JPS611290A - Starting method of brushless dc motor - Google Patents

Starting method of brushless dc motor

Info

Publication number
JPS611290A
JPS611290A JP59119989A JP11998984A JPS611290A JP S611290 A JPS611290 A JP S611290A JP 59119989 A JP59119989 A JP 59119989A JP 11998984 A JP11998984 A JP 11998984A JP S611290 A JPS611290 A JP S611290A
Authority
JP
Japan
Prior art keywords
synchronous motor
motor
current
torque
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59119989A
Other languages
Japanese (ja)
Other versions
JP2533472B2 (en
Inventor
Tsunehiro Endo
常博 遠藤
Fumio Tajima
文男 田島
Nobuaki Kato
加藤 信明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP59119989A priority Critical patent/JP2533472B2/en
Publication of JPS611290A publication Critical patent/JPS611290A/en
Application granted granted Critical
Publication of JP2533472B2 publication Critical patent/JP2533472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To effectively start synchronously with low frequency irrespective of the magnitude of a load torque by gradually increasing the winding current from the minimum value in a period of starting synchronously with the low frequency. CONSTITUTION:A synchronous motor 5 is accelerated by shortening the time of 60 deg. for one cycle of the output frequency of an inverter 4 at every energizing mode by a timer 7-7 contained in a microcomputer by a programming of the microcomputer 7 in a low frequency synchronous start. A current desired value is gradually increased from zero ampere to the maximum current desired value corresponding to the maximum torque to be output as a synchronous motor during the positioning period. As a result, the rotor starts rotating when the output torque overcome the load torque TL applied to the motor.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は回転子位置検出を電機子巻線端子電圧を利用し
て行なう形式のブラシレス直流モータの起動法に係り、
特に、モータ駆動源のインバータを起動時のみ他制式と
して同期モータとして起動させる低周波同期起動方式を
採用する場合の起動の確実化を図ったブラシレス直流モ
ータの起動法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for starting a brushless DC motor in which rotor position is detected using armature winding terminal voltage.
In particular, the present invention relates to a method for starting a brushless DC motor that ensures reliable starting when a low frequency synchronous starting method is adopted in which the inverter of the motor drive source is used as a synchronous motor only at the time of starting.

〔発明の背景〕[Background of the invention]

回転子位置検出信号を、回転子の軸端側にホール素子な
どの位置検出センサを設けないで、電機子巻線の端子電
圧からフィルタ回路を介して得る方式のブラシレス直流
モータの技術は特開昭52−80415号公報に開示さ
れている。この種のブラシレス直流モータでは、起動時
には電機子巻線に誘起電圧が発生していないから、回転
子位置検出信号が発生する回転数までは、何らかの手段
で起動する必要がある。この起動方法として、ブラシレ
ス直流モータの駆動源に用いているインバータを、起動
時のみ他制式とし、同期モータとして起動させる、いわ
ゆる低周波同期起動法が特開昭58−29380号公報
に示され、同期モータが停止状態であることを検出した
後、起動を行なう技術が開示されている。
The technology of a brushless DC motor in which the rotor position detection signal is obtained from the terminal voltage of the armature winding via a filter circuit without installing a position detection sensor such as a Hall element on the shaft end of the rotor has been disclosed in Japanese Patent Application It is disclosed in Publication No. 52-80415. In this type of brushless DC motor, since no induced voltage is generated in the armature winding at the time of startup, it is necessary to start the motor by some means until the rotation speed reaches the point at which the rotor position detection signal is generated. As a starting method, a so-called low-frequency synchronous starting method is disclosed in Japanese Patent Application Laid-Open No. 58-29380, in which the inverter used as the drive source of the brushless DC motor is set to a different mode only at the time of starting, and the motor is started as a synchronous motor. A technique has been disclosed in which a synchronous motor is started after detecting that it is in a stopped state.

しかしながら、停止状態にある同期モータを起動するの
に、同期モータの電機子巻線に流す巻線電流と、同期モ
ータに加わる負荷トルクの大きさとの関連については何
ら考慮されていなかった。
However, when starting a synchronous motor in a stopped state, no consideration was given to the relationship between the winding current flowing through the armature winding of the synchronous motor and the magnitude of the load torque applied to the synchronous motor.

さらには、低周波同期起動を確実に行なうためには、負
荷トルクに応じて巻線電流の大きさを変える必要がある
が、一般に負荷トルクの大きさは未知であり、種々の負
荷トルクに応じて確実に起動させることは従来困難であ
った。
Furthermore, in order to ensure low frequency synchronous startup, it is necessary to change the magnitude of the winding current according to the load torque, but the magnitude of the load torque is generally unknown, and it is necessary to change the magnitude of the winding current according to the load torque. Conventionally, it has been difficult to reliably start the device.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術での上記した問題点を解消し
、負荷トルクの大きさにかかわらず、低周波同期起動を
確実に行ないうるブラシレス直流モータの起動法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for starting a brushless DC motor that eliminates the above-mentioned problems in the prior art and can ensure low-frequency synchronous starting regardless of the magnitude of load torque.

〔発明の概要〕[Summary of the invention]

本発明の概要は、上記目的を達成するために、モータ駆
動源として用いている3相イ/バータを他制式として運
転する期間内に限って、電機子巻線に流れる電流を、3
摺電機子巻線への通電開始直後の少なくとも1つの通電
モード(電気角60度)の期間に、同期モータとしての
最大出力トルクに対応する電流値まで徐々に高める起動
法とするにある。
The outline of the present invention is to achieve the above object by reducing the current flowing through the armature windings to three phases only during the period when the three-phase i/verter used as a motor drive source is operated as a differential mode.
The starting method is to gradually increase the current value to a value corresponding to the maximum output torque of the synchronous motor during at least one energization mode (electrical angle of 60 degrees) immediately after the start of energization to the sliding armature winding.

即ち1.低周波同期起動中において、同期モータの最大
出力トルクをTMXとすると、電機子巻線には同期モー
タのトルク定数(出力トルク/巻線電流)に見合った巻
線電流を流せば、加速トルクTa tと負荷トルクTL
との和が上記最大出力トルクTMX以下の場合に、同期
モータは脱調しないで加速することが可能となる。しか
しながら、同期モータに加わる負荷トルクに対して、出
力トルクが過大となるほどの巻線電流を流すと、以下の
現象が生じて起動失敗となる。低周波同期起動の開始直
後、最初に通電する60度の巻線通流モードにおいて、
電機子巻線に流す電光が負荷トルクに対応する以上に過
大であると、任意の位置に停止していた回転子は、上記
通流モードで出力トルクが零となる位置の方向に回転し
、慣性トルクによりその位置を行き過ぎ、通流モードに
は無関係に回転しつづけ、上記任意の停止位置によって
は、希望とする回転方向とは逆方向に回転をつづける。
Namely 1. During low-frequency synchronous startup, if the maximum output torque of the synchronous motor is TMX, if a winding current commensurate with the torque constant (output torque/winding current) of the synchronous motor is passed through the armature winding, the acceleration torque Ta can be increased. t and load torque TL
When the sum of the above maximum output torque TMX or less, the synchronous motor can be accelerated without stepping out. However, if a winding current that is large enough to cause an excessive output torque with respect to the load torque applied to the synchronous motor is passed, the following phenomenon occurs and startup failure occurs. Immediately after the start of low frequency synchronous startup, in the first 60 degree winding current mode,
If the lightning applied to the armature winding is too large to correspond to the load torque, the rotor, which had stopped at an arbitrary position, will rotate in the direction of the position where the output torque is zero in the above-mentioned current flow mode, It overshoots that position due to inertial torque and continues to rotate regardless of the flow mode, and depending on the above arbitrary stop position, continues to rotate in the opposite direction to the desired rotation direction.

以上の問題点を解決するのに、本発明は前述した方法を
採用するもので、これにより、出力トルクが零となる位
置に、−たん、回転子を移動して固定した後、通流モー
ドを変化して加速するようにしたものである。
In order to solve the above problems, the present invention adopts the method described above, whereby the rotor is moved and fixed at a position where the output torque becomes zero, and then the flow mode is set. It is designed to change and accelerate the speed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図〜第4図を用いて説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は本発明の起動法によって起動されるブラシレス
直流モータの全体構成を示したもので、交流電源lから
整流彎路2及び平滑コンデンサ3を介して直流電圧Ed
を得てインバータ4に供給し、このインバータ4の3相
交流出力が、同期モータ5の電機子巻線5−1に印加さ
れて、永久磁石を界磁とする回転子5−2を駆動する。
FIG. 1 shows the overall configuration of a brushless DC motor started by the starting method of the present invention.
The three-phase AC output of the inverter 4 is applied to the armature winding 5-1 of the synchronous motor 5 to drive the rotor 5-2 whose field is a permanent magnet. .

インバータ4は、6個のトランジスタA + 、 B+
Inverter 4 includes six transistors A + and B+
.

C”、/M、B−、C−と6個の還流ダイオードDi〜
1)6から構成きれる。120度通電形のインバータで
、3相の電機子巻線のうちいずれかの2相が通電される
。また上記6個のトランジスタのうち、直流電圧Edの
正電位側に接続されたトランジスタA1〜C+のみが、
その120度の通流期間がチョッパ信号CHPKより変
調を受け、このチョッパ信号CHPO通流率を変え、巻
線電流を制御する。さらに、直流電圧Eaの負電位ライ
ン側のトランジスタ八−〜C−の共通エミッタ端子と、
還流ダイオードD4〜D6の共通アノード端子間に低抵
抗R,1が接続され、この低抵抗R1に流れる電流IL
を電機子巻線に流れる巻線電流として、低抵抗R,lの
電圧降下から検出する。
C'', /M, B-, C- and six freewheeling diodes Di~
1) It can be composed of 6. In a 120-degree energizing type inverter, any two phases of the three-phase armature winding are energized. Also, among the six transistors mentioned above, only the transistors A1 to C+ connected to the positive potential side of the DC voltage Ed are
The 120 degree conduction period is modulated by the chopper signal CHPK to change the conduction rate of the chopper signal CHPO and control the winding current. Furthermore, a common emitter terminal of transistors 8- to C- on the negative potential line side of the DC voltage Ea,
A low resistance R,1 is connected between the common anode terminals of the free-wheeling diodes D4 to D6, and a current IL flows through this low resistance R1.
is the winding current flowing through the armature winding, and is detected from the voltage drop across low resistances R and l.

制御回路は、ジノグルチップのマイクロコンピュータ7
、同期モータ5の回転子5−2の磁極位置を検出する位
置検出回路6、同期モータ5の巻線電流ILを希望値I
D几に制御する電流制限回路8、及びトランジスタA+
〜C”、A−〜C−のベースドライブ回路9から構成さ
れる装置検出回路6は、特開昭52−80415号公報
に開示されている位置検出回路であり、同期モータ5の
電様子巻線端子電圧VA−VCより、フィルタ回路(図
示せず)を介して回転子磁極位置に応じた位置検出信号
65を作って出力する。マイクロコンピュータ7は、例
えばHD6805V1 のようなシングルチップのもの
を用い、CPUやALU7−4、RAM7−5.ROM
7−6、タイマ7−7、入出力ポート用レジスタ7−1
〜7〜3が内蔵される。ROM7−6には、ブラシレス
直流モータを駆動するに必要な各種処理、例えば低周波
同期起動のためのトランジスタに対するドライブ信号9
5の出力や、位置検出運転を行なうための、位置検出信
号65の取り込み、その位置検出信号に対応したドライ
ブ信号95の出力などのプログラムが記憶されている。
The control circuit is a Jinoglu chip microcomputer 7.
, a position detection circuit 6 that detects the magnetic pole position of the rotor 5-2 of the synchronous motor 5, and a desired value I of the winding current IL of the synchronous motor 5.
A current limiting circuit 8 that controls the D level and a transistor A+
The device detection circuit 6 composed of the base drive circuits 9 of ~C'' and A~C- is a position detection circuit disclosed in Japanese Unexamined Patent Application Publication No. 52-80415. A position detection signal 65 corresponding to the rotor magnetic pole position is generated and output from the line terminal voltage VA-VC via a filter circuit (not shown).The microcomputer 7 is a single-chip one such as HD6805V1. CPU, ALU7-4, RAM7-5.ROM
7-6, timer 7-7, input/output port register 7-1
-7-3 are built-in. The ROM 7-6 stores various processes necessary to drive the brushless DC motor, such as drive signals 9 for transistors for low frequency synchronous startup.
Programs such as the output of 5, the capture of a position detection signal 65 for position detection operation, and the output of a drive signal 95 corresponding to the position detection signal are stored.

第2図は第1図中の電流制限回路8の詳細回路図である
。電流制限回路8は、増幅器1o、ヒステリシス特性を
有するコンパレータ11及びD/A変換器12から構成
される。増幅器1oは、前述の低抵抗R1の電圧降下を
増幅して電流検出値VILとして出力する。D/A変換
器12は、マイクロコンピュータ7内の出力ポートレジ
スタ7−2を介して出力される8ビツトの電流希望値I
DRをアナログ量であるアナログ電流希望値IDRAに
変換する。コンパレータ11にて電流検出値VILとア
ナログ電流希望値IDRAとが比較され、チョッパ信号
CHPが作成され、巻線電流■Lが電流希望値IDHに
応じて制御される。なお、R2−R6はそれぞれ図示位
置に挿入配置されている抵抗である。
FIG. 2 is a detailed circuit diagram of the current limiting circuit 8 in FIG. 1. The current limiting circuit 8 includes an amplifier 1o, a comparator 11 having hysteresis characteristics, and a D/A converter 12. The amplifier 1o amplifies the voltage drop across the low resistance R1 mentioned above and outputs it as a current detection value VIL. The D/A converter 12 receives an 8-bit desired current value I outputted via the output port register 7-2 in the microcomputer 7.
DR is converted into an analog current desired value IDRA, which is an analog quantity. The current detection value VIL and the analog current desired value IDRA are compared in the comparator 11, a chopper signal CHP is created, and the winding current ■L is controlled according to the current desired value IDH. Note that R2 to R6 are resistors inserted at the positions shown in the figure.

以上の回路構成において、本実施例起動法は以下のよう
に動作する。
In the above circuit configuration, the startup method of this embodiment operates as follows.

第3図(a)は、低周波同期起動の期間内において、イ
ンバータ4を構成する6個のトランジスタの通流モード
を、(b)はアナログ電流希望値IDR,Aを、(C)
は同期モータ5の回転数を、それぞれ示している。低周
波同期起動では、マイクロコンピュータ7のプログラム
処理によシ、マイクロコンピュータ内蔵のタイマ7−7
を用いて、インバータ4の出力周波数の1サイクルに対
する60度の時間を、第3図(a)のように、通流モー
ト2ごとに短かくすることにより、同期モータ5を加速
する。
FIG. 3(a) shows the conduction mode of the six transistors making up the inverter 4 within the period of low frequency synchronous startup, (b) shows the analog current desired value IDR,A, and (C)
indicate the rotational speed of the synchronous motor 5, respectively. In low frequency synchronous startup, the program processing of the microcomputer 7 is performed, and the built-in timer 7-7 of the microcomputer is activated.
The synchronous motor 5 is accelerated by shortening the 60 degree time for one cycle of the output frequency of the inverter 4 for each current motor 2 as shown in FIG. 3(a).

第3図(a)に示した期間Δt1は位置決め期間であり
、この期間において、電流希望値IDRを苓アンペアか
ら、同期モータとして出力すべき最大トルクに相当する
最大電流希望値まで、第3図(b)のように、徐々に増
加させる。この結果、同期モータに加わる負荷トルク′
fLに出力トルクTMが打ち勝つ時点で、回転子は回転
を開始する。
The period Δt1 shown in FIG. 3(a) is a positioning period, and during this period, the desired current value IDR is changed from 100 amperes to the maximum desired current value corresponding to the maximum torque that should be output as a synchronous motor. Increase gradually as in (b). As a result, the load torque ′ applied to the synchronous motor is
At the point in time when the output torque TM overcomes fL, the rotor starts rotating.

第4図(a)は上記位置決め期間における金線電流の通
流径路と回転子の最終移動位置を示したもので、a相巻
線の巻線軸より反時計方向に30度の位置をθ=0とし
て示している。第4図(b)は回転角度を横軸に、同期
モータの出力トルクTMを縦軸に示したもので、同期モ
ータの空隙の磁束密度分布が台形波状でろって、回転子
が時計方向に回転するトリクの方向を正方向トルクとし
ている。
Fig. 4(a) shows the flow path of the gold wire current and the final moving position of the rotor during the above positioning period, where θ = 30 degrees counterclockwise from the winding axis of the a-phase winding. It is shown as 0. Figure 4(b) shows the rotation angle on the horizontal axis and the output torque TM of the synchronous motor on the vertical axis.The magnetic flux density distribution in the air gap of the synchronous motor is trapezoidal, and the rotor moves clockwise. The direction of the rotating torque is defined as the positive torque.

上記位置決め期間において、a相巻線からb相巻線に電
流を流せば、電機子巻線による磁束方向はθ=0であり
、回転角度に対する出力トルクTMは、第4図(b)の
ように、巻線電流の増加とともに増大する。しかしなが
ら、θ=0では出力トルクは零でるり、負荷トルクTM
に打ち勝って回転を開始した回転子はθ−0の近傍で巻
線電光の大きさには無関係に停止する。
During the above positioning period, if current flows from the a-phase winding to the b-phase winding, the magnetic flux direction due to the armature winding is θ = 0, and the output torque TM with respect to the rotation angle is as shown in Fig. 4 (b). increases with increasing winding current. However, when θ=0, the output torque is zero and the load torque TM
The rotor, which has overcome this and started rotating, stops near θ-0, regardless of the magnitude of the winding lightning.

第3図(C)は以上の様子を示したもので、負荷トルク
小の場合には、位置決め期間の早い時点に回転を開始し
、前述のθ=0の近傍で振動するも、一方向に回転しつ
づけることはない。一方、負荷トルク大の場合に、位置
決め期間の遅い時点に回転を開始するも、θ=Oの近傍
で振動することなく停止する。
Figure 3 (C) shows the above situation. When the load torque is small, rotation starts early in the positioning period, and although it oscillates near the aforementioned θ = 0, it continues in one direction. It doesn't keep spinning. On the other hand, when the load torque is large, the rotation starts at a late point in the positioning period, but stops near θ=O without vibration.

上述の実施例では、t−0の時点に回転子の位置が第4
図で示すθ−−180度の位置にある場合には、電流希
望値勿増加しても、出力トルクは零であシ、θ=−0の
位置にまで移動させることができない。しかし、(のよ
うな状態が存在し得るものに本発明を適用する場合には
、第3図(a)で示すΔt2の期間を第2の位置決め期
間として、この期間にも電流希望値を零アンペア相当か
ら徐々に増加することによシ解決できる。
In the above embodiment, the rotor position is at the fourth position at time t-0.
In the case of the position shown in the figure at .theta.--180 degrees, even if the desired current value increases, the output torque is zero and it is not possible to move the motor to the position of .theta.=-0. However, when the present invention is applied to a device where a state such as () may exist, the period of Δt2 shown in FIG. This can be solved by gradually increasing from the ampere equivalent.

また、上記実施例は、マイクロコンピュータ7により電
流希望値ID几を出力する構成としたことにより、位置
決め期間中の電流希望値の増加パターンを第3図(b)
に示したような直線的に増加するパターン以外にも、使
用する同期モータまたは負荷トルクの種類に応じて、自
由に設定できる利点がある。
Furthermore, in the above embodiment, the microcomputer 7 outputs the desired current value ID, so that the increase pattern of the desired current value during the positioning period is shown in FIG. 3(b).
In addition to the linearly increasing pattern shown in , there is an advantage that it can be set freely depending on the type of synchronous motor or load torque used.

〔発明の効果〕〔Effect of the invention〕

以上説明したようK、本発明によれば、低周波同期起動
の期間において、巻線電流を最小値から徐々に増加させ
るようにしたことにより、負荷トルクの大きさにかかわ
らず、同期モータの出力トルクがその負荷トルクより^
くなる時点に回転子は回転を始めて、出力トルクが零と
なる回転角度の近傍で停止する。このため、負荷トルク
の大きさに無関係に確実に位置決めが行なわれ、それ以
降、インバータ出力周波数を保々に高めて同期モータを
加速しても、脱調することが無い。
As explained above, according to the present invention, the winding current is gradually increased from the minimum value during the low frequency synchronous startup period, so that the synchronous motor outputs regardless of the magnitude of the load torque. Torque is greater than the load torque ^
The rotor starts rotating at the point where the output torque becomes zero, and stops near the rotation angle at which the output torque becomes zero. Therefore, positioning is performed reliably regardless of the magnitude of the load torque, and even if the synchronous motor is accelerated by constantly increasing the inverter output frequency thereafter, there will be no step-out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明用の全体構成図、第2図は
第1図中の一部詳細回路図、第3図〜第4図は本発明実
施例の動作説明図で第3図(a)はトランジスタの通流
モード、(b)は電流希望値、(C)ハ同期モータの回
転数、第4図(a)は巻線電流の径路と回転子の最終移
動位置、(b)は回転角度と同期モータ出力トルクとの
関係をそれぞれ示す図である。 2・・・整流回路、4・・・インバータ、5・・・同期
モータ、5−1・・・電機子巻線、5−2・・・回転子
、6・・・位置検出回路、7・・・マイクロコンピュー
タ、8・・・電に制限回路、9・・・ベースドライブ回
路、IO・・・増幅器、11・・・コンパレータ、12
・・・D/A変換器。
FIG. 1 is an overall configuration diagram for detailed explanation of the present invention, FIG. 2 is a detailed circuit diagram of a part of FIG. 1, and FIGS. Figure 4 (a) shows the conduction mode of the transistor, (b) the desired current value, (C) the rotation speed of the synchronous motor, and Figure 4 (a) shows the path of the winding current and the final moving position of the rotor. b) is a diagram showing the relationship between the rotation angle and the synchronous motor output torque. 2... Rectifier circuit, 4... Inverter, 5... Synchronous motor, 5-1... Armature winding, 5-2... Rotor, 6... Position detection circuit, 7... ...Microcomputer, 8...Electric limiter circuit, 9...Base drive circuit, IO...Amplifier, 11...Comparator, 12
...D/A converter.

Claims (1)

【特許請求の範囲】[Claims] 1、永久磁石を界磁回転子とする同期モータと、インバ
ータの3相交流出力に接続した上記同期モータの3相電
機子巻線の端子電圧より上記回転子の回転位置を検出す
る位置検出回路を備え、上記同期モータを停止状態から
起動するに際し上記インバータを他制式として運転する
形式のブラシレス直流モータにおいて、前記電機子巻線
に流れる電流を、前記インバータを他制式として運転す
る期間に限って、3相電機子巻線への通電開始直後の少
なくとも1つの60度の通電モードの期間に同期モータ
としての最大出力トルクに対応する電流値まで徐々に高
めることを特徴とするブラシレス直流モータの起動法。
1. A synchronous motor with a permanent magnet as a field rotor, and a position detection circuit that detects the rotational position of the rotor from the terminal voltage of the 3-phase armature winding of the synchronous motor connected to the 3-phase AC output of the inverter. In the brushless DC motor, the inverter is operated as a differential mode when the synchronous motor is started from a stopped state, and the current flowing through the armature winding is limited to a period when the inverter is operated as a differential mode. , starting of a brushless DC motor, characterized in that the current is gradually increased to a value corresponding to the maximum output torque as a synchronous motor during at least one 60 degree energization mode period immediately after the start of energization of the three-phase armature windings. Law.
JP59119989A 1984-06-13 1984-06-13 Method of starting brushless DC motor Expired - Lifetime JP2533472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59119989A JP2533472B2 (en) 1984-06-13 1984-06-13 Method of starting brushless DC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59119989A JP2533472B2 (en) 1984-06-13 1984-06-13 Method of starting brushless DC motor

Publications (2)

Publication Number Publication Date
JPS611290A true JPS611290A (en) 1986-01-07
JP2533472B2 JP2533472B2 (en) 1996-09-11

Family

ID=14775145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59119989A Expired - Lifetime JP2533472B2 (en) 1984-06-13 1984-06-13 Method of starting brushless DC motor

Country Status (1)

Country Link
JP (1) JP2533472B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331829A (en) * 1994-06-14 1995-12-19 Natl House Ind Co Ltd Structure of handrail mounting part
JP2008220078A (en) * 2007-03-06 2008-09-18 Matsushita Electric Ind Co Ltd Controller for brushless dc motor and ventilating air-blower
JP2008245410A (en) * 2007-03-27 2008-10-09 Ihi Corp Permanent magnet synchronous motor controller, and method thereof
JP2010114956A (en) * 2008-11-04 2010-05-20 Aisan Ind Co Ltd Drive unit for brushless motor
JP2011024297A (en) * 2009-07-14 2011-02-03 Fuji Electric Systems Co Ltd Control unit of permanent magnet synchronous motor
JP4719218B2 (en) * 2005-06-13 2011-07-06 シナノケンシ株式会社 Opening and closing body drive device
JP2013230035A (en) * 2012-04-26 2013-11-07 Honda Motor Co Ltd Controller of motor
EP1322031B1 (en) * 2001-12-11 2017-08-30 Honda Giken Kogyo Kabushiki Kaisha Method of starting an electric brushless rotating machine for driving an internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5257661B2 (en) * 2008-07-02 2013-08-07 株式会社デンソー Synchronous motor control method and control apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114026A (en) * 1973-03-07 1974-10-31
JPS50147516A (en) * 1974-05-17 1975-11-26
JPS526919A (en) * 1975-07-07 1977-01-19 Hitachi Ltd Brushless motor
JPS57151282A (en) * 1981-03-14 1982-09-18 Hitachi Ltd Driving device for synchronous motor
JPS58119784A (en) * 1982-01-11 1983-07-16 Hitachi Ltd Position controlling method and device for motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114026A (en) * 1973-03-07 1974-10-31
JPS50147516A (en) * 1974-05-17 1975-11-26
JPS526919A (en) * 1975-07-07 1977-01-19 Hitachi Ltd Brushless motor
JPS57151282A (en) * 1981-03-14 1982-09-18 Hitachi Ltd Driving device for synchronous motor
JPS58119784A (en) * 1982-01-11 1983-07-16 Hitachi Ltd Position controlling method and device for motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331829A (en) * 1994-06-14 1995-12-19 Natl House Ind Co Ltd Structure of handrail mounting part
EP1322031B1 (en) * 2001-12-11 2017-08-30 Honda Giken Kogyo Kabushiki Kaisha Method of starting an electric brushless rotating machine for driving an internal combustion engine
JP4719218B2 (en) * 2005-06-13 2011-07-06 シナノケンシ株式会社 Opening and closing body drive device
JP2008220078A (en) * 2007-03-06 2008-09-18 Matsushita Electric Ind Co Ltd Controller for brushless dc motor and ventilating air-blower
JP2008245410A (en) * 2007-03-27 2008-10-09 Ihi Corp Permanent magnet synchronous motor controller, and method thereof
JP2010114956A (en) * 2008-11-04 2010-05-20 Aisan Ind Co Ltd Drive unit for brushless motor
JP2011024297A (en) * 2009-07-14 2011-02-03 Fuji Electric Systems Co Ltd Control unit of permanent magnet synchronous motor
JP2013230035A (en) * 2012-04-26 2013-11-07 Honda Motor Co Ltd Controller of motor

Also Published As

Publication number Publication date
JP2533472B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
US4959596A (en) Switched reluctance motor drive system and laundering apparatus employing same
JP3971520B2 (en) Brushless motor drive device for outdoor fan of air conditioner
JP2763374B2 (en) Method and electronic circuit for controlling a brushless DC motor
US4678973A (en) Sensorless starting control for a brushless DC motor
JPH03504435A (en) How to start a brushless DC motor
JP2001519640A (en) Control method and control device for controlling synchronous motor with permanent magnet
CN112549986B (en) Electric vehicle starting control method
JPS611290A (en) Starting method of brushless dc motor
EP3739745A1 (en) Single-phase direct-current brushless motor and control apparatus and control method therefor
JPH09294390A (en) Step-out detecting device in centerless synchronous motor
JPH09215382A (en) Method of driving permanent magnet synchronous motor
JPH08191591A (en) Device for controlling drive of brushless motor
JP2008104267A (en) Motor device
US6998814B2 (en) Method for measuring the electromotive force constant of motors
JP2000245191A (en) Driving device for brushless direct-current motor
JPH04312390A (en) Starter for brushless motor
JPH03195390A (en) Starting of brushless dc motor
JPH05184188A (en) Brushless motor drive controller
JP3711749B2 (en) Permanent magnet type synchronous motor and control method thereof
JP2021065074A (en) Motor control device
JPH06343285A (en) Stopping method for brushless motor
JP3362150B2 (en) Brushless DC motor driving method and device
JP4003700B2 (en) 6-wire 3-phase brushless motor controller
JPH07308092A (en) Synchronous starting device for d.c. motor
WO2021200123A1 (en) Motor control device, motor system, and motor control method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term