JPS61124809A - Inspection and inspecting apparatus - Google Patents

Inspection and inspecting apparatus

Info

Publication number
JPS61124809A
JPS61124809A JP24602384A JP24602384A JPS61124809A JP S61124809 A JPS61124809 A JP S61124809A JP 24602384 A JP24602384 A JP 24602384A JP 24602384 A JP24602384 A JP 24602384A JP S61124809 A JPS61124809 A JP S61124809A
Authority
JP
Japan
Prior art keywords
pattern
focal position
detection
change
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24602384A
Other languages
Japanese (ja)
Other versions
JP2539778B2 (en
Inventor
Nobuyuki Irikita
信行 入来
Hiroshi Nishizuka
西塚 弘
Susumu Komoriya
進 小森谷
Takayoshi Oosakaya
大阪谷 隆義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59246023A priority Critical patent/JP2539778B2/en
Publication of JPS61124809A publication Critical patent/JPS61124809A/en
Application granted granted Critical
Publication of JP2539778B2 publication Critical patent/JP2539778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/024Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of diode-array scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable high-speed and high-accuracy of a microscopical pattern, by pattern detecting a specimen in a different focal position and calculating plane and space dimensions of the specimen from the obtained pattern information and focal position information. CONSTITUTION:A specimen 1 with an undulating pattern 3 is set on an X-Y table 2 to let it face the main body 4. The main body 4 of the inspecting apparatus is composed of illuminating system 8 and image developing system 11 and detecting element 12 and it is so made that an objective lens 9 in the system 11 is available for vertical travels for changing the focus. And, by changing consecutively the focal position of the system 11, pattern detection is conducted, and from the focal position information of the focal position detecting unit 17 and the pattern information from the pattern detecting unit 14 are introduced for panel and space dimensionings and determination of the cross-sectional space of the specimen 1.

Description

【発明の詳細な説明】 し技術分野〕 本発明は半導体装置の素子パターンのよ5に微小凹凸の
存在するパターンの測定、検査に好適な検査方法および
検査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an inspection method and an inspection apparatus suitable for measuring and inspecting a pattern in which minute irregularities exist, such as an element pattern of a semiconductor device.

〔胃景技術] LSI、VLSI等の半導体装置の高集積化に伴りて、
素子パターンの微細化も著しくなり素子の信頼性を確保
するための素子パターンの形状。
[Stomach technology] With the increasing integration of semiconductor devices such as LSI and VLSI,
As device patterns become increasingly finer, the shape of device patterns is required to ensure device reliability.

寸法の検査も一層高精度化が要求されて〜・る。近年、
この種の検査装置として31M(走!盟電子顕微@)が
利用されており、検査精度の向上に有効であるが、その
特異な測定方式によるために処理能力が低く(45分/
枚(ウェーハ))、被測定物に損傷を与え、かつ製造工
程のインプロセスで!用できないという不利がある。
Dimensional inspections are also required to be even more precise. recent years,
The 31M (Run! Mei Electron Microscope@) is used as this type of inspection device, and is effective in improving inspection accuracy, but its unique measurement method has low processing capacity (45 minutes/31M).
(wafer)), damaging the object to be measured, and in-process during the manufacturing process! The disadvantage is that it cannot be used.

このため、通常では元(レーザ元を含む)を用いた光学
顕微鏡方式の検量装置が使用されているが、この種の装
置では解像度を上げるとこれに反して焦点深度が浅(な
り、これが原因して種々の検査(測定)誤差を引起して
〜・る。即ち、素子パターンは半導体ウェーへの表面に
各種層の凹凸パターンとして形成されて〜・るため、こ
の凹凸に対する検査装置の焦点位置(面)が厚さ方向に
ずれることがあり、このとき凹凸パターンの寸法が厚さ
方向に変化していると異なった測定値が得られることに
なる。特に一般の素子パターン検査はパターニングした
フォトレジスト膜で行なって(・るが、フォトレジスト
膜厚の2μmk対し焦点深度は0.2μmであり、フォ
トレジスト膜が金形に近い断面形状のときkは焦点位置
く応じて測定に大きな誤差が生じることKなる。
For this reason, an optical microscope type calibration device that uses a source (including a laser source) is usually used, but when the resolution of this type of device is increased, the depth of focus becomes shallower (this is the cause). This causes various inspection (measurement) errors.In other words, since the device pattern is formed as an uneven pattern of various layers on the surface of the semiconductor wafer, the focal position of the inspection equipment with respect to the unevenness (plane) may shift in the thickness direction, and in this case, if the dimensions of the uneven pattern change in the thickness direction, different measured values will be obtained.Especially in general device pattern inspection, the patterned photo However, the depth of focus is 0.2 μm for a photoresist film thickness of 2 μm, and when the photoresist film has a cross-sectional shape close to a metal shape, there is a large error in measurement depending on the focal position of the photoresist film. It will happen.

また、との1式では素子パターンに対する焦点合せは必
然的に素子寸法の大きなパターンに合わせる傾向になる
が、このとき各パターンの凹凸厚さが異なりていると、
微小パターンは焦点の合わない状態で測定される場合が
生じ、微小パターンの高精度な測定が実質的にできなく
なる。更に、凹状のパターン、主にホール等は場所に応
じて深さおよび側面テーパも異なるため、表Wにおける
ホール寸法のみを測定したのでは十分ではなく、実質的
なホール寸法である底部の寸法を測定する必要が生じる
が、これを高精度に測定することも困難である。なお、
この種の検査装置としては、特開昭58−157148
号公報、特開昭59−114844号公報等に記載があ
る。
In addition, in the equation 1, focusing on the element pattern inevitably tends to be focused on a pattern with a large element size, but if the uneven thickness of each pattern is different in this case,
A micropattern may be measured in an out-of-focus state, making it virtually impossible to measure the micropattern with high precision. Furthermore, since the depth and side taper of concave patterns, mainly holes, differ depending on the location, it is not sufficient to measure only the hole dimensions in Table W, and the bottom dimension, which is the actual hole dimension, is However, it is also difficult to measure this with high precision. In addition,
As this type of inspection device, Japanese Patent Application Laid-Open No. 58-157148
There are descriptions in JP-A-59-114844, etc.

し発明の目的〕 本発明の目的は素子パターンの大小、各パターンの凹凸
厚さや深さの相違、パターン断面形状の相違に拘らず各
パターンの寸法を高′装置に測定しかつ断面形状を正確
に認−し、これにより微細なパターンの検量を高n1度
にしかも高速で行なうことができる検査方法および検査
装置を提供することにある。
[Object of the Invention] The object of the present invention is to measure the dimensions of each pattern using a high-speed device and accurately determine the cross-sectional shape, regardless of the size of the element pattern, differences in the thickness and depth of unevenness of each pattern, and differences in the cross-sectional shape of the pattern. It is an object of the present invention to provide an inspection method and an inspection apparatus that can calibrate fine patterns at high n1 degrees and at high speed.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、被検査体としての凹凸パターンに対して異な
る焦点位置でのパターン検出を夫々行ない、これらの得
られたパターン情報とその時々の焦点位置情報とでパタ
ーンの平面的および立体的な寸法を算出し、これから各
パターンの寸法測定、断面形状のl!識を行ない、これ
により微細なパターンの検査を高精度かつ高速に行ない
得る。
That is, pattern detection is performed at different focal positions for the uneven pattern of the object to be inspected, and the two-dimensional and three-dimensional dimensions of the pattern are calculated using the obtained pattern information and the focal position information at each time. Next, we will measure the dimensions of each pattern and determine the cross-sectional shape. This enables inspection of fine patterns with high precision and high speed.

また、焦点深度の浅い検査装置の焦点位置検出部と、各
焦点位置忙おけるパターン信号を情報として取込むパタ
ーン検出部と、これら両検出部の情報に基づいて演算を
行ない各パターンの平面的および立体的な寸法を算出す
る演算部とを備えることにより、パターンの厚さ、断面
形状の不揃いに拘らず各パターンの寸法の測定や断面形
状の認識を行なうことができ、パターンの検査の高精度
化を連取できる。
In addition, the focus position detection section of the inspection device with a shallow depth of focus, the pattern detection section that takes in the pattern signal at each focal position as information, and calculations are performed based on the information of both of these detection sections. By being equipped with a calculation unit that calculates three-dimensional dimensions, it is possible to measure the dimensions of each pattern and recognize the cross-sectional shape regardless of pattern thickness or uneven cross-sectional shape, resulting in high precision pattern inspection. You can get a lot of success.

[実施例〕 第1図は本発明の検査装置の全体構成図を示しており、
図において1はXYテーブル2上に載置された被検査体
としての半導体ウェーノー、4はこの半導体ウェーハ1
の表面上く形成される各種の凹凸パターン3を検査する
光学顕微鏡構成の検査装置本体である。
[Example] FIG. 1 shows an overall configuration diagram of an inspection device of the present invention.
In the figure, 1 is a semiconductor wafer placed on an XY table 2, and 4 is a semiconductor wafer 1.
This is an inspection apparatus main body having an optical microscope configuration for inspecting various uneven patterns 3 formed on the surface of the .

この検査装置本体4は、光源5.コンデンサレンズ6お
よびハーフ2ラー7を有する照明系8と、対物レンズ9
と結像レンズ10からなる結像系11と、−次元的に配
列したCCDからなる検出素子12とを備え、前記半導
体ウエーノS1の表面を照明系8で照明すると共に、そ
の反射光を結像系11によりて検出素子12上に結像し
、ウェーハ1のパターン3を検出する。そして、この検
出素子12には信号処理回路13を接続し、ノくターン
検出情報を出力するパターン検出部14として構成して
℃・る。
This inspection device main body 4 includes a light source 5. An illumination system 8 having a condenser lens 6 and a half-lens 7, and an objective lens 9
and an imaging system 11 consisting of an imaging lens 10, and a detection element 12 consisting of a -dimensionally arranged CCD. An image is formed on the detection element 12 by the system 11, and the pattern 3 on the wafer 1 is detected. A signal processing circuit 13 is connected to this detection element 12, and configured as a pattern detection section 14 that outputs turn detection information.

検出素子12としては、CCDなどの一次元配列した電
荷結合素子はもちろんのこと、二次元配列した固体撮像
素子またはこれに類するTV右カメラを使用することが
でき、またフォトマルなどの光電子増倍管あ志いはこれ
に類するものを使用することができる。
As the detection element 12, it is possible to use not only a one-dimensionally arranged charge-coupled device such as a CCD, but also a two-dimensionally arranged solid-state image sensor or a similar TV camera. A pipe similar to this can be used.

−1、前記対物レンズ9は焦点調整機構15によって光
軸方向に位置移動でき、半導体ウェーハ1の表面上の凹
凸パターン3の任意高さ位置に焦点合せできる。そして
この焦点調整機構15には対物レンズ9の移動量等から
前述の焦点位置情報を検出する変位計16を設け、これ
ら焦点調整機構15と変位計16とで焦点位置検出部1
7を構成している。
-1. The objective lens 9 can be moved in the optical axis direction by the focus adjustment mechanism 15, and can be focused at an arbitrary height position of the concavo-convex pattern 3 on the surface of the semiconductor wafer 1. The focus adjustment mechanism 15 is provided with a displacement meter 16 that detects the above-mentioned focal position information from the amount of movement of the objective lens 9.
7.

更に、前記信号処理回路13と変位計16は夫々演算部
18を構成する演算回路19に接続し℃おり、この演算
部18では前記パターン検出情報および焦点位置情報に
基づいて所定の演算を行ないパターンの平面的および立
体的な寸法を算出する。なお、演算部18には検出した
値を基準値と比較する比較回路19Aを付設しており、
検出したパターンの良否を判定できる。
Further, the signal processing circuit 13 and the displacement meter 16 are each connected to an arithmetic circuit 19 constituting an arithmetic section 18, and this arithmetic section 18 performs predetermined arithmetic operations based on the pattern detection information and focal position information to determine the pattern. Calculate the two-dimensional and three-dimensional dimensions of. Note that the calculation unit 18 is equipped with a comparison circuit 19A that compares the detected value with a reference value.
It is possible to judge whether the detected pattern is good or bad.

次に以上の構成の検査装置を用〜・た検査方法を説明す
る。
Next, an inspection method using the inspection apparatus having the above configuration will be explained.

(1)第2図(4)のように、半導体ウェーハ1の表面
上に、素子間分離領域のように厚膜で比較的に喝の大き
なパターン20と、ゲート電極のように薄くかつ細いパ
ターン21を夫々検査する場合。従来はパターン20に
焦点を合わせることが多く、パターン21の正確な検量
は困難であった。
(1) As shown in FIG. 2 (4), on the surface of the semiconductor wafer 1, there are a thick pattern 20 with a relatively large thickness like an isolation region and a thin pattern 20 like a gate electrode. When inspecting 21 respectively. Conventionally, the focus has often been on the pattern 20, and accurate calibration of the pattern 21 has been difficult.

本例では、焦点調整機構15を作動させて対物レンズ9
を移動させ、焦点を図示zI〜znのよ5に順序的に変
化させ、各焦点位置くおいて検出素子12により反射光
量を検出してパターン20゜21に対応する信号Sl〜
Snを検出する。そして、この信号S、〜Snは信号処
理回路13を経て演算回路19ヘパターン検出情報とし
て入力され、かつ同時に変位計16からは前述のZ1〜
Z。
In this example, the focus adjustment mechanism 15 is operated and the objective lens 9 is
is moved, and the focal point is sequentially changed from zI to zn as shown in the figure, and the amount of reflected light is detected by the detection element 12 at each focal position, and the signals Sl to 5 corresponding to the patterns 20° and 21 are detected.
Detect Sn. These signals S, ~Sn are input as pattern detection information to the arithmetic circuit 19 via the signal processing circuit 13, and at the same time, the signals S, ~Sn are input from the displacement meter 16 to the aforementioned Z1 ~
Z.

の各位置が焦点位置情報として入力される。Each position is input as focal position information.

演算回路19では、同図CB+に示す情報(信号)S、
−Snから夫々最もシャープな信号をその焦点位置Z1
〜znと共に選択し、同図(C)のような情報Soを得
る。そして、この情報Soを基に、各パターンに対する
信号変化率の大きな点P1〜P6を求めればパターン2
0,210平面寸法(幅寸法)を検出でき、かつそのと
きの焦点位置およびその前後の焦点位置からパターン2
0゜21の立体寸法(厚さ)を検出することもできる。
In the arithmetic circuit 19, information (signal) S shown as CB+ in the figure,
−Sn to its focal position Z1.
.about.zn to obtain information So as shown in (C) of the same figure. Then, based on this information So, if points P1 to P6 with large signal change rates for each pattern are found, pattern 2
0.0,210 plane dimension (width dimension) can be detected, and pattern 2 can be detected from the focal position at that time and the focal positions before and after it.
It is also possible to detect a three-dimensional dimension (thickness) of 0°21.

したがりて、この方法によれば、各パターン20゜21
を最適焦点位置で検出し℃いるので高精度な寸法測定が
でき、これに基づいて高精度な検査を行なうことができ
る。
Therefore, according to this method, each pattern is 20°21
Since it is detected at the optimum focus position at a temperature of 30°F, highly accurate dimensional measurements can be made, and based on this, highly accurate inspections can be performed.

なお、他の方法としては、先に任意の焦点位置で検出を
行なって信号を得、この信号から求めるパターンの概略
位置を検出し、しかる上でその近辺のみを対象として焦
点位置を変えながら信号を検出し、これから最適焦点位
置を求めてパターン寸法を検出するようにしてもよい。
Another method is to first obtain a signal by performing detection at an arbitrary focal position, then detect the approximate position of the desired pattern from this signal, and then detect the signal while changing the focal position only in the vicinity. The pattern size may be detected by detecting the optimum focal position and determining the optimum focal position from this.

(2)第3口開のように、半導体ウェーハ1上にバター
ニングしたフォトレジスト膜22の検査の場合。従来は
一つの焦点位置で検出を行なっているため、フォトレジ
スト膜22の屑やすその形状を把握できず、後工程にお
ける素子パターンへの影響を検査することはできな(・
0 本例では、同口開のようにz1〜Znの各焦点位置で検
出を行なうことKより同図■のように、S。
(2) In the case of inspecting the photoresist film 22 patterned on the semiconductor wafer 1 as in the third opening. Conventionally, detection is performed at a single focal position, making it impossible to detect debris on the photoresist film 22 and its shape, making it impossible to inspect the effect on device patterns in subsequent processes.
0 In this example, detection is performed at each focal position of z1 to Zn as in the case of opening the aperture.

〜Snの各信号を検出でき、各信号の中、最もシャープ
な信号の内、外側の各変化率の最大点P。
- Each signal of Sn can be detected, and the maximum point P of each rate of change of the sharpest signal and the outer side of each signal.

〜P4を求めれば、これが同図(4)の点P+〜P4に
対応する。更に、前記信号S、−Snから各焦点位置に
おける内、外側の変化率の最大点PIB〜Ptnp P
za′Pant Pxa′P3ne  P4B″P4n
を同図(qのよ5に焦点位置ZVc対して求め、各グラ
フの最大変化率の点Pム〜PDを求めれば、これが同口
開のように肩やすその端部P^〜PDとして求めること
ができる。これにより、フォトレジスト膜22からなる
パターンの平面寸法はもとより、略台形の断面形状の認
識もでき、高精度の検査が可能となる。
If ~P4 is determined, this corresponds to points P+~P4 in (4) of the same figure. Further, from the signals S and -Sn, the maximum points of the inner and outer change rates at each focal position PIB~Ptnp P
za'Pant Pxa'P3ne P4B''P4n
If we find the focal position ZVc in the same figure (q, 5) and find the point P~PD of the maximum rate of change in each graph, we can find this as the shoulder and its edge P^~PD like the same mouth opening. As a result, not only the planar dimensions of the pattern made of the photoresist film 22 but also the approximately trapezoidal cross-sectional shape can be recognized, making highly accurate inspection possible.

なお、第4口開に示すようにすそ部の長い断面形状のパ
ターン23の検査にお〜・でも、同図(4)。
In addition, when inspecting the pattern 23 having a long cross-sectional shape at the base as shown in the fourth opening (4) in the same figure.

CB)、 (C)に示すように各焦点位置z1〜znで
の検出を行ないかつ得られた信号S、〜Snの変化率か
らすそ部の中心Paを求め、更にその焦点位置・に対す
る変化率からパターン端部Pbを求めることができ、前
述と全(同様の検査を実現できる。
CB), as shown in (C), perform detection at each focal position z1 to zn, find the center Pa of the base from the rate of change of the obtained signals S and ~Sn, and further calculate the rate of change with respect to the focal position. The pattern end Pb can be obtained from the above, and the same inspection as described above can be realized.

また、これらの例では信号処理忙際して、しきい値Vt
hが必要とされるが、このしきい値Vthの設定に際し
ては、第5口開のようにパターン24の上級部zaと下
縁部Zbの各焦点位置での信号sa、8bを同図■のよ
うに求め、夫々の最大変化率間の距離day al)か
らテーパ長d(d=(dl)da)/2)を求める。ま
たパターン24と下地爾25の各反射IKRa、 Rb
を求め、これらd。
In addition, in these examples, the threshold value Vt
When setting this threshold value Vth, the signals sa and 8b at each focal position of the upper part za and lower edge part Zb of the pattern 24 like the fifth aperture are set as shown in the same figure. The taper length d (d=(dl)da)/2) is determined from the distance day al) between the respective maximum rates of change. Also, each reflection IKRa, Rb of the pattern 24 and the base layer 25
Find these d.

Rae Rbを所定の関係式に代入することにより、し
きい値Vtk=f (d、  Ra/Rb )を求める
ことができる・ (3)第6口開のように、絶縁1!26に形成したコン
タクト用のホール27の寸法や深さを検量する場合。従
来は金蒸着後にパターンを切断してSEM断面を観察し
ており、インプロセスの検量は不可能である。
By substituting Rae Rb into a predetermined relational expression, the threshold value Vtk=f (d, Ra/Rb) can be found. When measuring the dimensions and depth of the contact hole 27. Conventionally, the pattern is cut after gold deposition and the SEM cross section is observed, making in-process calibration impossible.

本例では、同口開のように異なる焦点付tzl〜znで
検出を行なって同図(5)の信号81〜Snを得れば、
ホール27の上縁と下底における焦点位置Za=Zbl
Cおいて夫々シャープな変化が得られる。そして、これ
らの最大変化率の点P、〜P4を求めればこれが同図(
Qのようにホール27の上縁と下底の各端部P、〜P、
になる。したがって、これらの点P、〜P4からホール
27の平面寸法が求められかつ断面の概略形状が求めら
れる。また、前述の焦点位置ZavZbの差からホール
27の深さを求めることができる。
In this example, if detection is performed with different focused tzl to zn like the same aperture, and the signals 81 to Sn shown in (5) in the figure are obtained,
Focus position Za=Zbl at the upper edge and lower bottom of the hole 27
A sharp change is obtained in each case. Then, if we find the points P and ~P4 of these maximum rates of change, we can find them in the same figure (
As shown in Q, each end of the upper edge and lower bottom of the hole 27 P, ~P,
become. Therefore, from these points P and -P4, the planar dimensions of the hole 27 and the approximate cross-sectional shape can be determined. Further, the depth of the hole 27 can be determined from the difference in the focal positions ZavZb mentioned above.

なお、以上(1)〜(3)の各側は平面一方向について
のみ説明したが、XYテーブル21Cより半導体ウェー
ハを回転すれば、これと又差する方向の検査を全く同様
に行なうことができる。
Note that each side of (1) to (3) above has been explained only in one plane direction, but if the semiconductor wafer is rotated from the XY table 21C, inspection in the other direction can be performed in exactly the same way. .

〔効果〕〔effect〕

(1)凹凸パターンに対して焦点位置を変えてパターン
検出を行ない、得られたパターン検出情報と焦点位置情
報とでパターンの平面的、立体的な寸法を検出して検査
を行なうので、最適焦点状態でのパターン寸法測定を可
能にしかつパターン断面形状の認識を可能にして高精度
の検査を実現できる。
(1) Pattern detection is performed by changing the focus position for the uneven pattern, and the two-dimensional and three-dimensional dimensions of the pattern are detected and inspected using the obtained pattern detection information and focus position information, so the optimal focus It is possible to measure the pattern dimensions in the current state and recognize the cross-sectional shape of the pattern, thereby realizing highly accurate inspection.

(2)  検!装置はパターン検出部と焦点位置検出部
とを備え、これら両検出部の出力であるパターン検出情
報と焦点位置情報とを演算部において演算を行なってパ
ターンの平面的、立体的寸法を検出し、かつこれを検査
して〜するので、前記した最適焦点状態での検査を容易
に行なうことができ、検査の高精度化、高速化を達成で
きる。
(2) Inspection! The device includes a pattern detection section and a focus position detection section, and a calculation section calculates pattern detection information and focus position information, which are outputs of these two detection sections, to detect two-dimensional and three-dimensional dimensions of the pattern, In addition, since this is inspected, the inspection in the optimum focus state described above can be easily carried out, and higher precision and faster inspection can be achieved.

(3)パターン検出情報の変化率が最も顕著な焦点位置
を求め、この焦点位置におけるパターン情報の変化率か
らパターンの寸法を求め℃いるので、信号処理およびそ
の寸法の算出を容易にかつ高精度に求めることができる
(3) The focal position where the rate of change in pattern detection information is most remarkable is determined, and the pattern dimensions are determined from the rate of change in pattern information at this focal position, making signal processing and dimension calculation easy and highly accurate. can be asked for.

(4)パターン検出情報の焦点位置変化に対する変化率
を求め、これからパターンの立体寸法の算出および断面
形状の認識を行なっているので、パターンの特徴を検出
でき、検量の信頼性を向上できる。
(4) Since the rate of change of the pattern detection information with respect to the focal position change is determined, and the three-dimensional dimension of the pattern is calculated and the cross-sectional shape is recognized from this, the characteristics of the pattern can be detected and the reliability of calibration can be improved.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。たとえば、パターン検
出部や焦点位置検出部は他の構成でもよく、また演算回
路、信号処理回路、比較回路等は一体的に構成してもよ
い。更に、検査用の元にはレーザを利用してもよい。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, the pattern detection section and the focus position detection section may have other configurations, and the arithmetic circuit, signal processing circuit, comparison circuit, etc. may be configured integrally. Furthermore, a laser may be used as the inspection source.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野である半導体ウェーハ表面
の凹凸パターンの検査に適用した場合について説明した
が、それに限定されるものではなく、凹凸状のパターン
であれば他の分野における微細パターンの検出9寸法測
定等に適用できる。
In the above explanation, the invention made by the present inventor was mainly applied to the inspection of uneven patterns on the surface of semiconductor wafers, which is the background field of application, but the present invention is not limited to this. If it is a pattern, it can be applied to detection and dimension measurement of fine patterns in other fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の検査装置の一実施例の全体構成図、 第2図w〜(Qは検査方法の一例を示し、(5)はパタ
ーン断面図、03)はパターン信号図、(qは処理後の
信号図、 第3図囚〜(C)は他の検査方法を示し、囚〜(Qは前
回と同様の図、 第4図囚〜(Qは変形例の検査方法を示し、四〜ターン
断面図、(B)は信号図、 第6図四〜(C)は更に他の検査方法を示し、囚はパタ
ーン断面図、[F])は信号図、(qは求めたパターン
の断面データ図である。 1・・・半導体ウェーハ、2・・・XYテーブル、3・
・・凹凸パターン(被検査体)、4・・・検査:装置本
体、8・・・照明系、11・・・結像系、12・・・検
出素子、14・・・パターン検出部、17・・・焦点位
置検出部、18・・・演算部、20〜25・・・パター
ン(素子間分離領域、ゲート、フォトレジスト膜)、2
7・・・ホール、Zs 〜Zn、Zay  zb−・−
焦点位置、S、〜第   1  図 第  2  図 第  3  図 (A) 第  4  図 (8ン 第  5  図 (A> 第  6  図 (AI
FIG. 1 is an overall configuration diagram of an embodiment of the inspection apparatus of the present invention, FIG. is a signal diagram after processing, Figure 3 (C) shows another inspection method, Figure 4 (Q is the same diagram as the previous one, 4-turn cross-sectional view, (B) is a signal diagram, Figures 6-4-(C) further show other inspection methods, Figure 6 is a pattern cross-sectional view, [F]) is a signal diagram, (q is the determined pattern It is a cross-sectional data diagram of 1... semiconductor wafer, 2... XY table, 3...
... Uneven pattern (object to be inspected), 4... Inspection: device main body, 8... Illumination system, 11... Imaging system, 12... Detection element, 14... Pattern detection unit, 17 ... Focus position detection section, 18... Calculation section, 20 to 25... Pattern (element isolation region, gate, photoresist film), 2
7... Hall, Zs ~ Zn, Zay zb-・-
Focus position, S, - Figure 1 Figure 2 Figure 3 (A) Figure 4 (8) Figure 5 (A> Figure 6 (AI)

Claims (1)

【特許請求の範囲】 1、被検査体としての凹凸パターンに対して焦点位置を
変えて夫々パターン検出を行ない、これら焦点位置情報
とパターン検出情報とでパターンの平面的および立体的
な寸法を算出することを特徴とする検査方法。 2、被検査体に照射した光の反射光量に基づいてパター
ン検出を行なう特許請求の範囲第1項記載の検査方法。 3、パターン検出情報の変化率が最も顕著な焦点位置に
おけるパターン検出情報を求め、このパターン検出情報
の変化率からパターンの平面寸法を算出する特許請求の
範囲第1項又は第2項記載の検査方法。 4、パターン検出情報の変化率から更に焦点位置変化に
対する変化率を求め、この変化率からパターンの立体寸
法の算出ないし断面形状の認識を行なう特許請求の範囲
第3項記載の検査方法。 5、被検査体に光を照射しかつその反射光を検出してパ
ターン検出情報を得るパターン検出部と、パターン検出
部の検出時における焦点位置を検出して焦点位置情報を
得る焦点位置検出部と、これら両検出部のパターン検出
情報および焦点位置情報に基づいて演算を行ない被検査
体の平面的、立体的な寸法を算出する演算部とを備える
ことを特徴とする検査装置。 6、パターン検出部は、照明系、結像系および検出素子
を有する検査装置本体と、検出素子に接続した信号処理
回路とを備えてなる特許請求の範囲第5項記載の検査装
置。 7、焦点位置検出部は検査装置本体における結像系の光
軸位置を検出し得る特許請求の範囲第5項又は第6項記
載の検査装置。 8、演算部はパターン検出情報の変化率を求め、或いは
焦点位置変化に対する変化率を求めてなる特許請求の範
囲第5項ないし第7項のいずれかに記載の検査装置。 9、検出素子は一次元配列した電荷結合素子である特許
請求の範囲第6項記載の検査装置。 10、検出素子は二次元配列した固体撮像素子である特
許請求の範囲第6項記載の検査装置。
[Claims] 1. Pattern detection is performed by changing the focus position for each uneven pattern as an object to be inspected, and two-dimensional and three-dimensional dimensions of the pattern are calculated using the focus position information and pattern detection information. An inspection method characterized by: 2. The inspection method according to claim 1, wherein pattern detection is performed based on the amount of reflected light irradiated onto the object to be inspected. 3. Inspection according to claim 1 or 2, which obtains pattern detection information at a focus position where the rate of change in pattern detection information is most significant, and calculates the planar dimension of the pattern from the rate of change in this pattern detection information. Method. 4. The inspection method according to claim 3, wherein the rate of change with respect to a change in focal position is further determined from the rate of change of the pattern detection information, and the three-dimensional dimension of the pattern is calculated or the cross-sectional shape of the pattern is recognized from this rate of change. 5. A pattern detection unit that irradiates the object to be inspected with light and detects the reflected light to obtain pattern detection information, and a focal position detection unit that detects the focal position during detection by the pattern detection unit and obtains focal position information. and a calculation section that calculates two-dimensional and three-dimensional dimensions of the object to be inspected by performing calculations based on the pattern detection information and focal position information of both of the detection sections. 6. The inspection apparatus according to claim 5, wherein the pattern detection section includes an inspection apparatus body having an illumination system, an imaging system, and a detection element, and a signal processing circuit connected to the detection element. 7. The inspection device according to claim 5 or 6, wherein the focal position detection section is capable of detecting the optical axis position of the imaging system in the inspection device main body. 8. The inspection device according to any one of claims 5 to 7, wherein the arithmetic unit calculates a rate of change in pattern detection information or a rate of change with respect to a change in focal position. 9. The inspection device according to claim 6, wherein the detection elements are charge-coupled devices arranged one-dimensionally. 10. The inspection device according to claim 6, wherein the detection elements are two-dimensionally arranged solid-state imaging devices.
JP59246023A 1984-11-22 1984-11-22 Inspection method and inspection device Expired - Lifetime JP2539778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59246023A JP2539778B2 (en) 1984-11-22 1984-11-22 Inspection method and inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59246023A JP2539778B2 (en) 1984-11-22 1984-11-22 Inspection method and inspection device

Publications (2)

Publication Number Publication Date
JPS61124809A true JPS61124809A (en) 1986-06-12
JP2539778B2 JP2539778B2 (en) 1996-10-02

Family

ID=17142294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59246023A Expired - Lifetime JP2539778B2 (en) 1984-11-22 1984-11-22 Inspection method and inspection device

Country Status (1)

Country Link
JP (1) JP2539778B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314426A (en) * 1985-07-03 1988-01-21 サイスキャン・システムズ・インク Apparatus for determining surface outline
JPH0247503A (en) * 1988-08-10 1990-02-16 Nec Kyushu Ltd Wire width measurer
US5151609A (en) * 1989-08-02 1992-09-29 Hitachi, Ltd. Method of detecting solid shape of object with autofocusing and image detection at each focus level
JP2004333584A (en) * 2003-04-30 2004-11-25 Nec Corp Method for controlling focus position in reticle inspection apparatus
JP2010066156A (en) * 2008-09-11 2010-03-25 Nikon Corp Profile measuring apparatus
JP2010066155A (en) * 2008-09-11 2010-03-25 Nikon Corp Profile measuring apparatus
JP2017090447A (en) * 2015-11-04 2017-05-25 ▲れい▼達科技股▲ふん▼有限公司Leadot Innovation, Inc. Three-dimensional contour information detecting system, and detecting method
JP2017138249A (en) * 2016-02-05 2017-08-10 スミックス株式会社 Line camera for checking deflection of circuit boards, checking device, and checking method
JP2020518832A (en) * 2017-04-03 2020-06-25 ミュールバウアー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Optical component detection system and method for detecting at least one component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858740A (en) * 1981-10-02 1983-04-07 Mitsubishi Electric Corp Measuring device for warp of semiconductor wafer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858740A (en) * 1981-10-02 1983-04-07 Mitsubishi Electric Corp Measuring device for warp of semiconductor wafer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314426A (en) * 1985-07-03 1988-01-21 サイスキャン・システムズ・インク Apparatus for determining surface outline
JPH0247503A (en) * 1988-08-10 1990-02-16 Nec Kyushu Ltd Wire width measurer
US5151609A (en) * 1989-08-02 1992-09-29 Hitachi, Ltd. Method of detecting solid shape of object with autofocusing and image detection at each focus level
JP2004333584A (en) * 2003-04-30 2004-11-25 Nec Corp Method for controlling focus position in reticle inspection apparatus
JP2010066156A (en) * 2008-09-11 2010-03-25 Nikon Corp Profile measuring apparatus
JP2010066155A (en) * 2008-09-11 2010-03-25 Nikon Corp Profile measuring apparatus
JP2017090447A (en) * 2015-11-04 2017-05-25 ▲れい▼達科技股▲ふん▼有限公司Leadot Innovation, Inc. Three-dimensional contour information detecting system, and detecting method
US10721455B2 (en) 2015-11-04 2020-07-21 Leadot Innovation, Inc. Three dimensional outline information sensing system and sensing method
JP2017138249A (en) * 2016-02-05 2017-08-10 スミックス株式会社 Line camera for checking deflection of circuit boards, checking device, and checking method
JP2020518832A (en) * 2017-04-03 2020-06-25 ミュールバウアー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Optical component detection system and method for detecting at least one component

Also Published As

Publication number Publication date
JP2539778B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US10359370B2 (en) Template substrate for use in adjusting focus offset for defect detection
KR101129214B1 (en) Mark position detection apparatus and position deviation detection apparatus
JP4896373B2 (en) Three-dimensional three-dimensional measurement system and method
US20030053676A1 (en) Image detection method and its apparatus and defect detection method and its apparatus
US9110039B2 (en) Auto-focus system and methods for die-to-die inspection
JPS61235808A (en) Method and device for automatic focusing
JP2003092246A (en) Alignment mark and alignment apparatus and method, projection aligner, and manufacturing method of device
JPS63244753A (en) Defect recognition and processing device
JPS61124809A (en) Inspection and inspecting apparatus
EP0947828A2 (en) Method and apparatus for improved inspection measurements
TWI585550B (en) Pre-alignment measuring devices and methods
EP0316624A2 (en) Improved imaging and inspection apparatus and method
TWI735548B (en) Detection device and detection method
CN106483777A (en) A kind of with focusing function to Barebone and alignment methods
JP4892294B2 (en) Microhole depth measurement method
US4856902A (en) Imaging and inspection apparatus and method
JPH10253320A (en) Apparatus for measuring amount of position dislocation
JP3146568B2 (en) Pattern recognition device
JP4756785B2 (en) Surface inspection method and apparatus
JP3916974B2 (en) Overlay inspection method and apparatus
JPS6298621A (en) Fine gap setting up device
JP2000021767A (en) Method and apparatus for observing position
JPS63225110A (en) Inspection instrument
JPH0355865A (en) Manufacture of semiconductor device
JPH11271151A (en) Monitoring device for wafer temperature, monitoring device for film thickness and monitoring device for wafer temperature and film thickness

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term