPS61129648 A JP S61129648A
Authority
JP
Japan
Prior art keywords
layer
group
charge
charge generation
generation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59250618A
Other languages
Japanese (ja)
Inventor
Shozo Ishikawa
石川 昌三
Naoto Fujimura
直人 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59250618A priority Critical patent/JPS61129648A/en
Publication of JPS61129648A publication Critical patent/JPS61129648A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0675Azo dyes
    • G03G5/0687Trisazo dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine
    • G03G5/061443Amines arylamine diamine benzidine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine
    • G03G5/061446Amines arylamine diamine terphenyl-diamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0675Azo dyes
    • G03G5/0679Disazo dyes

Abstract

PURPOSE:To improve sensitivity, electrophotographic characteristics, and durability by laminating on a conductive substrate an electrostatic charge transfer layer for positive hole transfer, and a charge generating layer contg. a charge transfer material represented by a specified chemical formula and a photoconductive azo pigment. CONSTITUTION:The laminate type electrophotographic sensitive body is prepared by laminating on the conductive substrate the charge transfer layer for transferring positive holes, and on this layer the charge generating layer contg. the charge transfer material represented by formula I in which (Ar is optionally substd. arylene and each of R1-R4 is alkyl, aralkyl, or aryl), and the photoconductive azo pigment represented by formula II in which A is a divalent org. group forming a conjugated double bond between C atoms combined with an azo group or a group of formula III; B is a phenolic OH group; and l is 2 or 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は積層型電子写真感光体に関し、特に導電性支持
体上に少なくとも電荷輸送層、電荷発生層を順次積層し
た電子写真感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a laminated electrophotographic photoreceptor, and more particularly to an electrophotographic photoreceptor in which at least a charge transport layer and a charge generation layer are sequentially laminated on a conductive support.

従来の技術 これまで、セレン、硫化カドミウム、酸化匪鉛などの無
機光導電体を感光体成分どして利用した電子写真感光体
は公知である。
2. Description of the Related Art Electrophotographic photoreceptors using inorganic photoconductors such as selenium, cadmium sulfide, and lead oxide as photoreceptor components have been known.

一方特定の有機化合物が光導電性を示すことが発見され
てから数多(の有機光導電体が開発されてきた。例えば
、ポ+7 + N−ビニルカルバゾール、ポリビニルア
ントラセンなどの有・機先導電性ポリマー、カルバゾー
ル、アントラセン、ピラゾリン類、オキサジアゾール類
、ヒドラゾy類、ポリアリールアルカン類などの低分子
の有機光導電体やフタロシアニン顔料、アゾ顔料、シア
ニン染料、多環キノン顔料、ペリレン系顔料、インジゴ
染料、チオインジゴ染料あるいはスクエアリック酸メチ
ン染料などの有機顔料や染料が知られている。特に光導
電性を有する有機顔料や染料は無機材料に較べて合成が
容易で、しかも適当な波長域に光導電性を示す化合物を
選択できるバリエーションが拡大されたことなどから数
多くの光導電性有機顔料や染料が提案されている。例え
ば米国特許第4123270号、同第4247614号
、同第4251613号、同第4251614号、同第
4256821号、同第4260672号、同第426
8596号、同第4278747号、同第429562
8号などに開示されたように電荷発生層と電荷輸送層に
機能分離した感光層における電荷発生物質として光導電
性を示すアゾ系顔料を用−た電子写真感光体などが知ら
れている。
On the other hand, since the discovery that certain organic compounds exhibit photoconductivity, a large number of organic photoconductors have been developed. low-molecular organic photoconductors such as polymers, carbazole, anthracene, pyrazolines, oxadiazoles, hydrazoys, polyarylalkanes, phthalocyanine pigments, azo pigments, cyanine dyes, polycyclic quinone pigments, perylene pigments Organic pigments and dyes such as indigo dyes, thioindigo dyes, and squaric acid methine dyes are known.In particular, organic pigments and dyes with photoconductivity are easier to synthesize than inorganic materials, and they can be produced in a suitable wavelength range. Many photoconductive organic pigments and dyes have been proposed due to the expansion of the selection of compounds exhibiting photoconductivity.For example, U.S. Pat. No. 4,123,270, U.S. Pat. Same No. 4251614, Same No. 4256821, Same No. 4260672, Same No. 426
No. 8596, No. 4278747, No. 429562
Electrophotographic photoreceptors are known that use an azo pigment exhibiting photoconductivity as a charge generation substance in a photosensitive layer that is functionally separated into a charge generation layer and a charge transport layer, as disclosed in No. 8 and the like.

その使用に当っては、導電性支持体上に電荷発生層電荷
輸送層の順に積層した構成とし、且つ電荷輸送層に使用
する電荷輸送材料に電子共与性の強い材料を用いプラス
荷電の搬送性を高め、感光体をマイナス帯電するのが一
般的であった。
In its use, it has a structure in which a charge generation layer and a charge transport layer are laminated in this order on a conductive support, and the charge transport material used in the charge transport layer is a material with strong electron donating properties to transport positive charges. Generally, the photoreceptor was negatively charged.

その理由としては、マイナス荷電搬送性の材料に特性の
優れた材料が殆どないことや、発癌性があり公害上使用
できないことなどがメげられている。
Reasons for this are that there are almost no materials with excellent negative charge transport properties, and that they are carcinogenic and cannot be used due to pollution concerns.

マイナスのコロナ放電を行った場合オゾンの発生量が多
く複写機本体にオゾンフィルターを取付けなければなら
ないなど、コストアップの要因になっている。又、オゾ
ンフィルターは年数が経つと次第に劣化するために、フ
ィルター交換などの定期メンテナンスが必要になる。
When negative corona discharge is performed, a large amount of ozone is generated, and an ozone filter must be installed on the copying machine itself, which increases costs. Furthermore, as ozone filters gradually deteriorate over the years, regular maintenance such as filter replacement is required.

さらにマイナスのコロナ放電は、放電ワイヤの汚れなど
による放電ムラを生じ易く、画像ムラの原因になる。又
、発生したオゾンはopcの耐久寿命にも悪影響を及ば
ず。
Furthermore, negative corona discharge tends to cause discharge unevenness due to dirt on the discharge wire, etc., which causes image unevenness. Furthermore, the ozone generated does not have a negative effect on the durability life of the OPC.

マイナス帯電時にはオゾン発生量が多くなり感光体表面
の材料劣化やコロナ帯電により発生するイオン性物質の
感光体付着などの問題が顕著であり、こうした問題は感
光体の局所的ないしは全面的な電位の低下をきたし電子
写真法により形成した複写画像の局所的ないしは全面的
な画像ボケないしは画像欠陥をひきおこす。
When negatively charged, the amount of ozone generated increases, and problems such as deterioration of the material on the surface of the photoreceptor and adhesion of ionic substances generated by corona charging to the photoreceptor are noticeable. This causes local or total image blurring or image defects in copied images formed by electrophotography.

一方でプラスのコロナ放電は、マイナスのコロナ放電に
較べ、発生するオゾンの量はイ〜’Aa程度であり、放
電ワイキの汚れなどによる放電ムラも生じ難い。又、感
光体寿命にもきわめて有利である。このようにマイナス
帯電には常客が多(、プラス帯電の感光体開発が急務と
されている。
On the other hand, in a positive corona discharge, compared to a negative corona discharge, the amount of ozone generated is about 1~'Aa, and discharge unevenness due to dirt on the discharge wipe is less likely to occur. It is also very advantageous for the life of the photoreceptor. As described above, there are many regular customers for negatively charged photoconductors (therefore, there is an urgent need to develop photoreceptors with positive charges).

プラス帯電の積層型感光体とする一つの方法としては、
導電性基体上にプラス荷電搬送性の電荷輸送層、電荷発
生層を順次積層することにより達成される。
One way to create a positively charged laminated photoconductor is to
This is achieved by sequentially laminating a positive charge transporting charge transport layer and a charge generation layer on a conductive substrate.

しかしながら、電荷発生層の膜厚は、厚くすると光によ
り生成したキャリアが電荷発生層内でトラップされ易く
なり、光メモリーが大きくなったり、繰返し使用時の明
部電位の上昇などの常客が犬となるため通常0.1〜G
、5μ8度の極薄の膜厚とするのが通例である。
However, if the thickness of the charge generation layer is increased, carriers generated by light are more likely to be trapped within the charge generation layer, resulting in larger optical memory and increased bright area potential during repeated use, which may cause problems for regular customers. Normally 0.1~G
It is customary to have an extremely thin film thickness of 5μ8 degrees.

ところが電荷発生層が感光体の表面層にある場合、帯電
、a露光、現像、トナー像の紙、プラスチックフィルム
などの転写部材への転写、転写部材の感光体からの分離
、クリーニング、クリーニング前後での除電といった複
写法に当該の感光体を用いると現像、転写、クリーニン
グなどの感光体と当接する部材のある工程で感光体表層
部の削れが発生するため、耐久使用時の感光体の感度変
化が極めて大きくなり、極端な場合には電荷発生層が削
れ℃しまい感度を示さなくなるといった問題を抱えてい
るのが現状である。
However, when the charge-generating layer is on the surface layer of the photoreceptor, charging, a-a exposure, development, transfer of the toner image to a transfer member such as paper or plastic film, separation of the transfer member from the photoreceptor, cleaning, and before and after cleaning. When such photoreceptors are used in copying methods such as static neutralization, the surface layer of the photoreceptor will be scratched during processes such as development, transfer, cleaning, etc. where parts come into contact with the photoreceptor, resulting in changes in the sensitivity of the photoreceptor during long-term use. The current problem is that the charge generation layer becomes extremely large and, in extreme cases, the charge generation layer is etched away and the sensitivity is no longer exhibited.

発明が解決しようとする問題点 本発明の第1の目的は導電性支持体上に少なくとも電荷
輸送層、電荷発生層を順次積4t、た高感度のプラス帯
電用の電子写真感光体を提供することである。第2の目
的は導電性支持体上に少なくとも電荷輸送層、電荷発生
層を順次積層した改善された電子写真特性を有するプラ
ス帯電用の電子写真感光体を提供すること舌ある。
Problems to be Solved by the Invention The first object of the present invention is to provide a highly sensitive electrophotographic photoreceptor for positive charging, which has a conductive support, at least a charge transport layer and a charge generation layer, each having a thickness of 4 tons in order. That's true. A second object is to provide an electrophotographic photoreceptor for positive charging, which has improved electrophotographic properties and has at least a charge transport layer and a charge generation layer sequentially laminated on a conductive support.

第6の目的は導電性支持体上に少なくとも電荷輸送層、
電荷発生層を順次積層した耐久性の改善されたプラス帯
電用の電子写真感光体を提供することである。
The sixth object is to provide at least a charge transport layer on the conductive support.
An object of the present invention is to provide an electrophotographic photoreceptor for positive charging, which has improved durability and has charge generation layers laminated in sequence.

問題点を解決するための手段、作用 本発明のかかる目的1は、導電性支持体上に少くとも正
孔搬送性の電荷輸送層と電荷発生層を順次積層し、かか
る電荷発生層に光導電性アゾ岬料とし特定のプラス荷電
搬送性の電荷輸送材料を包含せしめることにより達成さ
れる。
Means and Function for Solving the Problems The object 1 of the present invention is to sequentially stack at least a hole-transporting charge transport layer and a charge generation layer on a conductive support, and to apply a photoconductive layer to the charge generation layer. This is achieved by incorporating a specific positive charge transporting material into the azo capping material.

特定の電荷輸送材料が還択されねばならない理由はキャ
リヤー発生材料たる光導電性アゾ顔料から電荷発生層内
の電荷輸送材料へのキャリヤー注入に選択性が出るため
と考えられる。電荷発生層内のバインダー樹脂量をふや
し感光体表面の物理強度を高めようとすると、電荷発生
層内のキャリヤーの搬送性が著しく低下し、感度低下や
光メモリーの悪化や、耐久使用時の明部電位の上昇など
をまねくのが通例であった。
The reason why a specific charge transport material must be selected is considered to be that selectivity is achieved in carrier injection from the photoconductive azo pigment, which is a carrier generation material, to the charge transport material in the charge generation layer. If an attempt is made to increase the physical strength of the photoreceptor surface by increasing the amount of binder resin in the charge generation layer, the transportability of carriers in the charge generation layer will be significantly reduced, resulting in decreased sensitivity, deterioration of optical memory, and brightness during long-term use. This usually led to an increase in the potential of the parts.

ところが電荷発生層内に特定ρプラス荷電搬送性の電荷
輸送材料を包含せしめる′ことにより、バインダー量の
ふえた状態においても電荷発生層内のキャリヤー搬送性
を充分に確保することが可能となった。よって感光体表
面の物理強度が強くしかも感度、光メモリーのすぐれた
感光体が得られる。
However, by incorporating a charge transporting material having a specific ρ+ charge transporting property into the charge generating layer, it has become possible to ensure sufficient carrier transporting property within the charge generating layer even when the amount of binder is increased. . Therefore, a photoreceptor with a strong physical strength on the surface of the photoreceptor and excellent sensitivity and optical memory can be obtained.

又耐久使用時の感光層の削れが著しく軽減され、耐久使
用時の感度変化の少い感光体が可能となり本発明の目的
が達成される。
Furthermore, abrasion of the photosensitive layer during long-term use is significantly reduced, and a photoreceptor with less change in sensitivity during long-term use can be achieved, thereby achieving the object of the present invention.

本発明に用いられる光導電性アゾ顔料としてはフェノー
ル性のOH基を有するアゾ顔料が用いられ、さらに具体
的には、一般式 %式%() で示されるアゾ系顔料が特に有効である。
As the photoconductive azo pigment used in the present invention, an azo pigment having a phenolic OH group is used, and more specifically, an azo pigment represented by the general formula % (%) is particularly effective.

式中tは2又は3の整数を示す。In the formula, t represents an integer of 2 or 3.

Aはアゾ基の結合した炭素原子間が共役二重結合系を形
成する二価の有機基ないしはNQ)、で示される。
A is a divalent organic group or NQ) in which carbon atoms to which an azo group is bonded form a conjugated double bond system.

二価の有機基の具体的な例としては、 等が挙げられる。Specific examples of divalent organic groups include: etc.

R1−R28は水素、塩素、臭素、ヨウ素等のハロゲン
、メチル、エチル、プロピル等のアルキル基、メトキシ
、エトキシ、プロポキシ等のアルコキシ基、ベンジル、
フェネチル等のアラルキル基、ニトロ基、シアノ基等を
示す。
R1-R28 are hydrogen, halogens such as chlorine, bromine, and iodine, alkyl groups such as methyl, ethyl, and propyl, alkoxy groups such as methoxy, ethoxy, and propoxy, benzyl,
Indicates an aralkyl group such as phenethyl, a nitro group, a cyano group, etc.

R29は水素、上記アルキル基、アラルキル基、及びフ
ェニル、ナフチル等のアリール基を示す。
R29 represents hydrogen, the above-mentioned alkyl group, aralkyl group, and aryl group such as phenyl and naphthyl.

二価の有機基の具体例としては、さらK、前記一般式(
1)〜(8)で示される基の両端に置換基を有してもよ
いフェニルアゾ基がついた基も挙げられる。
Specific examples of divalent organic groups include further K, the general formula (
Also included are groups represented by 1) to (8) in which a phenylazo group, which may have a substituent, is attached to both ends.

m、nは0又は1の整数を示し、同じであっても異って
いてもよい。
m and n represent integers of 0 or 1, and may be the same or different.

Bはフェノール性OH基を有するカプラーを示LJW 等が特に有効である。B indicates a coupler having a phenolic OH group LJW etc. are particularly effective.

一般式(6)中Yはベンゼン環と縮合してナフタレン環
、アントラセン環、カルバゾール環、ベンズカルバシー
/L’l1%ジベンゾフラン猿等の多猿芳香猿ないしは
複素環を形成するに必要な残基を示す。一般式(2)、
α→中2は、芳香族炭化水素の二価の基ないしはN原子
を環内に含む複素環の二価の基を示す。
In general formula (6), Y is a residue necessary for condensation with a benzene ring to form a polyaromatic or heterocyclic ring such as a naphthalene ring, anthracene ring, carbazole ring, benzcarbacy/L'l1% dibenzofuran ring, etc. shows. General formula (2),
α→2 represents a divalent aromatic hydrocarbon group or a heterocyclic divalent group containing an N atom in the ring.

R31)’R52は、R1−R29の示すアルキル基、
アラルキル基、アリール基を示し、基中のアリール部分
はR1−R29の示すアルキル基、アルコキシ基、ニト
ロ基、シアノ基、ハロダン基、アラルキル基、アリール
基あるいはジメチルアミノ、ジエチルアミノ、ジベンジ
ルアミノ等の置換アミノ基により置換されていてもよい
R31)'R52 is an alkyl group represented by R1-R29,
It represents an aralkyl group or an aryl group, and the aryl part in the group is an alkyl group, an alkoxy group, a nitro group, a cyano group, a halodane group, an aralkyl group, an aryl group, or a dimethylamino, diethylamino, dibenzylamino, etc. It may be substituted with a substituted amino group.

本発明に用いられる好ましい、アゾ顔料の具体例を示す
Specific examples of preferable azo pigments used in the present invention are shown below.

例示アゾ顔料 ム−3 ム−5 ム−8 M ム−9 H ム−10 ム−12 A−13 ム−14 ム−21 A−27 A−28 ム−29 ム−30 本発明の電荷発生層に用いられる電荷輸送材料は 下記一般式 %式% 式中ムrは置換基を有していてもよいアリーレチル、プ
ロピル等のアルキル基、メトキシ、エトキシ、プロポキ
シ等のアルコキシ基、塩素、臭素、ヨウ素等のハロゲン
原子が挙ケラレル。
Exemplary azo pigments Mu-3 Mu-5 Mu-8 M Mu-9 H Mu-10 Mu-12 A-13 Mu-14 Mu-21 A-27 A-28 Mu-29 Mu-30 Charge generation layer of the present invention The charge transport material used is the following general formula %, where mr is an alkyl group such as arylethyl or propyl that may have a substituent, an alkoxy group such as methoxy, ethoxy, or propoxy, chlorine, bromine, or iodine. Examples of halogen atoms include:

R1、R2、R5及びR4は置換基を有していてもよい
メチル、エチル、プロピル等のアルキル基、ベンジル、
7エネチル等のアラルキル基、フェニル、ナフチル等の
アリール基を示す。置換基としては塩素、臭素、ヨー素
等のハロゲン、メチル、エチル、プロピル等のアルキル
基、メトキシ、エトキシ、プロポキシ等のアルコキシ基
をあげることができる。
R1, R2, R5 and R4 are alkyl groups such as methyl, ethyl and propyl which may have substituents, benzyl,
Indicates an aralkyl group such as 7-enethyl, and an aryl group such as phenyl or naphthyl. Examples of substituents include halogens such as chlorine, bromine and iodine, alkyl groups such as methyl, ethyl and propyl, and alkoxy groups such as methoxy, ethoxy and propoxy.

次に本発明に用いられる一般式(1)で示される化合物
の具体例を示す。
Next, specific examples of the compound represented by the general formula (1) used in the present invention will be shown.

例示化合物 電荷発生層中に用いるアゾ系電荷発生材料は適用なバイ
ンダー樹脂と、ヒドラゾン系電荷輸送材料との溶液系に
分散せしめた後に、予め作成した電荷輸送層上に塗工す
ることにより電荷発生層が形成できる。
Exemplary Compound The azo charge-generating material used in the charge-generating layer is dispersed in a solution system of an appropriate binder resin and a hydrazone-based charge-transporting material, and then coated on the charge-transporting layer prepared in advance to generate charges. A layer can be formed.

電荷発生層を塗工によって形成する際に用い5るバイン
ダーとしては広範な絶縁性樹脂から選択でき、またポリ
−N−ビニルカルバゾール、ポリビニルアントラセンや
ポリビニルピレンなどの有機光導電性ポリマーからも選
択でなる。
The binder used to form the charge generating layer by coating can be selected from a wide variety of insulating resins, as well as organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, and polyvinylpyrene. Become.

好ましくは前記光導電性ポリマーの他にポリビニルブチ
ラール、ボリアリレート(ビスフェノールAと7タル酸
の縮重合体など)ポリカーボネート、ポリエステル、フ
ェノキシ樹脂、ポリ酢酸ビニル、アクリル樹脂、ポリア
クリルアミド、ポリアミド、ウレタン樹脂、エポキシ樹
脂などの絶縁性樹脂をあげることができる。
Preferably, in addition to the photoconductive polymer, polyvinyl butyral, polyarylate (condensation polymer of bisphenol A and heptalic acid, etc.) polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide, polyamide, urethane resin, Examples include insulating resins such as epoxy resins.

電荷発生層中に含まれる樹脂は好ましくは10〜80重
量%、感光体表面の物理強度や電荷発生層内でのキャリ
ヤー搬送性の観点からより好ましくは50〜60重量%
とすることが望ましい。
The resin contained in the charge generation layer is preferably 10 to 80% by weight, more preferably 50 to 60% by weight from the viewpoint of physical strength of the photoreceptor surface and carrier transportability within the charge generation layer.
It is desirable to do so.

電荷発生層中に含まれる電荷輸送材“料の割合は好まし
くは10〜70重量−1樹脂量の場合と同じ理由からよ
り好ましくは20〜60重量%とすることが望ましい。
The proportion of the charge transport material contained in the charge generation layer is preferably 20 to 60% by weight for the same reason as the resin amount of 10 to 70% by weight.

電荷発生層中に含まれる電荷発生材料の割合は好ましく
は13〜80重量−とすることが望ましい。
The proportion of the charge generation material contained in the charge generation layer is preferably 13 to 80% by weight.

電荷発生層用塗料に用いる溶剤は、使用する樹脂や、電
荷輸送材料の溶解性や、電荷発生材料の分散安定性から
選択されるが、下層の電荷輸送層や下引層を溶解しに(
いものから選択することも必要である。
The solvent used in the paint for the charge generation layer is selected based on the resin used, the solubility of the charge transport material, and the dispersion stability of the charge generation material.
It is also necessary to choose from a variety of options.

具体的な有機溶剤としてはメタノール、エタノール、イ
ソプロノノールなどのアル;−ル類、アセトン、MIX
、シクロヘキサノン、N、N−ジメチルホルムアミド、
N、N−ジメチルアセトアミドなどのアミド類、ジメチ
ルスルホキシドなどのスルホキシド類、テトラヒドロフ
ラン、ジオキサン、エチレングリコールモノメチルエー
テルなどのエーテル類、酢酸メチル、酢酸エチルなどの
エステル類、クロロホルム、塩化メチレン、ジクロルエ
チレン、四塩化炭素、トリクロルエチレンなどの脂肪族
ハロゲン化炭化水素類するiはペン・ゼン、トルエン、
キシレン、リグロイン、モノクロルベンゼン、ジクロル
ベンゼンなどの芳香族類などを用いることができる。
Specific organic solvents include alcohols such as methanol, ethanol, and isoprononol, acetone, and MIX.
, cyclohexanone, N,N-dimethylformamide,
Amides such as N,N-dimethylacetamide, sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, chloroform, methylene chloride, dichloroethylene, aliphatic halogenated hydrocarbons such as carbon tetrachloride and trichloroethylene;
Aromatic compounds such as xylene, ligroin, monochlorobenzene, dichlorobenzene, etc. can be used.

塗工は、浸漬コーティング法、スプレーコー□ ティン
グ法、スピンナー;−ティング法、ビードコーティング
法、マイヤーパーコー、ティ/グ。
Coating methods include dip coating, spray coating, spinner coating, bead coating, Mayer Percoat, and T/G.

法、フレードコーチインク法、ローラーコーティング法
、カーテンコーティング法などのコーティング法を用い
て行なうことができる。、弊燥は、室温における指触乾
燥後、加熱乾燥する方法が好ましい。加熱乾燥は30〜
200Cの温度で5分〜2時間の範囲の時間で、静止ま
たは送風下で行なうことができる。
This can be carried out using a coating method such as a coating method, a Flead coach ink method, a roller coating method, or a curtain coating method. For drying, it is preferable to dry to the touch at room temperature and then heat dry. Heat drying is 30~
It can be carried out at a temperature of 200C for a time ranging from 5 minutes to 2 hours, either stationary or under ventilation.

電荷輸送層は、前述の電荷発生層と電気的に接続されて
おり、電界の存在下で電荷発生層から注入された電荷キ
ャリアを受は取るとともに、これらの電荷キャリアを導
電性支持体表面ないしは導電層と電荷輸送層の中間に介
在せしめた下引層表面まで輸送できる機能を有している
The charge transport layer is electrically connected to the charge generation layer described above, receives and receives charge carriers injected from the charge generation layer in the presence of an electric field, and transfers these charge carriers to the surface of the conductive support or It has a function of being able to be transported to the surface of the undercoat layer interposed between the conductive layer and the charge transport layer.

電荷輸送層には、プラス荷電搬送性の電荷輸送材料が用
いられる。
For the charge transport layer, a charge transport material having positive charge transport properties is used.

正孔輸送性物質としては、ピレン、N−エチルカルバゾ
ール、N−イソプロビルカルバゾ−ル、N−メチル−N
−フェニルヒドラジノ−3−メチリデン−9−エチルカ
ルバゾール、N、N−ジフェニルヒドラジノ−3−メチ
リデン−9−エチルカルバゾール、N、N−ジフェニル
ヒドラジノ−3−メチリデン−10−エチルフェノチア
ジン、N、N−ジフェニルヒドラジノ−3−メチリデン
−10−エテルフェノキサジン、P−ジエチルアミノベ
ンズアルデヒド−N、N−ジフェニルヒドラゾン、P−
ジエチルアミノベンズアルデヒド−N−α−す7チルー
N−7二二ルヒドラゾン、P−ピロリジノベンズアルデ
ヒド−N、N−ジフェニルヒドラゾン、1,3.3−ト
リメチルインドレニ/−ω−アルデヒド−N、N−ジフ
ェニルヒドラゾン、P−ジエチルベンズアルデヒド−3
−メチルベンズチアゾリノン−2−ヒドラゾン等のヒド
ラゾン類、2.5−ビス(P−ジエチルアミノフェニル
) −1,3,4−オキサジアゾール、1−フェニル−
3−(P−ジエチルアミノスチリル)−s−(p−ジエ
チルアミノフェニル〕ピラゾリン、1−〔キノリル(2
) ) −3−(P−ジエチルアミノスチリル〕−5−
(P−ジエチルアミノフェニル〕ピラゾリン、1−〔ピ
リジル(2) ) −3−CP−ジエチルアミノスチリ
ル)−5−(P−ジエチルアミノフェニル〕ピラゾリン
、  1−C6−メド°キシ−ピリジル(2) ) −
3−CP−ジエチルアミノスチリル) −5−、(P 
−シエチルアミノフエニ゛ル)ピラゾリン、1−〔ピリ
ジル(3) ) −3−CP −ジエチルアミノスチリ
ル)−5−CP−ジエチルアミノフェニル〕ピラゾリン
、1−〔レピジル(2) ) −3−(P−ジエチルア
ミノスチリル)−5−(p−ジエチルアミノフェニル)
ピラゾリン、1−〔ピリジル(2) ) −3−(P−
ジエチルアミノスデリル〕−4−メチル−5−(P−・
ジエチルアミノフェニル)ピラゾリン、1−〔ピリジル
(2) ) −3−(α−メチル−P−ジエチルアミノ
スチリル)−5−(P−ジエチルアミノフェニル〕ヒラ
ゾリン、1−フェニル−3−(p−ジエチルアミノスチ
リル)−4−メ、チル−5−(p−ジエチルアミノフェ
ニル〕ピラゾリン、1−フェニル−3−(α−ベンジル
−P−ジエチルアミノスチリル)−5−(P−ジエチル
アミノフェニル)ピラゾリン、スピロピラゾリンなどの
ピラゾリン類、2−(p−ジエチルアミノスチリルクー
6−ジニチルアミノインズオキサゾール% 2−CP−
ジエチルアミノフェニル)−4−(P−ジメチルアミノ
フェニル〕−5−〔2−クロ四フェニル〕オキサゾール
等のオキサゾール系化合物、2−(p−ジエチルアミノ
スチリル)−6−ジニチルアミノベンゾチアゾール等の
チアゾール系化合物、ビス(4−ジエチル−アミノ−2
−メチルフェニル)−フェニルメタン等のトリアリール
メタン系化合物、1.1−ビス(4−N、M−ジエチル
アミノ−2−メチルフェニル)へブタン、1,1,2.
2−テトラキス(4−N、N−ジメチルアミノ−2−メ
チルフェニル〕エタン等のボリアリールアルカン類、ト
リフェニルアミン、ポリ−N−ビニルカルバゾール、ポ
リビニルピレン、ポリビニルアントラセン、ポリビニル
アクリジン、ポリ−9−ビニルフェニルアントラセン、
ヒレンーホルムアμ7’?−ト樹脂、エチルカルバゾー
ルホルムアルデヒド樹脂等がある。
Examples of hole-transporting substances include pyrene, N-ethylcarbazole, N-isopropylcarbazole, N-methyl-N
-Phenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-10-ethylphenothiazine, N, N-diphenylhydrazino-3-methylidene-10-ethelphenoxazine, P-diethylaminobenzaldehyde-N,N-diphenylhydrazone, P-
Diethylaminobenzaldehyde-N-α-su7tyl-N-7dynylhydrazone, P-pyrrolidinobenzaldehyde-N,N-diphenylhydrazone, 1,3.3-trimethylindoreni/-ω-aldehyde-N,N-diphenyl Hydrazone, P-diethylbenzaldehyde-3
-Hydrazones such as methylbenzthiazolinone-2-hydrazone, 2,5-bis(P-diethylaminophenyl) -1,3,4-oxadiazole, 1-phenyl-
3-(P-diethylaminostyryl)-s-(p-diethylaminophenyl)pyrazoline, 1-[quinolyl(2
) ) -3-(P-diethylaminostyryl]-5-
(P-diethylaminophenyl]pyrazoline, 1-[pyridyl (2)) -3-CP-diethylaminostyryl)-5-(P-diethylaminophenyl]pyrazoline, 1-C6-med°xy-pyridyl (2)) -
3-CP-diethylaminostyryl) -5-, (P
-ethylaminophenyl)pyrazoline, 1-[pyridyl (3)) -3-CP -diethylaminostyryl)-5-CP-diethylaminophenyl]pyrazoline, 1-[lepidyl (2)) -3-(P -diethylaminostyryl)-5-(p-diethylaminophenyl)
Pyrazoline, 1-[pyridyl(2))-3-(P-
diethylaminosderyl]-4-methyl-5-(P-・
diethylaminophenyl)pyrazoline, 1-[pyridyl(2))-3-(α-methyl-P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-phenyl-3-(p-diethylaminostyryl)- Pyrazolines such as 4-methyl-5-(p-diethylaminophenyl)pyrazoline, 1-phenyl-3-(α-benzyl-P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, spiropyrazoline, 2 -(p-diethylaminostyryl 6-dinithylaminoinduoxazole% 2-CP-
oxazole compounds such as diethylaminophenyl)-4-(P-dimethylaminophenyl]-5-[2-chlorotetraphenyl]oxazole, thiazole compounds such as 2-(p-diethylaminostyryl)-6-dinithylaminobenzothiazole Compound, bis(4-diethyl-amino-2
-methylphenyl)-phenylmethane, 1,1-bis(4-N,M-diethylamino-2-methylphenyl)hebutane, 1,1,2.
Polyarylalkanes such as 2-tetrakis(4-N,N-dimethylamino-2-methylphenyl)ethane, triphenylamine, poly-N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, polyvinylacridine, poly-9- vinylphenylanthracene,
Hillen-Holmua μ7'? -to resin, ethyl carbazole formaldehyde resin, etc.

これらの有機電荷輸送物質の他に、セレン、セレン−テ
ルルアモルファスシリコン、硫化カドミウムなどの無機
材料も用いることができる。
In addition to these organic charge transport materials, inorganic materials such as selenium, selenium-tellurium amorphous silicon, and cadmium sulfide can also be used.

また、これらの電荷輸送物質は、1種または2種以上組
合せて用いることができる。
Further, these charge transport substances can be used alone or in combination of two or more.

電荷輸送物質に成膜性を有していない時には、適当なバ
インダーを選択することによって被膜形成できる。バイ
ンダーとして使用できる樹脂は、例えばアクリル樹脂ボ
リアリレート、ポリエステル、ポリカーボネート、ポリ
スチレン、アクリロニトリル−スチレンコポリマー、ア
クリロニトリル−ブタジェンコポリマー、ポリビニルブ
チラール、ポリビニルホルマール、ポリスルホン、ポリ
アクリルアミド、ポリアミド、塩素化ゴムなどの絶縁性
樹脂、あるいはポリ−N−ビニルカルバゾール、ポリビ
ニルアントラセン、ポリビニルピレンなどの有機光導電
性ポリマーを皐げることができる。
When the charge transport material does not have film-forming properties, a film can be formed by selecting an appropriate binder. Resins that can be used as binders include, for example, acrylic resin polyarylate, polyester, polycarbonate, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene copolymer, polyvinyl butyral, polyvinyl formal, polysulfone, polyacrylamide, polyamide, chlorinated rubber, and other insulating resins. Resins or organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, polyvinylpyrene, etc. can be used.

電荷輸送層は、電荷キャリアを輸送できる限界があるの
で、必要以上に膜厚を厚くすることができない。一般的
には、5〜50μであるが、好ましい範囲は8〜20μ
である。塗工によって電荷輸送層を形成する際には、前
述した様な適当なコーティング法を用いることができる
Since the charge transport layer has a limit in its ability to transport charge carriers, it cannot be made thicker than necessary. Generally, it is 5 to 50μ, but the preferred range is 8 to 20μ.
It is. When forming the charge transport layer by coating, an appropriate coating method as described above can be used.

この様な電荷発生層と電荷輸送層の積層構造からなる感
光層は、導電層を有する基体の上に設けられる。導電層
を有する基体としては、基体自体が導電性をもつもの、
例えばアルミニウム、アルミニウム合金、銅、亜鉛、ス
テンレス、バナジウム、モリブデン、クロム、チタン、
ニッケル、インジウム、金や白金などを用いることがで
き、その他にアルミニウム、アルミニウム合金、酸化イ
ンジウム、酸化錫、酸化インジウム−酸化錫合金などを
真空蒸着法によって被膜形成された層を有するプラスチ
ック(例えば、ポリエチレン、ポリプロピレン、ポリ塩
化ビニル、ポリエチレンテレフタレート、アクリル樹脂
、ポリフッ化エチレンなど)、導電性粒子(例えば、カ
ーボンブラック、銀粒子など)を適当なバインダーとと
もにプラスチックの上に被覆した基体、導電性粒子をプ
ラスチックや紙に含浸した基体や導電性ポリマーを有す
るプラスチックなどを用いることができる。
A photosensitive layer having such a laminated structure of a charge generation layer and a charge transport layer is provided on a substrate having a conductive layer. Examples of substrates having a conductive layer include those in which the substrate itself is conductive;
For example, aluminum, aluminum alloy, copper, zinc, stainless steel, vanadium, molybdenum, chromium, titanium,
Nickel, indium, gold, platinum, etc. can be used, and in addition, plastics having a layer formed by vacuum evaporation of aluminum, aluminum alloy, indium oxide, tin oxide, indium oxide-tin oxide alloy, etc. (for example, Polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, acrylic resin, polyfluorinated ethylene, etc.), conductive particles (e.g. carbon black, silver particles, etc.) coated on plastic with a suitable binder, conductive particles A substrate impregnated with plastic or paper, a plastic containing a conductive polymer, etc. can be used.

導電層と電荷輸送層の中間に、バリヤー機能と接着機能
をもつ下引層を設けることもできる。
A subbing layer having barrier and adhesive functions can also be provided between the conductive layer and the charge transport layer.

下引層は、カゼイン、ポリビニルアルコール、ニトロセ
ルロース、エチレン−アクリル酸コポリマー、ポリアミ
ド(ナイロン6、ナイロン66、ナイロン610、共重
合ナイロン、アルコキシメチル化ナイロンなど)、ポリ
ウレタン、ゼラチン酸化アルミニウムなどによって形成
できる。
The subbing layer can be formed from casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide (nylon 6, nylon 66, nylon 610, copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin aluminum oxide, etc. .

下引層の膜厚は、α1〜5μ、好ましくは(L5〜3μ
が適当である。
The thickness of the subbing layer is α1 to 5μ, preferably (L5 to 3μ).
is appropriate.

本発明に用いる電子写真感光体は紫外線、オゾン等によ
る劣化オイル等による汚れ、金属等の切り粉による傷つ
き、現像部材、転写2部材、クリーニング部材等の感光
体当接部材による感光体の傷つき、削れを防止する目的
で電荷発生層上に更に保護層を設けても良い。この保護
層上に静電潜像を形成するためには、表面抵抗率が10
11Ω以上であることが望ましい。
The electrophotographic photoreceptor used in the present invention may be contaminated by oil deteriorated by ultraviolet rays, ozone, etc., be damaged by metal chips, etc., be damaged by photoreceptor contact members such as the developing member, the transfer member 2, the cleaning member, etc. A protective layer may be further provided on the charge generation layer for the purpose of preventing scratching. In order to form an electrostatic latent image on this protective layer, a surface resistivity of 10
It is desirable that the resistance is 11Ω or more.

本発明で用いる保護層は、ポリビニルブチラール、ポリ
エステル、ポリカーボネート、アクリル樹脂、メタクリ
ル樹脂、ナイロン、ポリイミド、ボリアリレート、ポリ
ウレタン、スチレン−ブタジェンコポリマー、スチレン
−アクリル酸コポリマー、スチレン−アクリロニトリル
コポリマーなどの樹脂を適当な有機溶剤によって溶解し
た液を感光層の上に塗布、乾燥して形成できる。
The protective layer used in the present invention is made of resin such as polyvinyl butyral, polyester, polycarbonate, acrylic resin, methacrylic resin, nylon, polyimide, polyarylate, polyurethane, styrene-butadiene copolymer, styrene-acrylic acid copolymer, styrene-acrylonitrile copolymer, etc. It can be formed by applying a solution dissolved in an appropriate organic solvent onto the photosensitive layer and drying it.

又前記樹脂液に紫外線吸収剤等の添加物を加えることが
できる。
Additionally, additives such as ultraviolet absorbers can be added to the resin liquid.

この際、保護層の膜厚は、一般に0.05〜20μ、特
に好ましくは0.2〜5μの範囲である。
At this time, the thickness of the protective layer is generally in the range of 0.05 to 20μ, particularly preferably in the range of 0.2 to 5μ.

本発明の電子写真感光体の層構成を第1図〜第4図に示
した。
The layer structure of the electrophotographic photoreceptor of the present invention is shown in FIGS. 1 to 4.

導電層、電荷輸送層、電荷発生層の順に積層した感光体
を使用する場合において電荷輸送物質が正孔輸送性物質
からなるため、電荷発生層表面を正に帯電する必要があ
り、帯電後露光すると露光部では電荷発生層において生
成した正孔が電荷輸送層に注入される。一方露光により
生成した電子が表面に達して正電荷を中和し、表面電位
の減衰が生じ未露光部との間に静電コントラストが生じ
る。この様にしてできた静電潜像を負荷電性のトナーで
現像すれば可税像が得られる。これを直接定着するか、
あるいはトナー像を紙やプラスチックフィルム等に転写
後、現像し定着することができる。
When using a photoreceptor in which a conductive layer, a charge transport layer, and a charge generation layer are laminated in this order, the charge transport material consists of a hole transport material, so the surface of the charge generation layer must be positively charged, and exposure after charging is required. Then, in the exposed area, holes generated in the charge generation layer are injected into the charge transport layer. On the other hand, electrons generated by exposure reach the surface and neutralize the positive charges, resulting in attenuation of the surface potential and electrostatic contrast between the surface and the unexposed area. If the electrostatic latent image thus formed is developed with a negatively charged toner, a taxable image can be obtained. Fix this directly or
Alternatively, the toner image can be transferred to paper, plastic film, etc., and then developed and fixed.

また、感光体上の静電潜像を転写紙の絶縁層上に転写後
机像し、定着する方法もと′れる。現像剤の種類や机像
方法、定着方法は公知のものや公知の方法のいずれを採
用しても良く、特定のものに限定されるものではない。
There is also a method in which the electrostatic latent image on the photoreceptor is transferred onto an insulating layer of transfer paper and then fixed thereon. The type of developer, the image forming method, and the fixing method may be any known method or methods, and are not limited to any particular method.

本発明の電子写真感光体は電子写真複写機に利用するの
みならず、レーザープリンターやCRTプリンター等の
電子写真応用分野にも広く用いることができる。
The electrophotographic photoreceptor of the present invention can be used not only in electrophotographic copying machines, but also in a wide range of electrophotographic applications such as laser printers and CRT printers.

以下本発明を実施例に従って説明する。The present invention will be explained below according to examples.

実施例 1〜14 アルミ板上にカセインのアンモニア水溶液Φゼイン11
.2P、28%アンモニア水1f、水222d)をマイ
ヤーパーで乾燥後の膜厚が1.0μとなるよ5に塗布し
乾燥した。次いで前記例示した電荷輸送材料B−1の5
1及びポリメチルメタクリレート(数平均分子量10万
)51をベンゼン701Rtに溶解し、これを前記下引
層の上に乾燥後の膜厚が12μとなるようにマイヤーバ
ーで塗布、乾燥して電荷輸送層を形成した。
Examples 1 to 14 Casein ammonia aqueous solution ΦZein 11 on an aluminum plate
.. 2P, 1f of 28% ammonia water, 222d of water) was applied to 5 using a Mayer Parr so that the film thickness after drying would be 1.0 μm, and then dried. Next, 5 of the exemplified charge transport material B-1
1 and polymethyl methacrylate (number average molecular weight: 100,000) 51 were dissolved in benzene 701Rt, and this was applied onto the undercoat layer using a Mayer bar so that the film thickness after drying was 12μ, and dried to transfer charges. formed a layer.

次に例示電荷輸送材料B−1の45?及びポリメチルメ
タクリレート(数平均分子量10万)45Fをクロルベ
ンゼン800−に溶解した液に例示アゾ顔料A−1の1
01を加えサンドミル1   で10時間分散した。こ
の分散液を先に形成した電荷輸送層の上に浸漬塗布法に
より塗布、乾燥し、厚さ5μの電荷発生層を形成し実施
例1の電子写真感光体を作成した。実施例1の感光体と
は別に、電荷発生層に用いる例示電荷輸送材料B−2〜
B−14に代えた以外は実施例1と全(同様にして実施
例2〜14の感光体を作成した。
Next, 45? of exemplified charge transport material B-1? and polymethyl methacrylate (number average molecular weight 100,000) 45F dissolved in chlorobenzene 800-.
01 was added and dispersed in a sand mill 1 for 10 hours. This dispersion was coated on the previously formed charge transport layer by a dip coating method and dried to form a charge generation layer having a thickness of 5 μm, thereby producing the electrophotographic photoreceptor of Example 1. Apart from the photoreceptor of Example 1, exemplary charge transport materials B-2 to 2 used in the charge generation layer
Photoreceptors of Examples 2 to 14 were prepared in the same manner as in Example 1 except that B-14 was used instead.

このようにして作成した電子写真感光体を川口電機■製
靜電複写紙試験装置ModetSF−428を用いてス
タチックで+5KVでコロナ帯電し、暗所で1秒間保持
した後、照度5 Luxで露光し帯電特性を調べた。
The electrophotographic photoreceptor thus prepared was statically charged with a corona at +5 KV using Kawaguchi Denki's Seiden Copying Paper Tester ModetSF-428, held in a dark place for 1 second, and then exposed to an illuminance of 5 Lux to be charged. We investigated the characteristics.

帯電特性としては表面電位(To )と1秒間暗減衰さ
せた時の電位をAに減衰するに必要な露光−It(1!
!1/+2)を測定した。この結果を第1表に示す。
The charging characteristics are the surface potential (To) and the exposure required to attenuate the potential to A after 1 second of dark decay -It (1!
! 1/+2) was measured. The results are shown in Table 1.

第1表 1   B−15804,2 2B−26104,0 3B−35904,5 4E−45704,6 5B−55804,3 6B−66004,0 7B−7610工6 13     B−8590工5 9      B−96204,8 10B−105905,0 11B−115805゜0 12     B−126004,8 13B−136104,0 14B−146004,4 表に示したように本発明の感光体は良好なプラス帯電性
とプラス帯電的の感度を示した。
Table 1 1 B-15804, 2 2B-26104, 0 3B-35904, 5 4E-45704, 6 5B-55804, 3 6B-66004, 0 7B-7610 6 13 B-8590 5 9 B-96204, As shown in the table, the photoreceptor of the present invention has good positive chargeability and positive charge sensitivity. showed that.

比較例 1 実施例1の電荷発生層にB−1化合物を用いなかった以
外は実施例1と全く同様にして感光体を作成しその特性
を調べた。
Comparative Example 1 A photoreceptor was prepared in exactly the same manner as in Example 1 except that the B-1 compound was not used in the charge generation layer of Example 1, and its characteristics were investigated.

表面電位+560 V1FX’1215 tux−se
aであり、本発明の感光体に比し極めて低感夏であり、
全く実用性をもたない。
Surface potential +560 V1FX'1215 tux-se
a, and has extremely low summer sensitivity compared to the photoreceptor of the present invention,
It has no practical use at all.

実施例 15〜25 アルミ蒸着ポリエチレンテレフタレートフィルムのアル
ミ面上に浸漬塗布法により膜厚1.1μのポリビニルア
ルコールの被膜を形成した。
Examples 15 to 25 A polyvinyl alcohol film having a thickness of 1.1 μm was formed on the aluminum surface of an aluminum vapor-deposited polyethylene terephthalate film by dip coating.

次に実施例1の電荷輸送層、電荷発生層に用いた電荷輸
送材料、電荷発生材料に代え後記第2表に示す材料を用
い実施例15〜25の感光体を実施例1と全く同様に作
成し、電位測定した。
Next, the photoreceptors of Examples 15 to 25 were prepared in exactly the same manner as in Example 1, using materials shown in Table 2 below in place of the charge transport materials and charge generation materials used in the charge transport layer and charge generation layer of Example 1. It was created and the potential was measured.

この結果を第5表に示す。なお電位測定項目として光メ
モリーを追加した。帯電前に露光することにより光メモ
リーの強い感光体は帯電電位が著しく低下し前露光部で
の極端な画像濃度の低下ないしは白抜は現象をひきおこ
す。光メモリーの評価方法としては60QLux5分の
前露光を与え、前露光のない時に比べて低下した表面電
位の差分(ΔVt−o)で表示する。
The results are shown in Table 5. Optical memory has been added as a potential measurement item. By exposing a photoreceptor to light before charging, the charging potential of a photoreceptor with a strong optical memory decreases significantly, causing an extreme decrease in image density or white spots in the pre-exposed area. As a method for evaluating optical memory, a pre-exposure of 60QLux for 5 minutes is given, and the difference in surface potential (ΔVt-o) is expressed as a decrease in surface potential compared to when no pre-exposure was performed.

ロ      ―     哨         寸1
!l         GQGQ       丙  
   丙        山国  置 へ         ヘ   へ      N   
  ヘ        ヘ半3表 キ 15   580    4.5          
2016   590    4.0        
  2517   610     !A、5    
      2018   580     6.8 
         1019   570     4
.0           2’020   590 
    4.1           3021   
600     5.0          2022
   580     4.5          2
023   610     3L9        
   1024   570     4.0    
      2525   580     3.8 
         20比較例 2〜5 実施例15.20,25.24の電荷発生層の電荷輸送
材料化合物に代えて第4表に示す電荷輸送材料を用いた
以外は実施例15.20123.24と全く同様にして
比較感光体1〜4を作成した。
Ro - Sentō 1
! l GQGQ Hei
Hei Yamakuni Place He He He N
He He half 3 tables Ki15 580 4.5
2016 590 4.0
2517 610! A.5
2018 580 6.8
1019 570 4
.. 0 2'020 590
4.1 3021
600 5.0 2022
580 4.5 2
023 610 3L9
1024 570 4.0
2525 580 3.8
20 Comparative Examples 2 to 5 Completely the same as Example 15.20123.24 except that the charge transport material shown in Table 4 was used in place of the charge transport material compound in the charge generation layer of Examples 15.20 and 25.24. Comparative photoreceptors 1 to 4 were prepared.

電位測定結果は第5表に示す。The potential measurement results are shown in Table 5.

第4表 比較例   電荷発生層に用いる電荷輸送材料第5表 電荷発生層の電荷輸送材料を本発明の材料と異なる材料
に代えた場合、感度、光メモリー共著しく劣悪な結果と
なり、本発明の電荷発生層に光導電性アゾ顔料と本発明
に包含される電荷輸送材料を組合せて使用する系が極め
て有効であることが立証された。
Table 4 Comparative Example Charge Transport Materials Used in Charge Generation Layer Table 5 When the charge transport material in the charge generation layer is replaced with a material different from the material of the present invention, both sensitivity and optical memory are significantly inferior, resulting in Systems using photoconductive azo pigments in combination with the charge transport materials encompassed by this invention in the charge generating layer have proven to be highly effective.

実施例 26 径60簡のアルミシリンダーに実施例1の電荷発生層に
用いたバインダー樹脂を、ポリカーボネート樹脂(数平
均分子量Z5万)に代えた以外は全(同じ塗工液を用い
、浸漬法により各層を順次積層し電子写真感光体を作成
した。
Example 26 An aluminum cylinder with a diameter of 60 mm was coated using the same coating solution, except that the binder resin used for the charge generation layer in Example 1 was replaced with a polycarbonate resin (number average molecular weight: Z50,000). Each layer was sequentially laminated to produce an electrophotographic photoreceptor.

キャノン■製のプラス帯電用のrpc複写機(試作機〕
を用い、初期の暗部電位を+700v初期の明部電位を
+1007に設定し、マイナス荷電性のトナーを用い1
万枚絵出し耐久し、耐久1晩放置後の電位測定をした。
Canon's positive charging RPC copier (prototype)
The initial dark potential was set to +700v, the initial light potential was set to +1007, and a negatively charged toner was used to set the initial dark potential to +700v.
After 10,000 prints were printed, the potential was measured after being left for one night.

□     なおテスト用試作機のドラム回りには、プ
ラス帯電用コロナチャージャー、露光部、現像部、転写
用プラス帯電コロナチャージャー、ブレードクリーナー
、前露光用ランプを配しである。
□ The drum of the test prototype is equipped with a positive charging corona charger, an exposure section, a developing section, a positive charging corona charger for transfer, a blade cleaner, and a pre-exposure lamp.

電位測定の結果は 暗部電位   700       730明部電位 
  100      1?i0絵出し耐久による感度
変動が小さくしかも画像はオゾン劣化によるボケ、画像
欠陥もな(、コロナワイヤーの汚染による放電ムラも観
察されず1万枚耐久後も美しい画像が得られた。
The result of potential measurement is dark area potential 700 730 light area potential
100 1? Sensitivity fluctuations due to i0 image display durability were small, and the image was free from blurring and image defects due to ozone deterioration (and no discharge unevenness due to corona wire contamination was observed, and beautiful images were obtained even after 10,000 prints durability.

実施例 27 実施例26と全く同様にし九作成した感光体上にポリビ
ニルブチラール樹脂(ケン化度100幅、ブチラール化
度75重量係数平均分子量3万)のメタノール溶液を浸
漬法により塗布し乾燥後の膜厚が5μの保護層を形成し
た。
Example 27 A methanol solution of polyvinyl butyral resin (degree of saponification 100, degree of butyralization 75, weight coefficient average molecular weight 30,000) was applied by dipping onto a photoconductor prepared in exactly the same manner as in Example 26, and after drying. A protective layer having a thickness of 5 μm was formed.

この感光体を用い実施例26と同じ装置を用い℃、実施
例26と全く同様にして絵出し耐久を行ったところ、実
施例26と同様な結果が得られた。
When this photoreceptor was subjected to image printing durability using the same apparatus as in Example 26 at 0.degree. C. in exactly the same manner as in Example 26, the same results as in Example 26 were obtained.

発明の効果 本発明は、導電性支持体上に少なくとも電荷輸送層、電
荷発生層を順次積層した感光体の電荷発生層に光導電性
アゾ顔料と一般式(1)で示される電荷輸送材料を用い
ること釦より次のような顕著な効果を奏するのである。
Effects of the Invention The present invention provides a photoreceptor in which a photoconductive azo pigment and a charge transport material represented by the general formula (1) are added to the charge generation layer of a photoreceptor in which at least a charge transport layer and a charge generation layer are sequentially laminated on a conductive support. Using this button produces the following remarkable effects.

1)電荷発生層内のキャリヤーの搬送性が改良されるた
めに電荷発生層を厚くすることができ、耐久使用時の′
電荷発生層の削れによる感度変動を少なくすることがで
きること、2)同様な理由により、電荷発生層の顔料/
バインダー樹脂の比率を下げる、つまりバインダー樹脂
分をふやすことが可能となり、その結果電荷発生層表面
の物理強度が増し耐久性の向上につながること、 3)電荷発生層の内部でのキャリヤー搬送性が良好とな
るため光生成キャリヤーが電荷発生層内部でキャリヤー
トラップされにくくなり、その結果として感度、光メモ
リ−、残留電位の改良された感光体が得られること、 4)電荷発生層から電荷輸送層へのキャリヤー注入がス
ムースとなり、3)と同様の効果が得られることである
1) The carrier transportability within the charge generation layer is improved, which allows the charge generation layer to be thicker, resulting in improved
2) For the same reason, the pigment/
It is possible to lower the binder resin ratio, that is, increase the binder resin content, which increases the physical strength of the surface of the charge generation layer and leads to improved durability. 3) Carrier transportability within the charge generation layer is improved. 4) From the charge generation layer to the charge transport layer, the photoreceptor has improved sensitivity, optical memory, and residual potential. The carrier injection becomes smooth, and the same effect as in 3) can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は本発明の電子写真感光体の層構成を示すも
のである。符号1は光導電性アゾ顔料、2はバインダー
樹脂子一般式(1)で示される電荷輸送材料、3は電荷
発生層、4は電荷輸送層、5は導電性支持体、6は下引
層、7は保護層ないしは絶縁層を示す。
1 to 4 show the layer structure of the electrophotographic photoreceptor of the present invention. Reference numeral 1 is a photoconductive azo pigment, 2 is a binder resin charge transport material represented by the general formula (1), 3 is a charge generation layer, 4 is a charge transport layer, 5 is a conductive support, and 6 is an undercoat layer. , 7 represents a protective layer or an insulating layer.

Claims (2)

【特許請求の範囲】[Claims] (1)導電性支持体上に少なくとも正孔搬送性の電荷輸
送層、電荷発生層を順次積層し、電荷発生層に光導電性
アゾ顔料と下記一般式( I )で示される電荷輸送材料
を含有せしめることを特徴とする積層型電子写真感光体
。 ▲数式、化学式、表等があります▼( I ) 式中Arは置換基を有していてもよいアリーレン基、R
_1、R_2、R_3、及びR_4は置換基を有してい
てもよいアルキル基、アラルキル基又はアリール基を示
す。
(1) At least a hole-transporting charge transport layer and a charge generation layer are sequentially laminated on a conductive support, and the charge generation layer contains a photoconductive azo pigment and a charge transport material represented by the following general formula (I). A laminated electrophotographic photoreceptor comprising: ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) In the formula, Ar is an arylene group that may have a substituent, R
_1, R_2, R_3, and R_4 represent an alkyl group, an aralkyl group, or an aryl group that may have a substituent.
(2)電荷発生層に用いる光導電性アゾ顔料が一般式▲
数式、化学式、表等があります▼(II) (式中Aはアゾ基の結合した炭素原子間が共役二重結合
系を形成する二価の有機基ないしは▲数式、化学式、表
等があります▼を示し、Bはフェノール性OH基を有す
るカプラーを示し、lは2又は3の整数を示す)で示さ
れる顔料である特許請求の範囲第1項記載の積層量電子
写真感光体。
(2) The photoconductive azo pigment used in the charge generation layer has the general formula ▲
There are mathematical formulas, chemical formulas, tables, etc.▼(II) (In the formula, A is a divalent organic group in which the carbon atoms to which the azo group is bonded form a conjugated double bond system.▲There are mathematical formulas, chemical formulas, tables, etc.▼ 2. The laminated electrophotographic photoreceptor according to claim 1, which is a pigment represented by the following formula, B represents a coupler having a phenolic OH group, and l represents an integer of 2 or 3.
JP59250618A 1984-11-29 1984-11-29 Laminate type electrophotographic sensitive body Pending JPS61129648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59250618A JPS61129648A (en) 1984-11-29 1984-11-29 Laminate type electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250618A JPS61129648A (en) 1984-11-29 1984-11-29 Laminate type electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS61129648A true JPS61129648A (en) 1986-06-17

Family

ID=17210530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250618A Pending JPS61129648A (en) 1984-11-29 1984-11-29 Laminate type electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS61129648A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132955A (en) * 1984-12-01 1986-06-20 Ricoh Co Ltd Electrophotographinc sensitive body
JPS61134354A (en) * 1984-12-01 1986-06-21 Ricoh Co Ltd 3,3'-dimethylbenzidine derivative
EP0353067A2 (en) * 1988-07-27 1990-01-31 Mita Industrial Co., Ltd. Electrophotographic photosensitive material containing m-phenylenediamine compound
WO2005108348A1 (en) * 2004-05-12 2005-11-17 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element employing the same, and process for producing aromatic amine derivative
WO2007086439A1 (en) 2006-01-25 2007-08-02 Hodogaya Chemical Co., Ltd. p-TERPHENYL COMPOUND MIXTURE AND ELECTROPHOTOGRAPHIC PHOTORECEPTORS MADE BY USING THE SAME
EP2518046A1 (en) 2004-05-25 2012-10-31 Hodogaya Chemical Co., Ltd. P-Terphenyl compound and electrophotographic photoconductor using the same
US8404412B2 (en) 2005-12-02 2013-03-26 Mitsubishi Chemical Corporation Electrophotographic photoreceptor, and image forming apparatus
JP2014140038A (en) * 2008-05-16 2014-07-31 Hodogaya Chem Co Ltd Organic electroluminescent element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889735A (en) * 1972-02-09 1973-11-22
JPS54110836A (en) * 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889735A (en) * 1972-02-09 1973-11-22
JPS54110836A (en) * 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132955A (en) * 1984-12-01 1986-06-20 Ricoh Co Ltd Electrophotographinc sensitive body
JPS61134354A (en) * 1984-12-01 1986-06-21 Ricoh Co Ltd 3,3'-dimethylbenzidine derivative
JPH0521099B2 (en) * 1984-12-01 1993-03-23 Ricoh Kk
EP0353067A2 (en) * 1988-07-27 1990-01-31 Mita Industrial Co., Ltd. Electrophotographic photosensitive material containing m-phenylenediamine compound
WO2005108348A1 (en) * 2004-05-12 2005-11-17 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element employing the same, and process for producing aromatic amine derivative
US8709613B2 (en) 2004-05-12 2014-04-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element employing the same, and process for producing aromatic amine derivative
EP2518046A1 (en) 2004-05-25 2012-10-31 Hodogaya Chemical Co., Ltd. P-Terphenyl compound and electrophotographic photoconductor using the same
EP2759531A1 (en) 2004-05-25 2014-07-30 Hodogaya Chemical Co., Ltd. P-Terphenyl compound and electrophotographic photoconductor using the same
US8404412B2 (en) 2005-12-02 2013-03-26 Mitsubishi Chemical Corporation Electrophotographic photoreceptor, and image forming apparatus
US8486594B2 (en) 2006-01-25 2013-07-16 Hodogaya Chemical Co., Ltd. P-terphenyl compound mixture and electrophotographic photoreceptors made by using the same
US8673792B2 (en) 2006-01-25 2014-03-18 Hodogaya Chemical Co., Ltd. p-Terphenyl compound mixture and electrophotographic photoreceptors made by using the same
WO2007086439A1 (en) 2006-01-25 2007-08-02 Hodogaya Chemical Co., Ltd. p-TERPHENYL COMPOUND MIXTURE AND ELECTROPHOTOGRAPHIC PHOTORECEPTORS MADE BY USING THE SAME
JP2014140038A (en) * 2008-05-16 2014-07-31 Hodogaya Chem Co Ltd Organic electroluminescent element
US9525140B2 (en) 2008-05-16 2016-12-20 Hodogaya Chemical Co., Ltd. Arylamine compound useful in an organic electroluminescent device

Similar Documents

Publication Publication Date Title
JP5233687B2 (en) Electrophotographic photosensitive member, process cartridge and image forming apparatus using the same
JPH0236935B2 (en)
JPS61129648A (en) Laminate type electrophotographic sensitive body
JPH1165137A (en) Electrophotographic photoreceptor
JPH0480382B2 (en)
JPH0477900B2 (en)
JPH11153875A (en) Electrophotographic photoreceptor
JPS61117557A (en) Laminate type electrophotographic sensitive body
JPS61129650A (en) Laminate type electrophotographic sensitive body
JPH1020527A (en) Electrophotographic photoreceptor
JPH11153874A (en) Electrophotographic photoreceptor
JPS61129651A (en) Laminate type electrophotographic sensitive body
JPS63218960A (en) Electrophotographic sensitive body
JPS61219048A (en) Electrophotographic sensitive body
JP2641059B2 (en) Electrophotographic photoreceptor
JPS61205939A (en) Electrophotographic sensitive body
JPS58147746A (en) Organic photoconductor
JPH01261647A (en) Electrophotographic sensitive body
JPS6228739A (en) Electrophotographic sensitive body
JPS63243951A (en) Electrophotographic sensitive body
JPH05113676A (en) Electrophotographic sensitive body
JPS63236048A (en) Electrophotographic sensitive body
JPS6223047A (en) Electrophotographic sensitive body
JPH01271758A (en) Electrophotographic sensitive body
JPS6223046A (en) Electrophotographic sensitive body