JPS61126036A - Purification and separation of olefinic hydrocarbon - Google Patents

Purification and separation of olefinic hydrocarbon

Info

Publication number
JPS61126036A
JPS61126036A JP59247935A JP24793584A JPS61126036A JP S61126036 A JPS61126036 A JP S61126036A JP 59247935 A JP59247935 A JP 59247935A JP 24793584 A JP24793584 A JP 24793584A JP S61126036 A JPS61126036 A JP S61126036A
Authority
JP
Japan
Prior art keywords
adsorption
gas
adsorbent
purge
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59247935A
Other languages
Japanese (ja)
Other versions
JPH0259808B2 (en
Inventor
Hidefumi Hirai
平井 英史
Akira Watanabe
明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59247935A priority Critical patent/JPS61126036A/en
Publication of JPS61126036A publication Critical patent/JPS61126036A/en
Publication of JPH0259808B2 publication Critical patent/JPH0259808B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Abstract

PURPOSE:To purify and separate the titled compound in high efficiency, by repeating the step to adsorb the titled compound, the step to purge the hardly adsorbable component, and the step to recover the adsorbed component, using two or more adsorption columns filled with an adsorbent composed of a copper compound and activated carbon. CONSTITUTION:Olefinic hydrocarbons such as ethylene, propylene, etc. are recovered from a stock gas containing plural kinds of hydrocarbons by adsorption using two or more adsorption columns packed with an adsorbent composed of a copper compound and activated carbon. The recovery is carried out by repeating the following three steps with said adsorption columns. (i) The step to effect the selective adsorption of the olefinic hydrocarbons to said adsorbent by passing the stock gas through the adsorption column; (ii) the step to purge the hardly adsorbable component by introducing the product gas into the adsorption column after the completion of the adsorption step; and (iii) the step to recover the adsorbed component from the adsorbent by heating or evacuating the adsorption column. The olefinic hydrocarbons can be separated fro the stock gas effectively, in high efficiency.

Description

【発明の詳細な説明】 倉栗上皇五尻光! 本発明は吸着分離方法によってオレフィン類を含む原料
ガスよ、リオレフィン系炭化水素、特にエチレン、プロ
ピレン、ブチレン、ペンテンナト(以下エチレン等とい
う)を回収する方法に関するものである。
[Detailed description of the invention] Kurakuri Retired Emperor Gojiri Hikaru! The present invention relates to a method for recovering lyolefin-based hydrocarbons, particularly ethylene, propylene, butylene, and pentenato (hereinafter referred to as ethylene, etc.) from a raw material gas containing olefins by an adsorption separation method.

エチレン等のオレフィン系炭化水素類が石油化学製品で
あるエタノール、エチレンオキサイド、アセトアルデヒ
ド、塩化ビニル、スチレン、酢酸ビニル、エチレングリ
コール、(11度リニアーポリエチレン、プロパツール
、プロピレンオキサイド、アセトン、ポリプロピレン、
ブタノール、ブタジェン、ポリブテン、ブチルゴム等の
原料として有用なものであることは周知の通りである。
Olefinic hydrocarbons such as ethylene are petrochemical products such as ethanol, ethylene oxide, acetaldehyde, vinyl chloride, styrene, vinyl acetate, ethylene glycol, (11 degree linear polyethylene, propatool, propylene oxide, acetone, polypropylene,
It is well known that it is useful as a raw material for butanol, butadiene, polybutene, butyl rubber, etc.

l米東扱歪 従来のオレフィン類の一般的な製造法について簡単に説
明すると、先ず原料ナフサとスチームを混合して、熱分
解炉に送入し、ナフサの熱分解を行ない、次に生成ガス
を直ちに水との熱交換及び重質油の注入によって120
℃付近まで急冷し、液化した05以上の炭化水素成分を
分離する。次にこの非液化ガスは圧縮して不純物を除去
した後、エチレンやプロピレンなどの冷媒を用いて液化
し、蒸留によってエチレン、P−F)留分、C4留分、
残ガス、エタンなどの留分に分離する。
To briefly explain the general manufacturing method of conventional olefins, raw material naphtha and steam are first mixed and sent to a pyrolysis furnace to thermally decompose the naphtha, and then the generated gas is 120 by immediately exchanging heat with water and injecting heavy oil.
It is rapidly cooled to around ℃ and the liquefied hydrocarbon components of 05 or higher are separated. Next, this non-liquefied gas is compressed to remove impurities, then liquefied using a refrigerant such as ethylene or propylene, and distilled to produce ethylene, P-F) fraction, C4 fraction,
Separate into fractions such as residual gas and ethane.

以上説明したように、ナフサの熱分解ガス中からオレフ
ィン類などの有用成分を分離、精製する時の基本原理は
低温加圧蒸留(深冷分離法)である。この方法は原料ガ
スを冷却液化し一100℃〜−200℃で分留するもの
である。
As explained above, the basic principle for separating and purifying useful components such as olefins from naphtha pyrolysis gas is low temperature pressurized distillation (cryogenic separation method). In this method, the raw material gas is cooled and liquefied and fractionated at -100°C to -200°C.

■が”しようとする間6点 しかしながら、上記の方法においては、原料ガス中に水
分や二酸化炭素が存在すると、これらが低温管システム
内で固化して閉塞事故を起すので前処理によりこれらを
十分に除去しなければならないという問題がある。
■ However, in the above method, if moisture or carbon dioxide exists in the raw material gas, these will solidify in the cryogenic tube system and cause a blockage accident, so pretreatment is sufficient to remove these. The problem is that it must be removed.

更に前記した従来の方法には、複雑な冷凍及び熱回収シ
ステムの使用が必要であり、しかも装置に特殊な金属材
料などの高級材料を使用することが必要なために装置が
高価となり、また冷凍用コンプレッサーの使用が必要な
どのために運転経費も高いなどの問題がある。
Furthermore, the conventional methods described above require the use of complex refrigeration and heat recovery systems, require the use of high-grade materials such as special metal materials in the equipment, making the equipment expensive, and There are problems such as high operating costs due to the need to use a commercial compressor.

本発明者等は前記した従来のオレフィン類の製造方法に
おける問題点を解決すべく検討を重ねた結果、オレフィ
ンを含む原料ガスからオレフィンを選択的に吸着する銅
化合物−活性炭から成る吸着剤を使用してエチレン、プ
ロピレンなどのオレフィン系炭化水素it効率よく分離
する方法を見出した。
As a result of repeated studies to solve the problems in the conventional olefin production methods described above, the present inventors used an adsorbent consisting of a copper compound and activated carbon that selectively adsorbs olefins from a raw material gas containing olefins. We have discovered a method for efficiently separating olefinic hydrocarbons such as ethylene and propylene.

問題点を”決するための手段及びその作用効果本発明に
従ったオレフィン系炭化水素類の精製分離方法はオレフ
ィン類を含む原料ガスから、吸着分離方法によりオレフ
ィン系炭化水素類を回収する方法において、銅化合物−
活性炭系吸着剤を充填した2つ以上の吸着塔を用い、 (11原料ガスを吸着塔に流して、オレフィン系炭化水
素類を吸着させる吸着工程、 (2)吸着工程の終了した吸着塔へ製品ガスを導入して
、難吸着成分をパージするパージ工程及び(3)吸着塔
内を減圧又は加熱することによって吸着剤に吸着されて
いるオレフィン系炭化水素を脱着回収する回収工程を、
2つ以上の吸着塔において操り返し実施することを特徴
とした方法に関するものである。
A method for refining and separating olefinic hydrocarbons according to the present invention is a method for recovering olefinic hydrocarbons from a raw material gas containing olefins by an adsorption separation method. Copper compounds
Using two or more adsorption towers filled with activated carbon adsorbent, (11) an adsorption step in which the raw material gas is passed through the adsorption tower to adsorb olefinic hydrocarbons; (2) the product is transferred to the adsorption tower after the adsorption step has been completed; A purge step in which gas is introduced to purge difficult-to-adsorb components; and (3) a recovery step in which the olefinic hydrocarbons adsorbed on the adsorbent are desorbed and recovered by reducing or heating the inside of the adsorption tower.
The present invention relates to a method characterized in that it is repeatedly carried out in two or more adsorption towers.

本発明における前記行程(1)は吸着塔内に原料ガスを
流通させることによって、オレフィン類を吸着剤に吸着
させる吸着工程である。この吸着工程では吸着塔内の圧
力を常圧で運転することにより十分な効果が得られるが
、加圧状態で操作することも可能であり、この場合は吸
着量が増加したり高温ガスでも処理できるなどの利点が
ある。加圧状態で運転する場合においても高い吸着圧は
必要ではなく 10 kg/cJ以下、好ましくは、2
〜5 kg/dの吸着圧で十分である。
The step (1) in the present invention is an adsorption step in which olefins are adsorbed on an adsorbent by circulating a raw material gas in an adsorption tower. In this adsorption process, sufficient effects can be obtained by operating the adsorption tower at normal pressure, but it is also possible to operate it under pressurized conditions, in which case the amount of adsorption increases and high temperature gas can also be processed. There are advantages such as being able to Even when operating under pressure, a high adsorption pressure is not necessary; it is less than 10 kg/cJ, preferably 2
An adsorption pressure of ~5 kg/d is sufficient.

原料ガスの吸着塔内への流入は吸着塔出口においてオレ
フィン成分が検出されはじめる時点から吸着塔入口にお
ける濃度に達する時点までの間の任意の時点まで行なう
。又、吸着操作時の温度は常圧下の場合で一40〜90
℃、好ましくは0〜60’Cであり、加圧下では一10
℃〜120℃、好ましくは20℃〜80℃である。
The raw material gas is allowed to flow into the adsorption tower at any point between the time when the olefin component begins to be detected at the outlet of the adsorption tower and the time when the concentration reaches the concentration at the entrance of the adsorption tower. In addition, the temperature during adsorption operation is -40 to -90 °C under normal pressure.
°C, preferably 0 to 60'C, and -10'C under pressure.
℃~120℃, preferably 20℃~80℃.

前記工程(2)は吸着工程が終了した吸着塔内に製品ガ
スを導入して塔内の空隙に残留する難吸着成分をパージ
する工程である。かかる工程(2)の実施により有用成
分であるオレフィン系炭化水素類の回収純度が向上する
という利点が得られ、この工程は本発明におい”C必須
の工程である。製品ガスの導入の終点は例えば吸着塔出
口のガス分析を実施して有用成分濃度を検知して定める
ことができる。
The step (2) is a step of introducing the product gas into the adsorption tower after the adsorption step and purging the difficult-to-adsorb components remaining in the voids in the tower. Implementation of this step (2) has the advantage of improving the recovery purity of olefinic hydrocarbons, which are useful components, and this step is an essential step in the present invention.The end point of introducing the product gas is For example, the concentration of useful components can be detected and determined by analyzing the gas at the outlet of the adsorption tower.

前記工程(3)はパージ工程が終った吸着塔を減圧又は
加熱することにより、吸着剤に吸着されているオレフィ
ン類を脱着させ、空隙に残留するパージガスと共に回収
する工程である。減圧によって脱着を行なう場合は、例
えば真空ポンプにより塔内を100torr以下に減圧
して運転するのが好まし。
The step (3) is a step in which the olefins adsorbed by the adsorbent are desorbed and recovered together with the purge gas remaining in the voids by reducing the pressure or heating the adsorption tower after the purge step. When desorption is carried out under reduced pressure, it is preferable to operate the column by reducing the pressure inside the column to 100 torr or less using, for example, a vacuum pump.

い。また加熱による場合は塔内湯度40〜250℃好ま
しくは60〜180℃に加熱して運転するのが好ましい
stomach. In the case of heating, it is preferable to operate the column by heating it to a temperature of 40 to 250°C, preferably 60 to 180°C.

本発明で使用する銅化合物−活性炭吸着剤は銅(I)の
ハライド塩もしくは酸化銅(1)又は銅(II)のハラ
イド塩、カルボン酸塩、硫酸塩、塩基性塩もしくはアン
ミン錯塩或いは酸化銅(n)などの銅化合物を適当な溶
媒に溶解または′Q濁し、これに活性炭を加えて十分に
攪拌した後、液相を減圧留去などの方法で除去すること
により得ることができる。
The copper compound-activated carbon adsorbent used in the present invention is copper(I) halide salt or copper(1) oxide or copper(II) halide salt, carboxylate, sulfate, basic salt or ammine complex salt or copper oxide. It can be obtained by dissolving a copper compound such as (n) in an appropriate solvent or making it cloudy, adding activated carbon to the solution, stirring thoroughly, and removing the liquid phase by a method such as distillation under reduced pressure.

吸着剤に用いられる活性炭には特に限定はないが、形状
的には成形炭及び破砕炭からなる粒状炭及び粉末炭もし
くは繊維状のものが好ましい。かかる活性炭の原料とし
ては、木材、ヤシ殻、石炭石油系ピッチ及び合成繊維な
どが用いることができる。本発明に用いる吸着剤中の活
性炭と銅化合物との重量比(活性炭/銅化合物)は一般
には0.5〜60.0、好ましくは2.0〜10.0と
する。
The activated carbon used in the adsorbent is not particularly limited, but in terms of shape, granular carbon, powdered carbon, or fibrous carbon consisting of compacted carbon and crushed carbon are preferable. As raw materials for such activated carbon, wood, coconut shell, coal and petroleum pitch, synthetic fibers, etc. can be used. The weight ratio of activated carbon to copper compound (activated carbon/copper compound) in the adsorbent used in the present invention is generally 0.5 to 60.0, preferably 2.0 to 10.0.

以下、本発明の具体的について図面を参照して説明する
。第1図は2塔の吸着塔からなり、減圧脱着によって原
料ガスからオレフィン類を吸着回収する装置図である。
Hereinafter, specific details of the present invention will be explained with reference to the drawings. FIG. 1 is a diagram of an apparatus that consists of two adsorption towers and adsorbs and recovers olefins from a raw material gas by vacuum desorption.

吸着塔A及びBにはオレフィン類を選択的に吸着する銅
化合物−活性炭系吸着剤を充填する。
Adsorption towers A and B are filled with a copper compound-activated carbon adsorbent that selectively adsorbs olefins.

かかる装置の運転について説明すると、先ずバルブ(1
)、(3)及び(5)を開き、吸着塔A内に原料ガスを
流通させ、オレフィンガスを吸着剤に吸着させる。この
際バルブ(2)、(4)、(6)、(7)及び(8)は
閉じた状態である。吸着工程終了後パルプ(1)を閉じ
、吸着塔A内の空隙に残留する難吸着性ガスをパージす
るため、バルブ(2)を開き製品ガスを吸着塔A内に導
入し非吸着性成分をパージする。
To explain the operation of such a device, first, the valve (1
), (3), and (5) are opened to allow the raw material gas to flow through the adsorption tower A, and the olefin gas is adsorbed by the adsorbent. At this time, valves (2), (4), (6), (7) and (8) are in a closed state. After the adsorption process is completed, the pulp (1) is closed, and in order to purge the poorly adsorbed gas remaining in the voids in the adsorption tower A, the valve (2) is opened to introduce the product gas into the adsorption tower A and remove non-adsorbable components. Purge.

パージ工程終了後はバルブ(2)、(3)及び(5)を
閉じ、バルブ(7)を開き、吸着されたオレフィンガス
及び空隙内に残留するパージガスを真空ポンプによって
吸引して回収する。
After the purging process is completed, valves (2), (3), and (5) are closed, valve (7) is opened, and the adsorbed olefin gas and the purge gas remaining in the void are sucked and recovered by a vacuum pump.

吸着塔Aでの回収工程の間に、吸着塔Bでは吸着工程及
びパージ工程を実施する。即ち吸着塔A内のオレフィン
ガスを真空ポンプで吸引回収する間、バルブ(11、(
4)及び(6)を開き、吸着塔B内に原料ガスを流通さ
せ、オレフィンガスを吸着させる。
During the recovery process in adsorption tower A, adsorption tower B performs an adsorption process and a purge process. That is, while the olefin gas in the adsorption tower A is being sucked and recovered by the vacuum pump, the valves (11, (
4) and (6) are opened, the raw material gas is allowed to flow into the adsorption tower B, and the olefin gas is adsorbed.

ついでバルブ(1)を閉じ、バルブ(2)を開いて製品
′ガスを吸着塔B内に流通させ、塔内に残留する難吸着
性ガスをパージする。パージ工程終了後はバルブ(2)
、(4)及び(6)を閉じ、同時にバルブ(8)を開き
吸着塔B内のオレフィンガスを吸引回収する。吸着塔B
の回収工程が開始すると同時に、回収工程を終えた吸着
塔Aは吸着工程へと移行する。以上のように吸着塔A及
びBを交互に吸着−パージ−回収の工程順で運転するこ
とによりオレフィンガスの吸脱着を連続的に行ない、オ
レフィン系炭化水素類を高純度でしかも効率的に精製分
離することができる。なお、上記説明は吸着塔工程の場
合について説明したが、これを3塔以上設けて実施する
こともできることはいうまでもない。    。
Then, the valve (1) is closed and the valve (2) is opened to allow the product' gas to flow into the adsorption tower B, thereby purging the poorly adsorbable gas remaining in the tower. After the purge process is completed, press the valve (2)
, (4) and (6) are closed, and at the same time, the valve (8) is opened to suck and recover the olefin gas in the adsorption tower B. Adsorption tower B
At the same time as the recovery process starts, the adsorption tower A that has completed the recovery process shifts to the adsorption process. As described above, by operating adsorption towers A and B alternately in the process order of adsorption, purge, and recovery, olefin gas is adsorbed and desorbed continuously, and olefinic hydrocarbons are efficiently purified with high purity. Can be separated. In addition, although the above description has been made regarding the case of an adsorption tower step, it goes without saying that this can be carried out by providing three or more towers. .

更に、本発明に従えば、前記方法によって回収したオレ
フィンガスを同様の吸着システムに少なくとも一回以上
流通させることにより製品ガス中のオレフィン純度を更
に一層向上させることができるが、かかる態様も本発明
の技術的範囲に属するものである。
Further, according to the present invention, the olefin purity in the product gas can be further improved by passing the olefin gas recovered by the above method through a similar adsorption system at least once, but such an embodiment is also included in the present invention. It belongs to the technical scope of

去狙勇 以下に本発明の詳細な説明するが、本発明の範囲をこれ
らの実施例に限定するものでないことはいうまでもない
Although the present invention will be described in detail below, it goes without saying that the scope of the present invention is not limited to these Examples.

スl■江L 51容量の加熱減圧蒸留装置の反応釜に賦活処理を施し
たヤシ殻を原料とした活性炭(4〜10メソシュ破砕品
)2kgを装填し、真空ポンプを用いて減圧(3tor
r)脱気を行なった。一方、同時に付帯溶解層を用いて
6NHCI 3Ilに塩化銅(I)0、3 kgを窒素
ガス雰囲気下で攪拌溶解して塩化銅塩酸溶液を調製した
。次に調製した塩化銅溶液を脱気した反応釜に注入し、
更に3時間反応釜内を減圧下(5torr)に保った後
、温度160℃に加熱して水及び塩化水素を除去して黒
色粒状の活性炭。
2 kg of activated carbon made from activated coconut shells (crushed product of 4 to 10 mesh) was loaded into the reaction pot of a 51-capacity heating and vacuum distillation device, and the pressure was reduced (3 torr) using a vacuum pump.
r) Deaeration was performed. On the other hand, at the same time, 0.3 kg of copper chloride (I) was dissolved in 3Il of 6NHCl with stirring under a nitrogen gas atmosphere to prepare a copper chloride hydrochloric acid solution. Next, pour the prepared copper chloride solution into the degassed reaction vessel,
After keeping the inside of the reaction vessel under reduced pressure (5 torr) for an additional 3 hours, it was heated to a temperature of 160°C to remove water and hydrogen chloride to form black granular activated carbon.

−塩化銅吸着剤を得た。- A copper chloride adsorbent was obtained.

次にこの吸着剤を用いてオレフィン系炭化水素類を含む
混合ガス(C2H4,= 33.5%、CzH6=33
.2%、C1,、=33.3%)の精製を試みた。
Next, using this adsorbent, a mixed gas containing olefinic hydrocarbons (C2H4, = 33.5%, CzH6 = 33
.. 2%, C1,, = 33.3%).

精製は前記した第1図に示した2塔式吸脱着装置を用い
、表−1に記載した吸着−バージー血着のサイクルに基
づいて実施した。
Purification was carried out using the two-column adsorption/desorption apparatus shown in FIG. 1 described above, based on the adsorption-vergie blood adsorption cycle shown in Table 1.

表−1 吸着塔A     吸着塔B 1  吸着工程     脱着工程 2  パージ工程     〃 3  脱着工程     吸着工程 4   〃       パージ工程 第1図に示す吸着塔A及びBに、それぞれ、前記吸着剤
0.5 kgを充填し、バルブ(7)及び(8)を開と
し、真空ポンプを用いて両塔を10 torrに真空排
気した後、バルブ(7)及び(8)を閉とした。
Table-1 Adsorption tower A Adsorption tower B 1 Adsorption process Desorption process 2 Purge process 〃 3 Desorption process Adsorption process 4 〃 Purge process Adsorption towers A and B shown in Figure 1 were each filled with 0.5 kg of the above adsorbent. Then, valves (7) and (8) were opened, and both columns were evacuated to 10 torr using a vacuum pump, and then valves (7) and (8) were closed.

(i)   体A=ロ 、パージ、II −塔B−次に
バルブ+1)及び(3)を開として前記原料ガス(Cz
Hn =33.5%、CJ&=33.2%、co、=3
3.3%)を吸着塔Aにガス流速3.61/min、で
導入塔内が大気圧まで昇圧した後、更にバルブ(5)を
開として引き続き原料ガスを吸着塔Aに流通させ、浴出
口においてガス中のエチレンガス濃度を測定し、出ロガ
スCJa111度が原料ガスCzl14?i度の15%
になった時点でバルブ(11を閉じた(吸着工程終了)
(i) Body A = B, purge, II - Column B - Then valves +1) and (3) are opened and the raw material gas (Cz
Hn = 33.5%, CJ & = 33.2%, co, = 3
3.3%) was introduced into the adsorption tower A at a gas flow rate of 3.61/min. After the pressure inside the tower was raised to atmospheric pressure, the valve (5) was further opened to allow the raw material gas to continue to flow through the adsorption tower A. The ethylene gas concentration in the gas was measured at the outlet, and the output log gas CJa111 degrees was found to be the source gas Czl14? 15% of i degree
Valve (11) was closed when the temperature reached (adsorption process completed).
.

次にバルブ(2)を開き製品ガスを流速1.51/mi
n。
Next, open the valve (2) and let the product gas flow at a flow rate of 1.51/mi.
n.

で吸着塔Aに導入し、空隙内に残留する難吸着性ガスを
パージした。この製品ガスパージは浴出口におけるガス
中のエチレン濃度が約35%に到達した時点で停止した
The gas was introduced into the adsorption tower A, and the hardly adsorbable gas remaining in the voids was purged. This product gas purge was stopped when the ethylene concentration in the gas at the bath outlet reached approximately 35%.

以上の吸着塔Aによる吸着−パージ工程の間にバルブ(
8)を開として前工程で吸着塔Bに吸着されたガスを真
空ポンプによって大気圧から10 torrまで減圧脱
着させ製品ガスタンクに回収した。
During the adsorption-purge process using adsorption tower A, the valve (
8) was opened, and the gas adsorbed in the adsorption tower B in the previous step was desorbed under reduced pressure from atmospheric pressure to 10 torr using a vacuum pump and collected into the product gas tank.

(ii)   p:A=   、ロ 塔LJ  、パー
ジ次にバルブ(3)、(5)及び(2)を閉とすると共
にバルブ(1)及び(4)を開として吸着塔Aでの脱着
工程並びに吸着塔Bでの吸着工程へと移行した。
(ii) p:A= , b Column LJ, purge, then close valves (3), (5), and (2), and open valves (1) and (4) to perform desorption step in adsorption column A. Then, the adsorption step in adsorption tower B was started.

吸着塔Bの塔内が原料ガスにより10 torrから大
気圧まで昇圧するとバルブ(6)を開として塔内を大気
圧に保ちつつ原料ガスを流通させた。吸着工    ′
程は浴出口におけるガス中のC,H,濃度が原料ガス中
のCtHa濃度の15%になった時点でバルブ11)を
閉じて終了させた。次にバルブ(2)を開き製品ガスに
より塔内をパージした。この製品ガスパージは浴出口に
おけるガス中のエチレン濃度が約35%に到達した時点
で停止した。
When the pressure inside the adsorption tower B was increased from 10 torr to atmospheric pressure by the raw material gas, the valve (6) was opened to allow the raw material gas to flow while maintaining the inside of the tower at atmospheric pressure. Suction work ′
The process was terminated by closing the valve 11) when the concentration of C, H, and gas in the gas at the bath outlet reached 15% of the CtHa concentration in the source gas. Next, the valve (2) was opened to purge the inside of the column with the product gas. This product gas purge was stopped when the ethylene concentration in the gas at the bath outlet reached approximately 35%.

以上の様に吸着塔A及びBを交互に吸着−パージ−脱着
工程を繰り返して原料ガスのエチレン精製を行なった。
As described above, the adsorption-purge-desorption process was repeated alternately in the adsorption towers A and B to purify the raw material gas with ethylene.

この時の回収製品ガス中のエチレン濃度は87.2%で
回収率は62.4%であった。
At this time, the ethylene concentration in the recovered product gas was 87.2%, and the recovery rate was 62.4%.

且較五上 実施例1において製品ガスパージ工程を省略した以外は
同様に操作したところ、回収製品ガス中のエチレン濃度
は54.2%で回収率は91.0%であった。即ち、本
発明においてパージ工程は回収製品ガス純度を向上させ
るために不可欠な工程であることがこの結果から明らか
であろう。
For comparison, the same procedure as in Example 1 was performed except that the product gas purge step was omitted, and the ethylene concentration in the recovered product gas was 54.2%, and the recovery rate was 91.0%. That is, it is clear from these results that the purge step is an essential step for improving the purity of the recovered product gas in the present invention.

皇血斑主 実施例1に記載した同一手法、原料を用いて活性炭に対
する塩化銅(1)の重量比を0.3 (wt/wt)と
して吸着剤を調製した。
An adsorbent was prepared using the same method and raw materials as described in Example 1, with a weight ratio of copper (1) chloride to activated carbon of 0.3 (wt/wt).

賦活処理を施した活性炭(4〜10メツシユ)2kgを
反応釜に充填し、真空ポンプを用いて減圧、脱気を行な
い、一方、溶解槽を用いて6 NHCl 3 /に塩化
銅([)0.6kgを窒素ガス雰囲気下で攪拌、溶解し
て塩化銅塩酸溶液を調製した後、前記活性炭に含浸、溶
媒を除去して固体吸着剤を得た。
2 kg of activated carbon (4 to 10 meshes) subjected to activation treatment was charged into a reaction vessel, and the pressure was reduced and degassed using a vacuum pump.Meanwhile, copper chloride ([)0 After stirring and dissolving .6 kg in a nitrogen gas atmosphere to prepare a copper chloride hydrochloric acid solution, the activated carbon was impregnated and the solvent was removed to obtain a solid adsorbent.

このようにして得られた吸着剤0.5 kgを実施例1
に記載した2塔式吸脱着精製装置を用いてエチレン含有
原料ガス(c!lla =33.5%、C2Hh−33
,2%、CH4,−33,3%)からエチレンの精製分
離を行なった。
0.5 kg of the adsorbent thus obtained was used in Example 1.
Ethylene-containing raw material gas (c!lla = 33.5%, C2Hh-33
, 2%, CH4, -33, 3%).

この時の回収ガスのエチレン濃度は91.3%で回収率
は76.4%であった。
The ethylene concentration of the recovered gas at this time was 91.3%, and the recovery rate was 76.4%.

叉止五ユ 実施例1に記載した同一手法、原料を用いて活性炭に対
する塩化銅(1)の重量比を0.6 (wt/wt)と
して、又塩化銅(1)溶媒である塩酸濃度を12Nとし
て吸着剤を調製した。
Using the same method and raw materials as described in Example 1, the weight ratio of copper chloride (1) to activated carbon was set to 0.6 (wt/wt), and the concentration of hydrochloric acid, which is the copper chloride (1) solvent, was The adsorbent was prepared as 12N.

賦活処理を施した活性炭(4〜10メソシユ)2kgを
反応釜に装填し、真空ポンプを用いて減圧脱気を行ない
、一方溶解槽を用いて12NFICI 3j!に塩化銅
(r)1.2kgを窒素ガス雰囲気下で攪拌溶解して塩
化銅塩酸溶液を調製した後、前記活性炭に含浸、減圧、
加熱により溶媒を除去して固体吸着剤を得た。
2 kg of activated carbon (4 to 10 mSO) subjected to activation treatment was loaded into a reaction vessel, degassed under reduced pressure using a vacuum pump, and 12 NFICI 3j! After stirring and dissolving 1.2 kg of copper chloride (r) in a nitrogen gas atmosphere to prepare a copper chloride hydrochloric acid solution, it was impregnated with the activated carbon, reduced pressure,
The solvent was removed by heating to obtain a solid adsorbent.

得られた吸着剤0.5 kgを実施例1及び2に記載し
た2塔式吸脱着装置を用いてエチレン含有原料ガス(C
zH*=33.5%、CJi=33.2%、CH4,=
33.3%)からエチレンの精製分離を行なった。
0.5 kg of the obtained adsorbent was added to an ethylene-containing raw material gas (C
zH*=33.5%, CJi=33.2%, CH4,=
33.3%) was purified and separated from ethylene.

この時の回収ガスのエチレン濃度は93.3%でエチレ
ン回収率は86.2%であった。
The ethylene concentration of the recovered gas at this time was 93.3%, and the ethylene recovery rate was 86.2%.

大嵐■土 実施例3で得られた回収ガスを実施例3に記載した同一
吸着剤、装置にリサイクルして高純度エチレンの分離回
収を試みた。なお、この時の製品ガスパージは塔出口に
おけるガス中のエチレン濃度が95%で停止した。この
時の回収ガスエチレン濃度は99.5%であり、回収率
は84.1%であった。
The recovered gas obtained in Example 3 was recycled using the same adsorbent and equipment described in Example 3 to attempt to separate and recover high-purity ethylene. Note that the product gas purge at this time stopped when the ethylene concentration in the gas at the tower outlet was 95%. At this time, the concentration of recovered gas ethylene was 99.5%, and the recovery rate was 84.1%.

即ち、本発明では多段分離回収することにより容易に回
収ガス純度の向上が図れることが判明した。
That is, it has been found that in the present invention, the purity of the recovered gas can be easily improved by performing multi-stage separation and recovery.

スm 実施例1に記載した塩化銅(I)の代りに塩化銅(■)
2水和物を用い、又6 NHClの代りに純水を用いた
以外は同−原料及び装置により吸着剤をIHl製した。
Copper chloride (■) instead of copper chloride (I) described in Example 1
An adsorbent was prepared using the same raw materials and equipment except that dihydrate was used and pure water was used instead of 6 NHCl.

51反応釜に賦活処理を施した活性炭2 kgを装填し
真空ポンプを用いて真空脱気(3torr) した。
2 kg of activated carbon subjected to activation treatment was loaded into a reaction vessel No. 51, and vacuum degassed (3 torr) using a vacuum pump.

又、溶解槽に塩化銅(■)2水和物2 ksrを純水3
1に溶解し、塩化第2銅水溶液を調製した後、前記減圧
下に保持した反応釜に溶液を注入して含浸し、更に、1
60℃加熱、減圧(5torr)条件下で溶媒を充分除
去して吸着剤を得た。
Also, add 2 ksr of copper chloride (■) dihydrate to the dissolution tank and 3 ksr of pure water.
1 to prepare a cupric chloride aqueous solution, the solution was poured into the reaction vessel kept under reduced pressure to impregnate it, and further, 1
The solvent was sufficiently removed under conditions of heating at 60° C. and reduced pressure (5 torr) to obtain an adsorbent.

得られた吸着剤を吸着塔A及びBにそれぞれ0、5 k
gづつ充填し、実施例1に記載した手順によリエチレン
含有原料ガス(CJI4=33.5%、CtHh =3
3.2%、CH4=33.3%)のエチレンの精製分離
を行なった。
The obtained adsorbent was placed in adsorption towers A and B at 0 and 5 k, respectively.
g at a time, and added lyethylene-containing raw material gas (CJI4 = 33.5%, CtHh = 3) according to the procedure described in Example 1.
3.2%, CH4=33.3%) was purified and separated.

この時のエチレン純度は92.5%で、回収率は81.
3%であった。
The ethylene purity at this time was 92.5%, and the recovery rate was 81.
It was 3%.

去J1九1 実施例3に記載した同一吸着剤、装置を用いて下記原料
ガス条件でプロピレンの精製を行なった。
Propylene was purified using the same adsorbent and equipment described in Example 3 under the following raw gas conditions.

ガス組成    C:IHl、   34.OVo1%
CJz   34.4  Vo1% CH*    31.6  Vo1% 吸着剤     0.5 kg X 2運転温度   
 30℃ 吸着圧力    1.0kg/cnlG原料供給量  
 14.41/cycleパージガスlt3.07!/
 cycle (CsHa)この時のプロピレンの回収
純度は92.7%であり、回収率は86.4%であった
Gas composition C: IHL, 34. OVo1%
CJz 34.4 Vo1% CH* 31.6 Vo1% Adsorbent 0.5 kg X 2 Operating temperature
30℃ Adsorption pressure 1.0kg/cnlG raw material supply amount
14.41/cycle purge gas lt3.07! /
cycle (CsHa) The recovery purity of propylene at this time was 92.7%, and the recovery rate was 86.4%.

1釦[ 実施例3に記載した同一吸着材、装置を用いて下記原料
ガス条件でブテン−1(CHユCHzCH= C1h)
の精製を行なった。
1 button [Butene-1 (CHyuCHzCH=C1h) using the same adsorbent and equipment described in Example 3 under the following raw material gas conditions
was purified.

ガス組成    1−CalIs   35.2  V
o1%n−CJto   34.7   Vo1%Cl
1a      30.1   Vo1%吸着剤   
  0.5 kg 運転温度    30℃ 吸着圧力    1.Okg/cdG 原料供給量   12.6J /cycleパージガス
51  3.01 /cycle (1−CaHa)こ
の時のブテン−1の回収純度は91.2%であり、回収
率は82.5%であった。
Gas composition 1-CalIs 35.2 V
o1%n-CJto 34.7 Vo1%Cl
1a 30.1 Vo1% adsorbent
0.5 kg Operating temperature 30℃ Adsorption pressure 1. Okg/cdG Raw material supply amount 12.6 J/cycle Purge gas 51 3.01/cycle (1-CaHa) The recovery purity of butene-1 at this time was 91.2%, and the recovery rate was 82.5%. .

ル較医又 実施例で用いたヤシ殻を原料として活性R(4〜10メ
ツシュ破砕品)を前記吸着塔A及びBにそれぞれ0.5
 kgづつ充填し、実施例1に記載した手順によりエチ
レン含有原料ガス(CZH,=33.5%、czna=
33.2%、C1,=33.3%)のエチレン精製を行
なった。この時の回収ガスの純度はczHa=67゜5
%、CzHh= 32.1%、C1l 4=0.4%で
、エチレン回収率は68.2%であった。
In addition, using the coconut shells used in the examples as a raw material, 0.5% of the active R (4 to 10 mesh crushed product) was added to the adsorption towers A and B, respectively.
kg each, and by the procedure described in Example 1, ethylene-containing raw material gas (CZH, = 33.5%, czna =
33.2%, C1, = 33.3%). The purity of the recovered gas at this time is czHa=67°5
%, CzHh=32.1%, C1l4=0.4%, and the ethylene recovery rate was 68.2%.

即ち、この例から塩化銅を含まない活性炭では本発明の
吸着剤に比べ吸着選択性が著しく劣ることが明らかであ
る。
That is, it is clear from this example that activated carbon containing no copper chloride has significantly inferior adsorption selectivity compared to the adsorbent of the present invention.

得られた結果を第2表に示す。The results obtained are shown in Table 2.

(以下余白)(Margin below)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための吸着装置の一例を
示す図面である。 A、B・・・吸着塔、  1〜8・・・バルブ。
FIG. 1 is a drawing showing an example of an adsorption apparatus for carrying out the method of the present invention. A, B...Adsorption tower, 1-8...Valve.

Claims (1)

【特許請求の範囲】 1、多成分の炭化水素類を含む原料ガスからオレフィン
系炭化水素を吸着分離方法によって回収する方法におい
て、 銅化合物−活性炭系からなる吸着剤を充填させた2つ以
上の吸着塔を用い、 (1)原料ガスを吸着塔に流通させてオレフィン系炭化
水素類を吸着剤に吸着させる吸着行程、(2)吸着工程
を終了した吸着塔へ製品ガスを導入して、難吸着性成分
をパージするパージ工程及び (3)吸着塔内を加熱又は減圧することにより、吸着剤
に吸着されているオレフィン系炭化水素類を回収する回
収行程を2つ以上の吸着塔において繰り返し実施するこ
とを特徴とする方法。
[Claims] 1. A method for recovering olefinic hydrocarbons from a raw material gas containing multi-component hydrocarbons by an adsorption separation method, comprising two or more adsorbents filled with a copper compound-activated carbon adsorbent. Using an adsorption tower, (1) an adsorption process in which the raw material gas is passed through the adsorption tower and olefinic hydrocarbons are adsorbed on the adsorbent; (2) the product gas is introduced into the adsorption tower after the adsorption process, and the A purge step for purging adsorbent components and (3) a recovery step for recovering olefinic hydrocarbons adsorbed by the adsorbent by heating or reducing the pressure inside the adsorption tower are repeated in two or more adsorption towers. A method characterized by:
JP59247935A 1984-11-26 1984-11-26 Purification and separation of olefinic hydrocarbon Granted JPS61126036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59247935A JPS61126036A (en) 1984-11-26 1984-11-26 Purification and separation of olefinic hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59247935A JPS61126036A (en) 1984-11-26 1984-11-26 Purification and separation of olefinic hydrocarbon

Publications (2)

Publication Number Publication Date
JPS61126036A true JPS61126036A (en) 1986-06-13
JPH0259808B2 JPH0259808B2 (en) 1990-12-13

Family

ID=17170741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59247935A Granted JPS61126036A (en) 1984-11-26 1984-11-26 Purification and separation of olefinic hydrocarbon

Country Status (1)

Country Link
JP (1) JPS61126036A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167371U (en) * 1988-05-11 1989-11-24
JP2010163388A (en) * 2009-01-15 2010-07-29 Kobe Steel Ltd Separation purification method of hydrocarbon
JP2010532317A (en) * 2007-04-25 2010-10-07 コリア インスティチュート オブ エナジー リサーチ Method for producing high purity butene-1 from C4 olefin / paraffin mixed gas
JP2010532316A (en) * 2007-03-29 2010-10-07 コリア インスティチュート オブ エナジー リサーチ Technology to separate olefin from olefin / paraffin mixed gas
JP2013536223A (en) * 2010-08-26 2013-09-19 コリア インスティチュート オブ エナジー リサーチ Substitution desorption process for separation of hard olefins
JP2013540707A (en) * 2010-08-26 2013-11-07 コリア インスティチュート オブ エナジー リサーチ Method and apparatus for recovering ethylene from fluid catalytic cracking exhaust gas
US9034185B2 (en) 2007-03-29 2015-05-19 Korea Institute Of Energy Research Separation of olefins from olefins/paraffins mixed gas
CN106268645A (en) * 2016-09-27 2017-01-04 华南理工大学 A kind of preparation method of the Fluorin doped carbon back adsorbing material of Preferential adsorption ethane
CN109012576A (en) * 2018-07-02 2018-12-18 昆明理工大学 A kind of preparation method and application loading cuprous oxide particle active carbon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320214A (en) * 1993-05-11 1994-11-22 Saikawa:Kk Continuous wire drawing/rolling method and device therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053253Y2 (en) * 1988-05-11 1993-01-26
JPH01167371U (en) * 1988-05-11 1989-11-24
JP2010532316A (en) * 2007-03-29 2010-10-07 コリア インスティチュート オブ エナジー リサーチ Technology to separate olefin from olefin / paraffin mixed gas
US8436223B2 (en) 2007-03-29 2013-05-07 Korea Institute Of Energy Research Separation of olefins from olefins/paraffins mixed gas
US9034185B2 (en) 2007-03-29 2015-05-19 Korea Institute Of Energy Research Separation of olefins from olefins/paraffins mixed gas
JP2014051496A (en) * 2007-03-29 2014-03-20 Korea Institute Of Energ Reserch Technology for separating olefin from olefin/paraffin gas mixture
JP2014088366A (en) * 2007-04-25 2014-05-15 Korea Institute Of Energ Reserch Method for producing high-purity butene-1 from c4 olefin/paraffin mixed gas
JP2010532317A (en) * 2007-04-25 2010-10-07 コリア インスティチュート オブ エナジー リサーチ Method for producing high purity butene-1 from C4 olefin / paraffin mixed gas
US8431762B2 (en) 2007-04-25 2013-04-30 Korea Institute Of Energy Research Production of high purity butene-1 from C4 olefins/paraffins mixed gas
JP2010163388A (en) * 2009-01-15 2010-07-29 Kobe Steel Ltd Separation purification method of hydrocarbon
JP2013540707A (en) * 2010-08-26 2013-11-07 コリア インスティチュート オブ エナジー リサーチ Method and apparatus for recovering ethylene from fluid catalytic cracking exhaust gas
JP2013536223A (en) * 2010-08-26 2013-09-19 コリア インスティチュート オブ エナジー リサーチ Substitution desorption process for separation of hard olefins
US9090522B2 (en) 2010-08-26 2015-07-28 Korea Institute Of Energy Research Method and apparatus for recovering ethylene from fluidized catalytic cracking (FCC) off-gas
US9376354B2 (en) 2010-08-26 2016-06-28 Korea Institute Of Energy Research Displacement desorption process for light olefin separation
CN106268645A (en) * 2016-09-27 2017-01-04 华南理工大学 A kind of preparation method of the Fluorin doped carbon back adsorbing material of Preferential adsorption ethane
CN106268645B (en) * 2016-09-27 2019-04-09 华南理工大学 A kind of preparation method of the carbon-based adsorbent material of Fluorin doped of Preferential adsorption ethane
CN109012576A (en) * 2018-07-02 2018-12-18 昆明理工大学 A kind of preparation method and application loading cuprous oxide particle active carbon

Also Published As

Publication number Publication date
JPH0259808B2 (en) 1990-12-13

Similar Documents

Publication Publication Date Title
US8398747B2 (en) Processes for purification of acetylene
KR100836707B1 (en) Production of high purity of butene-1 from c4 olefins/paraffins mixed gas
US5417742A (en) Removal of perfluorocarbons from gas streams
KR100822847B1 (en) Separation of olefins from olefins/paraffins mixed gas
JPS6362522A (en) Adsorptive separation of gaseous mixture
WO1989006218A1 (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
KR101470675B1 (en) Displacement desorption process for light olefin separation
EP0640376B1 (en) Method for recovering ethylene from ethylene oxide plant vent gas
JPS61126036A (en) Purification and separation of olefinic hydrocarbon
EP0545559A2 (en) Separation of gas mixtures
SA111320719B1 (en) Method and apparatus for recovering ethylene from fluidized catalytic cracking (FCC) off-gas
JPH07188344A (en) Preparation of alkene polymer
KR102017863B1 (en) Cyclic Separation Process of Olefin And Paraffin
CN1134970A (en) Recovery of hydrocarbons from gas streams
JPS61115033A (en) Purification and separation of olefinic hydrocarbon
KR100849987B1 (en) Enrichment of ethylene from fcc off-gas
EP0648728A1 (en) Process for the production of ethanol and isopropanol
JPH06104174B2 (en) Method for adsorption separation of easily adsorbed components from mixed gas
JP2587334B2 (en) Method of separating CO gas not containing CH4
JPH0351647B2 (en)
JPH0112529B2 (en)
JP2848557B2 (en) Hydrogen purification method
KR101801387B1 (en) Olefins-Paraffins Gas Separation Apparatus And Method by Clathrate Compound
CN115109610A (en) Recovery of C from mixed gas 2+ System and method
JPS6097021A (en) Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method