JPS61125150A - Manufacture of three dimensional semiconductor device - Google Patents

Manufacture of three dimensional semiconductor device

Info

Publication number
JPS61125150A
JPS61125150A JP24631084A JP24631084A JPS61125150A JP S61125150 A JPS61125150 A JP S61125150A JP 24631084 A JP24631084 A JP 24631084A JP 24631084 A JP24631084 A JP 24631084A JP S61125150 A JPS61125150 A JP S61125150A
Authority
JP
Japan
Prior art keywords
insulating film
layer
forming
film
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24631084A
Other languages
Japanese (ja)
Other versions
JPH023301B2 (en
Inventor
Kikuo Yamabe
紀久夫 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP24631084A priority Critical patent/JPS61125150A/en
Publication of JPS61125150A publication Critical patent/JPS61125150A/en
Publication of JPH023301B2 publication Critical patent/JPH023301B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To bore a contact hole for the inter-element connection of upper and lower layers easily, and to improve the degree of integration and the element characteristics of an upper layer element by forming buried wiring at every element of each layer in a three dimensional semiconductor element. CONSTITUTION:A field insulating film 12 is formed on to a P type single crystal Si substrate 11, and a lower layer element consisting of a gate oxide film 13, a gate electrode 14 and source-drain regions 15a, 15b and a first inter-layer insulating film 16 are shaped, and contact holes 17 for inter-layer connection are bored to the insulating film 16. Buried wirings 18 are formed into the contact holes 17, an insulating film 19 for protection in thickness of 0.2mum or less is shaped onto the whole surface, and a single crystal silicon layer is formed onto the insulating film 19. An upper layer element composed of a gate oxide film 21, a gate electrode 22 and source-drain regions 23a, 23b is shaped onto the silicon layer, and a second inter-layer insulating film 24 is formed. Contact holes 25 are bored, and the upper and lower layers are connected by wiring layers 26.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、3次元半導体装置の製造方法に係わり、特に
層間接続の改良をはかった3次元半導体装置の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a three-dimensional semiconductor device, and particularly to a method for manufacturing a three-dimensional semiconductor device that improves interlayer connections.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近、電子ビームやレーザ・アニールによって絶縁膜上
にSi単結晶を形成する技術(所謂Sol技術)の開発
が盛んに行われている。更に、Siウェハ表面に形成さ
れた素子(下層素子)上に層間絶縁膜を形成したのち、
該SOI技術によって形成された単結晶3i層を形成す
る。しかるのちに、該単結晶層に素子(上層素子)を形
成し、2層素子構造を形成することが可能となっている
Recently, a technology for forming a Si single crystal on an insulating film using an electron beam or laser annealing (so-called Sol technology) has been actively developed. Furthermore, after forming an interlayer insulating film on the elements (lower layer elements) formed on the Si wafer surface,
A single crystal 3i layer formed by the SOI technique is formed. Thereafter, an element (upper layer element) is formed on the single crystal layer, making it possible to form a two-layer element structure.

ところで、多層素子構造における層間接続は、第2図に
示すように、上下層の素子を形成したのらに行う方法が
採られている。しかし、該接続方法を用いると、上w4
素子形成後に接続用コンタクトホール29を開孔する際
に、上下素子及び軸間絶縁膜16.24のそれぞれの厚
さ分の絶縁膜、を□、 エツチングする必要がある。このように深い穴を一度に
開孔するためには、開孔面積が大きくなり、素子面積を
大きくしてしまう。また、3!=4層とより多層化した
場合、R15に一度に開孔することは殆ど不可能となる
。従って、埋込み配線技術により、各層素子と平行して
、各層毎に埋込んでゆく必要がある。
By the way, as shown in FIG. 2, interlayer connections in a multilayer element structure are performed after forming the elements of the upper and lower layers. However, using this connection method, the upper w4
When forming the connection contact hole 29 after forming the element, it is necessary to etch the insulating film by the thickness of each of the upper and lower elements and the inter-axis insulating film 16, 24. In order to open such deep holes at once, the area of the holes becomes large, which increases the area of the device. Also, 3! When the number of layers is increased to 4, it becomes almost impossible to open a hole in R15 at once. Therefore, it is necessary to embed each layer in parallel with the elements in each layer using the embedding wiring technique.

しかしながら、各層毎に埋込み配線を形成する場合、第
3図に示す如く埋込み配線18の上端が5OIIf*2
0と直接接触することになる。このため、ビームアニー
ルによって溶融・再結晶化する際、前記接触部での下部
への熱伝導が層間絶縁膜16上より大きくなり、再結晶
化が速く、Sol膜の多結晶化31を引き起こす。これ
により、上層素子の特性劣化を招く虞れがあった。
However, when forming buried wiring for each layer, the upper end of the buried wiring 18 is 5OIIf*2 as shown in FIG.
0 will come into direct contact. Therefore, when melting and recrystallizing by beam annealing, heat conduction to the lower part at the contact portion is greater than that on the interlayer insulating film 16, recrystallization is rapid, and polycrystallization 31 of the Sol film is caused. This may lead to deterioration of the characteristics of the upper layer element.

(発明の目的〕 本発明の目的は、唐間P@縁膜上のシリコン層の単結晶
化を妨げることなく、上下層の素子間接続のためのコン
タクトホールを容易に開孔することができ、mm度の向
上及び上層素子の素子特性向上等をはかりL9る3次元
半導体の製造方法を提供することにある。
(Objective of the Invention) An object of the present invention is to easily form a contact hole for connection between elements in the upper and lower layers without hindering the single crystallization of the silicon layer on the Karama P@edge film. An object of the present invention is to provide a method for manufacturing a three-dimensional semiconductor, which improves the degree of L9, mm, and the characteristics of upper layer elements.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、301yIの多結晶化の要因となる埋
込み配線と層間絶縁膜上に堆積するシリコン簿膜との接
触を防止することにある。
The gist of the present invention is to prevent contact between the buried wiring and the silicon film deposited on the interlayer insulating film, which causes polycrystallization of 301yI.

即ち本発明は、半導体素子を積層してなる3次元半導体
装置の製造方法において、下層素子及び第1の層間絶縁
膜を形成したのち該絶縁膜に層間接続のためのコンタク
トホー・ルを開孔し、このコンタクトホール内に埋込み
ii!線を形成し、次いで全面に厚さ0,2(μTrL
]以下の保護用絶縁膜を形成した後肢保護用絶縁膜上に
単結晶シリコン層を形成するし、次いでこの単結晶シリ
コン層上に上層素子を形成した後肢上層素子上に第2の
膚間絶n膜を形成し、しかるのら上記第2の層間絶縁膜
及び保護用絶縁膜に前記埋込み配線の上端部までコンタ
クトホールを開孔し、上下層素子を配線により接続する
ようにした方法である。
That is, the present invention provides a method for manufacturing a three-dimensional semiconductor device formed by stacking semiconductor elements, in which a lower layer element and a first interlayer insulating film are formed, and then a contact hole for interlayer connection is formed in the insulating film. and embed it in this contact hole ii! A line is formed, and then a thickness of 0.2 (μTrL) is formed on the entire surface.
] A single crystal silicon layer is formed on the hindlimb protection insulating film on which the following protective insulating film is formed, and then a second skin barrier layer is formed on the hindlimb upper layer element with the upper layer element formed on this single crystal silicon layer. In this method, a contact hole is formed in the second interlayer insulating film and the protective insulating film up to the upper end of the buried wiring, and the upper and lower layer elements are connected by the wiring. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各層の素子毎に埋込み配線を形成して
いるので、層間接続のためのコンタクトホールの深さを
浅<(if!111!:縁11!J1層分の厚さ)する
ことができ、その加工が容易となり集積度の向上に有効
である。さらに、多層化してもコンタクトホール深さは
増えないので、多層化にも十分適合できる。また、埋込
み配線の上端部がSO■膜に直接接触していないので、
SOI膜の単結晶化に対しては、ビームアニール等によ
る!!!結晶化工程で不均一アニールが生じ、一部子結
晶する等の不都合はない。このため、上層素子の素子特
性の向上をはかり得る。
According to the present invention, since embedded wiring is formed for each element in each layer, the depth of the contact hole for interlayer connection is shallow<(if!111!: thickness of edge 11!J1 layer). This makes processing easier and is effective in improving the degree of integration. Furthermore, since the depth of the contact hole does not increase even if the structure is multilayered, it is fully suitable for multilayering. In addition, since the upper end of the embedded wiring does not directly contact the SO film,
For single crystallization of SOI film, use beam annealing, etc.! ! ! There are no inconveniences such as non-uniform annealing occurring in the crystallization process and single-molecule crystallization. Therefore, it is possible to improve the element characteristics of the upper layer element.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図(a)〜(「)は本発明の一実施例に係わる3次
元半導体装置の製造工程を示す断面図である。まず、第
1図(a)に示す如くP型単桔品S1基板11の素子分
離領域上にフィールド絶縁膜12を形成し、素子形成領
域上にゲート酸化膜13、ゲート電極14及びソース・
ドレイン順賊5a、15bからなるNチャンネルMOS
トランジスタ(下層素子)を形成した。次いで、第1図
(b)に示す如く全面に厚さ1[μTrL]の第1の層
間絶縁膜16を形成し、写真蝕刻法等により1.5[μ
mφ]のコンタクトホール17を開孔した、続いて、層
間接続配線となる導電膜、例えばリン添加多結晶3iを
全面に厚さ0.8[μ77L]形成し、エッチバック法
等により埋込み配線18を形成した。
1(a) to 1(') are cross-sectional views showing the manufacturing process of a three-dimensional semiconductor device according to an embodiment of the present invention. First, as shown in FIG. 1(a), a P-type single frame product S1 A field insulating film 12 is formed on the element isolation region of the substrate 11, and a gate oxide film 13, a gate electrode 14 and a source film are formed on the element forming region.
N-channel MOS consisting of drain Junki 5a and 15b
A transistor (lower layer element) was formed. Next, as shown in FIG. 1(b), a first interlayer insulating film 16 having a thickness of 1 [μTrL] is formed on the entire surface, and a thickness of 1.5 [μTrL] is formed by photolithography or the like.
A contact hole 17 of [mφ] was opened, and then a conductive film that would become an interlayer connection wiring, for example, a phosphorus-doped polycrystalline 3i, was formed to a thickness of 0.8 [μ77L] over the entire surface, and a buried wiring 18 was formed by an etch-back method or the like. was formed.

次に、第1図(C)に示す如く全面に厚さ0.2 [μ
lのCVD−8i 02 m (保護用絶縁IFJ)、
19を形成し、この5i02膜19上にSOt用多用品
結晶3i模20さ0.6Eμ77L]に形成した。次い
で、この多結晶S1膜20を電子ビームアニール若しく
はレーザアニール等により単結晶化した。ここで、上記
多結晶3i膜20が前記埋込み配線18と接触していな
いので、均一アニールを行うことができ、良質の単結晶
3i層20′を得ることができた。
Next, as shown in FIG. 1(C), a layer with a thickness of 0.2 [μ
l CVD-8i 02 m (protective insulation IFJ),
19 was formed, and on this 5i02 film 19, a general purpose crystal 3i pattern 20 (0.6Eμ77L) for SOt was formed. Next, this polycrystalline S1 film 20 was made into a single crystal by electron beam annealing, laser annealing, or the like. Here, since the polycrystalline 3i film 20 was not in contact with the buried wiring 18, uniform annealing could be performed and a high quality single crystal 3i layer 20' could be obtained.

次に、第1図(d)に示す如く単結晶Si膜20’上に
ゲートn化膜21.ゲート電極22及びソース・ドレイ
ン1ta23a、23bを形成してPチャンネルMOS
トランジスタ(上層素子)を形成した。次いで、第1図
(e)に示す如く全面に厚さ1.2 [μlのCVD−
8i02膜(第2の層間絶縁膜)24を形成し、表面平
坦化を行った。続いて、RIE(リアクティブ・イオン
・エツチング)法等を用いてコンタクトホール25を開
孔した。その後、第1図(f)に示す如くリン添加多結
晶Si等からなる配線層26を形成し、上下層の素子間
接続を行うことによって3次元半導体装置が完成するこ
とになる。
Next, as shown in FIG. 1(d), a gate n-oxide film 21 is placed on the single crystal Si film 20'. A P-channel MOS is formed by forming the gate electrode 22 and source/drain 1ta23a, 23b.
A transistor (upper layer element) was formed. Next, as shown in FIG.
An 8i02 film (second interlayer insulating film) 24 was formed and the surface was planarized. Subsequently, a contact hole 25 was formed using RIE (reactive ion etching) or the like. Thereafter, as shown in FIG. 1(f), a wiring layer 26 made of phosphorus-doped polycrystalline Si or the like is formed and connections are made between elements in the upper and lower layers, thereby completing a three-dimensional semiconductor device.

かくして本実施例方法によれば、第1図(C)に示す工
程において、埋込み配置18の上端が多結晶Si膜20
接触していないので、多結晶Si膜20の単結晶化を効
果的に行うことができ、良質の単結晶3i膜20’ を
形成することができる。
Thus, according to the method of this embodiment, in the step shown in FIG.
Since there is no contact, the polycrystalline Si film 20 can be effectively single-crystallized, and a high-quality single-crystal 3i film 20' can be formed.

このため、該単結晶Si膜2り′上に形成する上層素子
の素子特性向上をはかり得る。さらに、コンタクトホー
ルの開孔に際しては、眉間絶縁膜16.24の1層の深
さエツチングすればよいので、コンタクトホールの開孔
面積を小さくすることができる。このため、集積度の向
上にも有効である。
Therefore, it is possible to improve the device characteristics of the upper layer device formed on the single crystal Si film 2'. Further, when forming the contact hole, it is sufficient to etch the glabella insulating film 16, 24 to a depth of one layer, so that the area of the contact hole can be reduced. Therefore, it is also effective in improving the degree of integration.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記埋込み配線層はリン添加多結晶シリコ
ンに限るものではなく、コンタクトホールを埋込める技
術であれば高融点金属或いは多層膜でもよい。また、上
下層の配線接続には−込み配線とAl1による平面配線
を用いることもできる。その他、本発明の要旨を逸脱し
ない範囲丙で、種々の変形して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, the buried wiring layer is not limited to phosphorus-doped polycrystalline silicon, but may be a high melting point metal or a multilayer film as long as the technology allows burying the contact hole. Moreover, embedded wiring and planar wiring made of Al1 can also be used for wiring connections between the upper and lower layers. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の一実施例方法ド係わる
3次元半導体装置の製造工程を示す断面図、第2図は従
来装置の概略構造を示す断面図、第3図は従来の問題点
を説明するための模式図である。 11・・・単結晶$1基板、12・・・フィールド絶縁
膜、13・・・下層ゲート酸化膜、14・・・下層ゲー
ト電極、15a、15b・・・下層ソース・ドレイン領
域、16・・・第1の層間絶縁膜、17.25・・・コ
ンタクトホール、18・・・埋込み配線層、19・・・
保護用絶縁膜、20・・・多結晶3i膜、20′・・・
単結晶SiwA(Sol膜) 、 21 ・flt’7
’−ト1f&、22・・・上層ゲート電極、23a、2
3b・・・上層ソース・ドレイン領域、24・・・第2
の層間絶縁膜、26・・・配線層。 出願人 工業技術院長 等々力 達 第1図 第1図 第1図 第2図
FIGS. 1(a) to (f) are cross-sectional views showing the manufacturing process of a three-dimensional semiconductor device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the schematic structure of a conventional device, and FIG. It is a schematic diagram for explaining the conventional problem. DESCRIPTION OF SYMBOLS 11... Single crystal $1 substrate, 12... Field insulating film, 13... Lower layer gate oxide film, 14... Lower layer gate electrode, 15a, 15b... Lower layer source/drain region, 16...・First interlayer insulating film, 17.25... Contact hole, 18... Buried wiring layer, 19...
Protective insulating film, 20... Polycrystalline 3i film, 20'...
Single crystal SiwA (Sol film), 21 ・flt'7
'-T 1f&, 22... Upper layer gate electrode, 23a, 2
3b... Upper source/drain region, 24... Second
interlayer insulating film, 26... wiring layer. Applicant: Director of the Agency of Industrial Science and Technology Tatsu Todoroki Figure 1 Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子を積層してなる3次元半導体装置の製
造方法において、下層素子及び第1の層間絶縁膜を形成
したのち該絶縁膜に層間接続のためのコンタクトホール
を開孔する工程と、上記コンタクトホール内に埋込み配
線を形成する工程と、次いで全面に厚さ0.2[μm]
以下の保護用絶縁膜を形成する工程と、上記保護用絶縁
膜上に単結晶シリコン層を形成する工程と、上記単結晶
シリコン層上に上層素子を形成する工程と、上記上層素
子上に第2の層間絶縁膜を形成する工程と、上記第2の
層間絶縁膜及び保護用絶縁膜に前記埋込み配線の上端部
までコンタクトホールを開孔し上下層素子を配線により
接続する工程とを含むことを特徴とする3次元半導体装
置の製造方法。
(1) In a method for manufacturing a three-dimensional semiconductor device formed by stacking semiconductor elements, a step of forming a lower layer element and a first interlayer insulating film and then opening a contact hole for interlayer connection in the insulating film; A step of forming a buried wiring in the above contact hole, and then a thickness of 0.2 [μm] on the entire surface.
The following steps include forming a protective insulating film, forming a single crystal silicon layer on the protective insulating film, forming an upper layer element on the single crystal silicon layer, and forming a second layer on the upper layer element. forming a second interlayer insulating film; and forming a contact hole in the second interlayer insulating film and the protective insulating film up to the upper end of the buried wiring, and connecting the upper and lower layer elements by wiring. A method for manufacturing a three-dimensional semiconductor device, characterized by:
(2)前記保護用絶縁膜上に単結晶シリコン層を形成す
る工程として、前記保護用絶縁膜及び第1の層間絶縁膜
に結晶方位制御のための開孔部を形成したのち、全面に
多結晶若しくは非晶質のシリコン薄膜を堆積し、次いで
このシリコン膜を電子ビームアニール若しくはレーザア
ニールにより単結晶化することを特徴とする特許請求の
範囲第1項記載の3次元半導体装置の製造方法。
(2) In the step of forming a single crystal silicon layer on the protective insulating film, after forming an opening for crystal orientation control in the protective insulating film and the first interlayer insulating film, a polycrystalline silicon layer is formed on the entire surface. A method for manufacturing a three-dimensional semiconductor device according to claim 1, characterized in that a crystalline or amorphous silicon thin film is deposited, and then this silicon film is made into a single crystal by electron beam annealing or laser annealing.
JP24631084A 1984-11-22 1984-11-22 Manufacture of three dimensional semiconductor device Granted JPS61125150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24631084A JPS61125150A (en) 1984-11-22 1984-11-22 Manufacture of three dimensional semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24631084A JPS61125150A (en) 1984-11-22 1984-11-22 Manufacture of three dimensional semiconductor device

Publications (2)

Publication Number Publication Date
JPS61125150A true JPS61125150A (en) 1986-06-12
JPH023301B2 JPH023301B2 (en) 1990-01-23

Family

ID=17146648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24631084A Granted JPS61125150A (en) 1984-11-22 1984-11-22 Manufacture of three dimensional semiconductor device

Country Status (1)

Country Link
JP (1) JPS61125150A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613575A (en) * 1990-07-31 1994-01-21 Internatl Business Mach Corp <Ibm> Stack-type semiconductor structure and formation thereof
US5489554A (en) * 1992-07-21 1996-02-06 Hughes Aircraft Company Method of making a 3-dimensional circuit assembly having electrical contacts that extend through the IC layer
US7375401B2 (en) 1996-02-23 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Static random access memory using thin film transistors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613575A (en) * 1990-07-31 1994-01-21 Internatl Business Mach Corp <Ibm> Stack-type semiconductor structure and formation thereof
US5489554A (en) * 1992-07-21 1996-02-06 Hughes Aircraft Company Method of making a 3-dimensional circuit assembly having electrical contacts that extend through the IC layer
US7375401B2 (en) 1996-02-23 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Static random access memory using thin film transistors

Also Published As

Publication number Publication date
JPH023301B2 (en) 1990-01-23

Similar Documents

Publication Publication Date Title
JPH0656882B2 (en) Method for manufacturing stacked MOS device
JPH0955440A (en) Semiconductor device and its manufacturing method
US5128732A (en) Stacked semiconductor device
JPH11340327A (en) Method for manufacturing semiconductor device
JPS61125150A (en) Manufacture of three dimensional semiconductor device
JPS5846193B2 (en) semiconductor equipment
JPH0799286A (en) Semiconductor device
JPH02271657A (en) Double active layer cmos inverter
JP3346284B2 (en) Thin film transistor and method of manufacturing the same
JPH06132306A (en) Method of manufacturing semiconductor device
JPS59224165A (en) Semiconductor device
JPS59155951A (en) Semiconductor device
JP2689596B2 (en) Method for manufacturing semiconductor device
JP2001053173A (en) Flash memory and fabrication method thereof
JPS61234027A (en) Manufacture of semiconductor device
JPH01168050A (en) Laminated type semiconductor device
JPS6247151A (en) Formation of mutual connection on substrate
JPH06125087A (en) Semiconductor device
JPH05218439A (en) Semiconductor device and manufacture thereof
JP2002033485A (en) Tft liquid crystal display device and its manufacturing method
JPH03276727A (en) Semiconductor integrated circuit device
JP2515040B2 (en) Semiconductor device and manufacturing method thereof
JP2520721B2 (en) Semiconductor memory device and manufacturing method thereof
JPS6229910B2 (en)
JPS5893344A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term