JPS61127920A - Hydraulic bearing unit - Google Patents

Hydraulic bearing unit

Info

Publication number
JPS61127920A
JPS61127920A JP59249105A JP24910584A JPS61127920A JP S61127920 A JPS61127920 A JP S61127920A JP 59249105 A JP59249105 A JP 59249105A JP 24910584 A JP24910584 A JP 24910584A JP S61127920 A JPS61127920 A JP S61127920A
Authority
JP
Japan
Prior art keywords
shaft
bearing
group
depth
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59249105A
Other languages
Japanese (ja)
Other versions
JPH06105088B2 (en
Inventor
Hiroshi Inoue
洋 井上
Minoru Koda
香田 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59249105A priority Critical patent/JPH06105088B2/en
Publication of JPS61127920A publication Critical patent/JPS61127920A/en
Publication of JPH06105088B2 publication Critical patent/JPH06105088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To make air bubbles mixed in a bearing groove dischargeable out in an easy manner, by forming a pointed needlelike projecting groove, whose width is smaller than the depth, in a tip end of a herringbone type group of a dynamic pressure bearing. CONSTITUTION:A herringbone type group 8a constituting a dynamic pressure bearing is formed on a shaft bearing surface of a shaft 8. A pointed needlelike groove 8b, whose length l of the tip end paralleled in axial length is made so as to be smaller than depth (d), is formed at a tip part of this group. Therefore, even if air bubbles are mixed inside a bearing groove, they come to be smoothly discharged out in consequence, whereby the shaft is made so as to be smoothly supportable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ビデオテープレコーダーの回転ヘッドシリン
ダー装置に用いることができる流体軸受装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a hydrodynamic bearing device that can be used in a rotating head cylinder device of a video tape recorder.

従来の技術 第3図に従来の流体軸受装置を使用した回転ヘッドシリ
ンダーの断面図を示している。これを説明すると、1は
磁気テープを案内する固定シリンダーである。2は軸長
方向の上、下の外周面2カ所に例えばエツチング等で加
工したヘリングボーン型グループ2!L(第4図参照)
を有する固定の軸であシ、固定シリンダー1の中心部に
同軸的に圧入固定されている。3は軸2と同軸的に回転
可能で、軸受内径3+Lを有するスリーブであシ、これ
には回転シリンダー4が取付けられている。5はへリン
グポーン型グループ2&と軸受内径3邑との微小隙間に
介在せられた潤滑剤である。なお6および7はスリーブ
3を回転させるためのモータを構成する永久磁石ロータ
ーとステーターである。
Prior Art FIG. 3 shows a sectional view of a rotary head cylinder using a conventional hydrodynamic bearing device. To explain this, 1 is a fixed cylinder that guides the magnetic tape. 2 is a herringbone type group 2 that has been processed, for example, by etching, on the upper and lower outer peripheral surfaces in the axial direction! L (see Figure 4)
A fixed shaft having a diameter is press-fitted coaxially into the center of the fixed cylinder 1. A sleeve 3 is rotatable coaxially with the shaft 2 and has a bearing inner diameter of 3+L, and a rotating cylinder 4 is attached to this sleeve. Reference numeral 5 denotes a lubricant interposed in a minute gap between the Hering-Pone type group 2& and the bearing inner diameter 3. Note that 6 and 7 are a permanent magnet rotor and a stator that constitute a motor for rotating the sleeve 3.

以上のように構成された従来の流体軸受装置について、
以下にその動作について説明する。
Regarding the conventional hydrodynamic bearing device configured as above,
The operation will be explained below.

この流体軸受装置のスリーブ3を含む回転部が回転する
と、ヘリングボーン型グループ2aと軸受内径3aと潤
滑剤4によって構成されるラジアル軸受のボンピッグ作
用によシ求心性か保たれ、正常な回転を維持する。
When the rotating part including the sleeve 3 of this hydrodynamic bearing device rotates, the centripetal state is maintained due to the bong pig action of the radial bearing composed of the herringbone type group 2a, the bearing inner diameter 3a, and the lubricant 4, and normal rotation is maintained. maintain.

発明が解決しようとする問題点 しかしながら、前記のような構成では、軸受内部に気泡
が混入した場合、その排出がスムーズでなく、潤滑剤4
の正常な流れを妨げ、回転部の正常な回転ができなくな
るという問題点を有していた。これは次の理由による。
Problems to be Solved by the Invention However, with the above configuration, if air bubbles get inside the bearing, they cannot be discharged smoothly, and the lubricant 4
This has the problem that the normal flow of water is obstructed, making it impossible for the rotating part to rotate normally. This is due to the following reason.

本来、気泡は球状を保ち、圧力の低い方向に移動する。Normally, bubbles maintain a spherical shape and move in the direction of lower pressure.

しかし第5図の拡大断面図に示すように、円周の圧力分
布はへリングボーン型グループ2Δの先端部2bで最低
を示す。そして軸受内部に混入した気泡は圧力の低いω
点に集ip、その形状は球状を保つ。また。
However, as shown in the enlarged cross-sectional view of FIG. 5, the circumferential pressure distribution shows the lowest point at the tip 2b of the herringbone group 2Δ. And the air bubbles mixed inside the bearing have low pressure ω
It gathers at a point, and its shape remains spherical. Also.

第4図に示すように軸受と平行な先端の長さ4′がグル
ープ深さa/(第5図参照)より太きいと、軸長の圧力
分布よシ最犬圧力発生部2hは平坦なため、圧力勾配が
小さく、混入した気泡は第4図にXで示す部分に残留す
る。
As shown in Fig. 4, if the length 4' of the tip parallel to the bearing is greater than the group depth a/(see Fig. 5), the innermost pressure generating part 2h will be flat due to the pressure distribution of the shaft length. Therefore, the pressure gradient is small, and the mixed air bubbles remain in the area indicated by X in FIG. 4.

このように円周の圧力分布と軸長の圧力分布より、ヘリ
ングボーア型グループ2aに混入した気泡はグループ深
さd′をほぼ直径となす球状を保って残留するのである
As described above, due to the circumferential pressure distribution and the axial length pressure distribution, the bubbles mixed into the Hering-Bohr type group 2a remain in a spherical shape whose diameter is approximately the group depth d'.

本発明は前記問題点に鑑み、軸受内部に混入した気泡を
細分化して軸受外部へスムーズに排出し、軸受内部に残
留する気泡を減少させ、正常な回転を維持することを可
能にする流体軸受装置を提供するものである。
In view of the above-mentioned problems, the present invention is a hydrodynamic bearing that subdivides air bubbles mixed inside the bearing and smoothly discharges them to the outside of the bearing, reduces air bubbles remaining inside the bearing, and maintains normal rotation. It provides equipment.

問題点を解決するための手段 前記問題点を解決するために本発明の流体軸受装置は、
軸の外周面に、深さをd、軸長と平行な先端の長さを4
とする時、d>4を条件を満たすヘリングボーン型グル
ープを配設したという構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the hydrodynamic bearing device of the present invention includes:
On the outer peripheral surface of the shaft, the depth is d, and the length of the tip parallel to the shaft length is 4.
When d>4, this configuration has a herringbone type group that satisfies the condition d>4.

作用 本発明は前記した構成によって、軸受内部に混入した気
泡の大きさは、ヘリングボーン型グループの深さdとほ
ぼ同等で、軸長と平行なヘリングボーン型グループの先
端の長さlがdよシ小さければ、その部分に残留する気
泡の直径はeより小さな値に細分化され軸受外部へ排出
される。また、ヘリングボーン型グループの先端断面部
を略々円弧状にした場合、円周の圧力分布はグループ深
さの浅い箇所で最低値を示す。そのため残留した気泡は
細分化されその直径は小さな値となる。
According to the above-described structure, the size of the air bubbles mixed inside the bearing is approximately equal to the depth d of the herringbone type group, and the length l of the tip of the herringbone type group parallel to the axial length is d. If the bubbles are smaller, the diameter of the bubbles remaining in that area is divided into smaller diameters than e and discharged to the outside of the bearing. Further, when the tip cross section of the herringbone type group is formed into a substantially circular arc shape, the circumferential pressure distribution exhibits the lowest value at a shallow group depth. Therefore, the remaining bubbles are fragmented and their diameter becomes small.

実施例 以下、本発明の一実IM9uの流体軸受装置について、
第1図および第2図を参照しなから説明する。
Examples Below, regarding the hydrodynamic bearing device of IM9u, which is a part of the present invention,
This will be explained with reference to FIGS. 1 and 2.

なお、使用する固定シリンダー、スリーブ、潤滑剤は第
3図の構成と同じものであるので、図示は省略する。
Note that the fixed cylinder, sleeve, and lubricant used are the same as those shown in FIG. 3, so their illustration is omitted.

第1図において、8は軸長方向の上・下の外周面2カ所
K、例えばエツチングみで加工したヘリングボーア型グ
ループ8aを有する軸であり、固定シリンダー1(第3
図参照)の中心部に同軸的に圧入固定されている。ここ
で、上記へリング型グループ8aは、その深さをd、軸
長と平行なグループ先端部8bの長さをlとしたとき、
d)dの関係に設定している。また、そのグループ82
Lは少なくともその先端部が傾斜面8c(第2図参照)
を有するように形成されている。
In FIG. 1, reference numeral 8 denotes a shaft having two Hering-Bohr type groups 8a on the upper and lower outer circumferential surfaces in the longitudinal direction of the shaft, for example, by etching.
(see figure) is coaxially press-fitted into the center. Here, when the depth of the Hering type group 8a is d, and the length of the group tip 8b parallel to the axial length is l,
d) It is set to the relationship d. Also, the group 82
At least the tip of L has an inclined surface 8c (see Figure 2)
It is formed to have.

以上のように構成された流体軸受装置について以下にそ
の動作を説明する。
The operation of the hydrodynamic bearing device configured as described above will be described below.

スリーブ3を含む回転部が回転するとボンピング作用に
より求心性2保つことは従来例と同様で  、ある。そ
してヘリングボーン型グループ8iLの先端部8bはバ
レル等で加工されて傾斜面となっているため、円周の圧
力分布はへリングボーン型グループ8乙の先端部8bの
深さdの浅い箇所1点で最低値を示す(第2図参照)。
As in the conventional example, when the rotating part including the sleeve 3 rotates, the centripetal property 2 is maintained by the pumping action. Since the tip 8b of the herringbone group 8iL is machined with a barrel or the like to form an inclined surface, the circumferential pressure distribution is the shallow part 1 at the depth d of the tip 8b of the herringbone group 8B. The lowest value is indicated by a point (see Figure 2).

さらにヘリング宗−ン型グループ8aは先端部8bを第
1図に示すように尖針形状とすると、軸長と平行な先端
部8bの長さlは深さdより小さくなり、軸長の圧力分
布において最大圧力発生部8hの幅は深さdより小さく
なる(第1図参照)。ここで軸受内部に混入した気泡は
へリングボーン型グループ8aの深さdとほぼ同等で、
円周の圧力分布より圧力の最低値を示すy点に球状で残
るが、y点は閑さが浅いため、残留した気泡は細分化さ
れ、その直径は小さな値となる。さらに軸長の圧力分布
より、軸長と平行な先端の長さeが深さdより小さいた
め、最大圧力発生部8hの幅ヲ深さdよりも小さくなり
、第1図にZで示す部分に残留する気泡の直径は4より
小さな値に細分化され、圧力勾配により軸受外部へ排出
される。
Furthermore, if the tip 8b of the Hering Sohn type group 8a is shaped like a pointed needle as shown in FIG. In the distribution, the width of the maximum pressure generating portion 8h is smaller than the depth d (see FIG. 1). Here, the air bubbles mixed inside the bearing are approximately equal to the depth d of the herringbone type group 8a,
A spherical shape remains at the y point where the pressure is lowest from the circumferential pressure distribution, but since the y point is shallow, the remaining bubbles are fragmented and their diameter becomes small. Furthermore, according to the pressure distribution of the axial length, the length e of the tip parallel to the axial length is smaller than the depth d, so the width of the maximum pressure generating part 8h is smaller than the depth d, and the part shown by Z in FIG. The diameter of the bubbles remaining in the bearing is divided into smaller diameters than 4, and the bubbles are discharged to the outside of the bearing due to the pressure gradient.

なお、本実施例においてへリングボーン型グループ8a
の先端部は尖針形状としたが、軸長に平行な先端の長さ
4が深さdより小さくなる形状であればよい。
Note that in this embodiment, the herringbone type group 8a
Although the tip of the tip is in the shape of a pointed needle, any shape may be used as long as the length 4 of the tip parallel to the axial length is smaller than the depth d.

発明の効果 以上のように本発明によれば、軸受内部に混入した気泡
を容易に軸受外部へ排出し、正常な回転を維持できると
いったすぐれた効果を得ることができる。
Effects of the Invention As described above, according to the present invention, it is possible to obtain the excellent effect that air bubbles mixed inside the bearing can be easily discharged to the outside of the bearing, and normal rotation can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る流体軸受装置の要部を
、発生する圧力分布とともに示した拡大図、第2図はそ
の要部断面を、発生する圧力分布とともに示した拡大断
面図、第3図は従来の流体軸受装置を使用した回転磁気
ヘッドシリンダー装置の断面図、第4図は従来の流体軸
受装置の要部を、発生する圧力分布とともに示しだ拡大
図、第5図はその要部断面を、発生する圧力分布ととも
に示した拡大断面図である。 3・・・・・・スリーブ、4・・・・・・潤滑剤、8・
・・・・軸、 8a・・・・・ヘリングボーン型グルー
プ、8b・・・・・グループ先端部、8C・・・・・・
傾斜面、8h・・・・・最大圧力発生部、e・・・・・
軸長と平行な先端の長さ、d・・・・・・グループ深さ
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 6−轄 に−−−ヘリS?;r−ン!フ゛ルーフ゛第 2 図 8−−一鮪 82°−−へリング玉′−ン隻り冗−フ゛第3図 第 4 図 第5図
FIG. 1 is an enlarged view showing the main parts of a hydrodynamic bearing device according to an embodiment of the present invention, together with the pressure distribution generated, and FIG. 2 is an enlarged cross-sectional view showing the main parts together with the pressure distribution generated. , Fig. 3 is a sectional view of a rotating magnetic head cylinder device using a conventional hydrodynamic bearing device, Fig. 4 is an enlarged view showing the main parts of a conventional hydrodynamic bearing device along with the pressure distribution generated, and Fig. 5 is an enlarged view of the main parts of the conventional hydrodynamic bearing device. FIG. 2 is an enlarged cross-sectional view showing a cross section of the main part together with the pressure distribution generated. 3...Sleeve, 4...Lubricant, 8.
...Shaft, 8a...Herringbone group, 8b...Group tip, 8C...
Inclined surface, 8h...Maximum pressure generating part, e...
Length of the tip parallel to the axis length, d...Group depth. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 6 - In charge --- Helicopter S? ;r-n! Roof No. 2 Fig. 8 - One tuna 82° - Herring ball's row - Fig. 3 Fig. 4 Fig. 5

Claims (2)

【特許請求の範囲】[Claims] (1)軸と、前記軸と同軸的に設けられたスリーブと、
前記軸と前記スリーブの微小隙間に介在する潤滑剤を含
めて成り、前記軸の外周面に、d>l(ただし、深さを
d、軸長と平行な先端の長さをlとする)の条件を満た
すヘリングボーン型グループを配設したことを特徴とす
る流体軸受装置。
(1) a shaft; a sleeve provided coaxially with the shaft;
The shaft includes a lubricant interposed in a small gap between the shaft and the sleeve, and the outer circumferential surface of the shaft has d>l (where d is the depth and l is the length of the tip parallel to the shaft length). A hydrodynamic bearing device characterized by having a herringbone type group that satisfies the following conditions.
(2)グループは、その少なくとも先端部が傾斜面を有
するように形成されていることを特徴とする特許請求の
範囲第(1)項記載の流体軸受装置。
(2) The hydrodynamic bearing device according to claim (1), wherein the group is formed so that at least a tip thereof has an inclined surface.
JP59249105A 1984-11-26 1984-11-26 Hydrodynamic bearing device Expired - Lifetime JPH06105088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249105A JPH06105088B2 (en) 1984-11-26 1984-11-26 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249105A JPH06105088B2 (en) 1984-11-26 1984-11-26 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JPS61127920A true JPS61127920A (en) 1986-06-16
JPH06105088B2 JPH06105088B2 (en) 1994-12-21

Family

ID=17188025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249105A Expired - Lifetime JPH06105088B2 (en) 1984-11-26 1984-11-26 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JPH06105088B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979263A (en) * 1995-09-20 1997-03-25 Hitachi Ltd Bearing device and spindle motor provided with same
KR20160132909A (en) * 2014-03-10 2016-11-21 유니버셜 시티 스튜디오스 엘엘씨 System and method for lubricating plain bearings

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132642A (en) * 1977-04-25 1978-11-18 Nippon Seiko Kk Dynamic pressure type bearing with recess
JPS57115422U (en) * 1981-01-12 1982-07-17
JPS5852324U (en) * 1981-10-03 1983-04-09 ソニー株式会社 bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132642A (en) * 1977-04-25 1978-11-18 Nippon Seiko Kk Dynamic pressure type bearing with recess
JPS57115422U (en) * 1981-01-12 1982-07-17
JPS5852324U (en) * 1981-10-03 1983-04-09 ソニー株式会社 bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979263A (en) * 1995-09-20 1997-03-25 Hitachi Ltd Bearing device and spindle motor provided with same
KR20160132909A (en) * 2014-03-10 2016-11-21 유니버셜 시티 스튜디오스 엘엘씨 System and method for lubricating plain bearings

Also Published As

Publication number Publication date
JPH06105088B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US5427456A (en) Fluid bearing with asymmetrical groove pattern
JP2506836B2 (en) Hydrodynamic bearing device
US4320927A (en) Dental drill with magnetic air turbine having magnetic bearings
JPH03149410A (en) Dynamic pressure bearing device
JP2003176822A (en) Bearing assembly and its forming method
KR0184722B1 (en) Method for manufacturing fluid bearing
JPH09133133A (en) Thrust magnetic bearing device
JPS61127920A (en) Hydraulic bearing unit
JPH0525021U (en) Hydrodynamic bearing
JPH0642536A (en) Rolling roller
JPH089459Y2 (en) Rolling bearing for underrace lubrication
JPS61215864A (en) Magnetic fluid sealing device
JPH0814402A (en) Magnetic fluid seal
JPS59164416A (en) Magnetic bearing device
JPS5737116A (en) Spindle device
JPH028511A (en) Fluid bearing device
JPS631811A (en) Fluid bearing device
JPS60263720A (en) Fluid bearing cylinder device
JPH1172115A (en) Fluid bearing device
JPS6165905A (en) Dynamic pressure bearing system
JPS6150207A (en) Cylinder device for fluid bearing
JPS6150205A (en) Cylinder device for fluid bearing
JPH0516408Y2 (en)
JPH03163211A (en) Dynamic pressure fluid bearing
JPH0447443Y2 (en)