JPS61124135A - Plasma treating device - Google Patents

Plasma treating device

Info

Publication number
JPS61124135A
JPS61124135A JP59244426A JP24442684A JPS61124135A JP S61124135 A JPS61124135 A JP S61124135A JP 59244426 A JP59244426 A JP 59244426A JP 24442684 A JP24442684 A JP 24442684A JP S61124135 A JPS61124135 A JP S61124135A
Authority
JP
Japan
Prior art keywords
electrode
sample
gas
frequency power
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59244426A
Other languages
Japanese (ja)
Other versions
JPH0622216B2 (en
Inventor
Katsuyoshi Kudo
勝義 工藤
Katsuaki Nagatomo
長友 克明
Hideji Yamamoto
山本 秀治
Katsuyasu Nishida
西田 勝安
Yoshifumi Ogawa
芳文 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59244426A priority Critical patent/JPH0622216B2/en
Priority to KR1019850003951A priority patent/KR890002801B1/en
Priority to US06/741,526 priority patent/US4664767A/en
Publication of JPS61124135A publication Critical patent/JPS61124135A/en
Publication of JPH0622216B2 publication Critical patent/JPH0622216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C2037/90Measuring, controlling or regulating

Abstract

PURPOSE:To suppress the application of excess power by providing a sample electrode mounted at every one, and a treating chamber to be evacuated with a support disposed electrically independently with the electrode, and connecting the electrode through the support to a power source. CONSTITUTION:A conveyed wafer is mounted in an upward attitude in every treating chamber on the sample mounting surface of a sample electrode 20, and a gate valve is closed after the wafer is completely mounted on the electrode 20. If the prescribed high frequency power is applied to the electrode 20 from a high frequency power source 40, a discharge is generated between an opposed electrode 60 and the electrode 20, treating gas in the treating chamber 10 is formed as a plasma. The samples mounted on the electrodes 20 are simultaneously treated by the plasma, the application of the high frequency power is stopped to the electrode 20 after the treatment is finished, and the supply of the gas to the chamber 20 from a gas source is also stopped. Thus, since the area of the sample electrode is small to the minimum necessity for mounting the wafer, the area ratio becomes large, the application of excess high frequency power to the electrodes can be suppressed, to prevent the high frequency power source capacity from increasing.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、プラズマ処理装置に係り、特に減圧下でプラ
ズマにより複数個の試料を同時に処理するプラズマ処理
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a plasma processing apparatus, and particularly to a plasma processing apparatus that simultaneously processes a plurality of samples with plasma under reduced pressure.

〔発明の背景〕[Background of the invention]

減圧下で処理ガスをプラズマ化し、該プラズマで複数個
の試料を同時に処理するプラズマ処理装置、いわゆるバ
ッチ式のプラズマ処理装置としは、例えば、特開昭58
−14939号公報に記載のような、処理室に対向電極
と複数個の試料が同時に設置される試料電極とが放電空
間を有し対向して内設され、試料電極に設置された複数
個の試料を減圧下でプラズマにより同時に処理するもの
が知られている。
A so-called batch-type plasma processing apparatus, which converts processing gas into plasma under reduced pressure and simultaneously processes multiple samples with the plasma, is described in, for example, Japanese Patent Laid-Open No. 58
- As described in Publication No. 14939, a counter electrode and a sample electrode on which a plurality of samples are installed at the same time are installed in a processing chamber facing each other and have a discharge space, and a plurality of sample electrodes installed on the sample electrode It is known that a sample is simultaneously treated with plasma under reduced pressure.

このようなプラズマ処理装置では、対向電極と対向する
試料電極面、即ち、試料が設置される電極面の面積は、
試料電極番こ設置される複数個の試料の合計表面積の2
.5〜3倍程度と広く、この試料の合計表面積を試料電
極面の面積で除した面積比率は小さい。一方、処理ガス
のプラズマ化時には、試料が設置される試料電極面全体
が放電に使用される。これらのことより、複数個の試料
をプラズマにより良好に処理するために必要とされる所
定の放電密度(ガス圧等の条件が一定であれば、電極に
印加される電力を電極面の面積で除したものの関数で表
わされる。)を得るためには、面積比率が小さい分だけ
余分な電力を電極に印加しなければならず、電源容量が
余分に増大するといった問題がある。なお、この問題は
、試料のプラグマによる処理速度を向上させる場合、更
に増長される。
In such a plasma processing apparatus, the area of the sample electrode surface facing the counter electrode, that is, the area of the electrode surface on which the sample is placed, is:
Sample electrode number 2 of the total surface area of multiple samples installed
.. It is about 5 to 3 times wider, and the area ratio obtained by dividing the total surface area of this sample by the area of the sample electrode surface is small. On the other hand, when the processing gas is turned into plasma, the entire surface of the sample electrode on which the sample is placed is used for electric discharge. From these facts, it has been determined that the predetermined discharge density (if conditions such as gas pressure are constant, the power applied to the electrode can be expressed as the area of the electrode surface) is required to properly process multiple samples with plasma. ), it is necessary to apply extra power to the electrodes in proportion to the small area ratio, which poses the problem of an extra increase in power supply capacity. Note that this problem is further aggravated when processing speed of samples by pragmas is increased.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、面積比率を大きくすることで、電極へ
の余分な電力の印加を抑制して、電源容量の余分な増大
を防止できるプラズマ処理装置を提供することにある。
An object of the present invention is to provide a plasma processing apparatus that can suppress the application of extra power to the electrodes by increasing the area ratio, thereby preventing an extra increase in power supply capacity.

〔発明の概要〕[Summary of the invention]

本発明は、減圧下でプラズマにより同時に処理される試
料が1個毎設置される試料電極と、該試料電極が電気的
に独立して配設されるサポートとを減圧排気される処理
室に内設し、試料電極を電源にサポートを介して接続し
たことを特徴とするもので、面積比率を大きくすること
で、電極への余分な電力の印加を抑制しようとしたもの
である。
In the present invention, sample electrodes on which samples to be simultaneously treated by plasma under reduced pressure are installed, and supports on which the sample electrodes are arranged electrically independently, are placed inside a processing chamber that is evacuated under reduced pressure. The sample electrode is connected to a power source via a support, and by increasing the area ratio, the application of excess power to the electrode is suppressed.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図、第2図により説明する。 An embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図、第2図で処理室10には、試料、例えば、半導
体基板(以下、ウヱハと略)が1個毎設置される、この
場合、8個の試料電極旬と、試料電極頭が電気的に独立
して配設されるサポートIとが内設され、試料電極頭は
、電源、例えば、高周波電源40にサポート(資)を介
して接続されている。
In FIGS. 1 and 2, each sample, such as a semiconductor substrate (hereinafter referred to as wafer), is installed in the processing chamber 10. In this case, eight sample electrodes and a sample electrode head are installed. A support I that is electrically independently disposed is provided inside, and the sample electrode head is connected to a power source, for example, a high frequency power source 40 via the support.

即ち、第1図、第2図で、処理室10の、この場合、底
壁には、電極軸(資)が、その上端部を処理室10内に
突出させ、電気的に絶縁されて設けられている。電極軸
(資)の下端には、高周波電源旬が接続されている。電
極軸間の上端部には、この場合、8本のサポート(9)
が角度45°間隔で放射状方向に、かつ、略水平に設け
られている。サポート凹には、試料電極頭が、この場合
、試料設置面を略水平面としておのおの設けられている
。試料電極旬の試料設置面を除く面並びにサポート(資
)の外表面は、電気的に絶縁されアースシールドされて
いる。試料電極旬の試料設置面には、ウェハ(図示省略
)を収納可能な形状2寸法のガイドリング51が設けら
れている。試料電極旬には、例えば、冷媒通路(図示省
略)が形成され、サポート(資)、電極軸(資)には、
冷媒通路と連通して冷媒供給路(図、 3 。
That is, in FIGS. 1 and 2, an electrode shaft is provided on the bottom wall of the processing chamber 10, in this case, with its upper end projecting into the processing chamber 10 and being electrically insulated. It is being A high frequency power source is connected to the lower end of the electrode shaft. At the upper end between the electrode axes there are in this case 8 supports (9)
are provided radially at 45° intervals and approximately horizontally. In this case, each sample electrode head is provided in each of the support recesses, with the sample installation surface being a substantially horizontal plane. The surface of the sample electrode other than the sample installation surface and the outer surface of the support are electrically insulated and ground shielded. A guide ring 51 having a shape and two dimensions capable of accommodating a wafer (not shown) is provided on the sample installation surface of the sample electrode. For example, a refrigerant passage (not shown) is formed on the sample electrode, and a support (material) and electrode shaft (material) are formed with a refrigerant passage (not shown).
A refrigerant supply path (Figure 3) communicates with the refrigerant passage.

示省略)、冷媒排出路(図示省略)が、それぞれ形成さ
れている。冷媒供給路は、冷媒供給管(図示省略)を介
して冷媒供給源(図示省略)に連結されている。また、
処理室10の、この場合、頂壁には、電極軸52が、そ
の下端部を処理室10内に突出させ、電気的に絶縁され
て設けられている。電極軸52の下端には、対向型8[
+が、試料電極頭と放電空間70を有し略水平に設けら
れている。対向型[!60の試料電極頭と対応する面に
は、カバー61が設けられている。対向型極印には、試
料電極頭の試料設置面に向って開口するガス放出孔(図
示省略)が形成され、該ガス放出孔と連通してガス分散
室(図示省略)が形成されている。電極軸52には、ガ
ス分散室と連通してガス供給路(図示省略)が形成され
、ガス供給路に連通してガス供給管(図示省略)が連結
されている。ガス供給管は、ガス源(図示省略)に連結
され、その途中には、ガス流量制御装置(図示省略)が
設けられている。
(not shown) and a refrigerant discharge path (not shown) are respectively formed. The refrigerant supply path is connected to a refrigerant supply source (not shown) via a refrigerant supply pipe (not shown). Also,
An electrode shaft 52 is provided on the top wall of the processing chamber 10 in this case, with its lower end projecting into the processing chamber 10 and being electrically insulated. At the lower end of the electrode shaft 52, a facing type 8 [
+ has a sample electrode head and a discharge space 70, and is provided substantially horizontally. Facing type [! A cover 61 is provided on the surface corresponding to the sample electrode head 60. A gas discharge hole (not shown) that opens toward the sample installation surface of the sample electrode head is formed in the opposing pole mark, and a gas dispersion chamber (not shown) is formed in communication with the gas discharge hole. A gas supply path (not shown) is formed in the electrode shaft 52 so as to communicate with the gas distribution chamber, and a gas supply pipe (not shown) is connected to the gas supply path. The gas supply pipe is connected to a gas source (not shown), and a gas flow rate control device (not shown) is provided along the way.

電極軸52は、アースされている。また、処理室10に
は、例えば、ゲートバルブ(図示省略)を介し° 4 
The electrode shaft 52 is grounded. Further, the processing chamber 10 is connected to, for example, a gate valve (not shown) through a gate valve (not shown).
.

て副真空室(図示省略)が兵役されている。また、処理
室10と副真空室との間でゲートバルブを介してウェハ
な搬送する公知の搬送手段(図示省略)が設けられてい
る。・また、処理室10には、真空排気系(図示省略)
が連結されている。また、この場合、電極軸間は、駆動
手段(図示省略)により間欠回転可能となっている。
A sub-vacuum chamber (not shown) is used for military purposes. Further, a known transport means (not shown) is provided for transporting a wafer between the processing chamber 10 and the sub-vacuum chamber via a gate valve.・In addition, the processing chamber 10 is equipped with a vacuum exhaust system (not shown).
are connected. Further, in this case, the electrode shafts can be rotated intermittently by a driving means (not shown).

第1図、第2図で、減圧排気された処理室10内には、
ゲートバルブを介してウェハが、例えば、1個毎公知の
搬送手段により副真空室から搬入され、駆動手段により
電極軸(資)を間欠回転させることで、搬入されたウェ
ハは、試料電極頭の試料設置面に1個毎被処理面上向き
姿勢にて設置される。
In FIGS. 1 and 2, inside the process chamber 10 which has been evacuated under reduced pressure,
For example, wafers are transported one by one from the sub-vacuum chamber via a gate valve by a known transport means, and by intermittently rotating the electrode shaft by a driving means, the wafers are transported to the top of the sample electrode head. Each sample is placed on the sample installation surface with the surface to be processed facing upward.

各試料電極頭へのウェハ設置完了後、ゲートバルブは閉
止される。その後、ガス源からガス流量制御装置で流量
を所定流量に制御されガス供給管を経て処理ガスが、電
極軸52のガス供給路に供給される。ガス供給路に供給
された処理ガスはガス供給路を流通して対向型極印のガ
ス分散室に入り、ここで、均等に分散された後にガス放
出孔から試料電420に設置されたウェハの被処理面に
向って放出される。この放出された処理ガスの一部は作
動している真空排気系により排気される。この際、処理
室10からの処理ガスの排出量は可変コンダクタンスバ
ルブ(図示省略)により調節され、これにより処理室1
0内は所定の処理圧力に調節されて維持される。この状
態で高周波電源40よりサポート(資)を介して試料電
極頭に所定の高周波電力を印加すれば、対向型極印と試
料電極頭との間で放電が発生し、これにより、処理室1
0内の処理ガスはプラズマ化される。試料電極頭に設置
された各試料は、このプラズマにより同時に処理される
。このような処理が終了すれば、試料電極頭への高周波
電力の印加が停止され、また、ガス源からの処理室10
への処理ガスの供給も停止される。その後、処理が終了
した各ウェハは、搬入時とは逆操作によって試料電極頭
から1個毎除去されて副真空室へ全て搬出される。この
ような操作を繰り返し実施することで、ウェハは、この
場合、8個毎プラズマによりバッチ処理される。
After the wafer is placed on each sample electrode head, the gate valve is closed. Thereafter, the processing gas is supplied from the gas source to the gas supply path of the electrode shaft 52 through the gas supply pipe, with the flow rate being controlled to a predetermined flow rate by the gas flow rate control device. The processing gas supplied to the gas supply path flows through the gas supply path and enters the gas dispersion chamber with opposite pole markings, where it is evenly dispersed and then exposed to the wafer placed in the sample electrode 420 through the gas discharge hole. released towards the treated surface. A portion of this released processing gas is evacuated by an operating vacuum evacuation system. At this time, the amount of processing gas discharged from the processing chamber 10 is adjusted by a variable conductance valve (not shown).
The pressure within 0 is adjusted and maintained at a predetermined processing pressure. If a predetermined high-frequency power is applied to the sample electrode head from the high-frequency power source 40 through the support in this state, an electric discharge will occur between the facing pole mark and the sample electrode head, and this will cause the processing chamber to
The processing gas within 0 is turned into plasma. Each sample placed on the sample electrode head is simultaneously treated by this plasma. When such processing is completed, the application of high frequency power to the sample electrode head is stopped, and the processing chamber 10 from the gas source is stopped.
The supply of processing gas to is also stopped. Thereafter, each wafer that has been processed is removed one by one from the sample electrode head by a reverse operation to that at the time of carrying in, and all of the wafers are carried out to the sub-vacuum chamber. By repeatedly performing such operations, the wafers, in this case, are batch-processed by plasma every eight wafers.

本実施例では、次のような効果を得ることができる。In this embodiment, the following effects can be obtained.

(1)試料電極の面積が、ウェハ設置に最小限必要とさ
れる面積と小さいため、面積比率が大きくなC〕、電極
への余分な高周波電力の印加を抑制でき、高周波電源容
量の余分な増大を防IFできる。
(1) Since the area of the sample electrode is smaller than the minimum area required for installing the wafer, the area ratio is large. You can prevent IF from increasing.

(2)電極への余分な高周波電力の印加を抑制できるの
で、電極と高周波電源とを接続する配線や高周波絶縁ス
ペース等の附帯設備が過大となるのを防止できる。
(2) Since the application of excess high-frequency power to the electrodes can be suppressed, it is possible to prevent ancillary equipment such as wiring connecting the electrodes and the high-frequency power source and high-frequency insulation space from becoming excessively large.

(3)処理ガスは、試料電極に設置されたウェハの被処
理面上を放射状に流れるため、プラズマ処理の均一性が
向上する。
(3) Since the processing gas flows radially over the processing surface of the wafer placed on the sample electrode, the uniformity of plasma processing is improved.

第3図、第4図は1本発明の第2の実施例を示すもので
、上記一実施例を示す第1図、第2図と異なる点は、電
極軸間の上端部に形状が円板のサポート凹′が略水平に
設けられ、サポート(ト)′上に、この場合、角度45
°間隔で8個の試料電極頭が電気的に独立して配設され
た点である。即ち、試・ 7 ・ 料電%20の試料設置面を除(面並びにサポート加′の
外表面は、電気絶縁材31でカバーされ、更にその外面
はアースシールド脂でカバーされている。
3 and 4 show a second embodiment of the present invention, and the difference from FIGS. 1 and 2 showing the above-mentioned embodiment is that the upper end between the electrode axes has a circular shape. A support recess' of the plate is provided approximately horizontally, in this case at an angle of 45
The point is that eight sample electrode heads are electrically independently arranged at intervals of .degree. That is, except for the sample installation surface of Test 7. Feeding %20, the surface and the outer surface of the support pad are covered with an electrical insulating material 31, and the outer surface is further covered with earth shield resin.

なお、第3図、第4図で、その他第1図、第2図と同一
装置1部品等は同一符号で示し説明を省略する。
In FIGS. 3 and 4, other parts of the device that are the same as those in FIGS. 1 and 2 are designated by the same reference numerals, and their explanations will be omitted.

本実施例では、上記一実施例での効果と同様の効果を得
ることができる。
In this embodiment, the same effects as those in the above embodiment can be obtained.

第5図、第6図は、本発明の第3の実施例を示すもので
、上記一実施例を示す第1図、第2図と異なる点は、電
極軸間の上端部に形状が円板のサポート(資)′が略水
平に設けられ、サポート加′上に、この場合、角度45
°間隔で8個の試料電極頭が電気的に独立して配設され
た点である。即ち、試料電極頭試料設置面を除く面並び
にサポートI′の外表面は電気絶縁材31.33でカバ
ーされている。
FIGS. 5 and 6 show a third embodiment of the present invention. The difference from FIGS. 1 and 2, which show the above embodiment, is that the upper end between the electrode axes has a circular shape. The support for the plate is provided approximately horizontally, in this case at an angle of 45
The point is that eight sample electrode heads are electrically independently arranged at intervals of .degree. That is, the surface of the sample electrode head other than the sample installation surface and the outer surface of the support I' are covered with electrical insulating materials 31 and 33.

この場合、対向電極60と対応してサポート加′にカバ
ーされた電気絶縁材おは、対向電極ωとサポート(資)
′との間での放電の発生を阻止し得る絶縁性能、例えば
、厚さを有している。また、電気絶縁材31・ 8 ・ の外面は更にアースシールド羽でカバーされている。な
お、第5図、第6図で、その他第1図、第2図と同−装
置等は同一符号で示し説明を省略するO 本実施例では、上記一実施例での効果と同様の効果を得
ることができる。
In this case, the electrical insulating material covered by the support material corresponds to the counter electrode 60, and the support material
' has an insulating property, such as a thickness, that can prevent the occurrence of discharge between the two. Further, the outer surface of the electrical insulating material 31.8. is further covered with earth shield wings. Note that in FIGS. 5 and 6, other devices that are the same as those in FIGS. 1 and 2 are denoted by the same reference numerals and their explanations will be omitted. can be obtained.

以上説明した本発明の実施例では、電源として高周波電
源を用いているが、この他に直流電源を用いても良い。
In the embodiments of the present invention described above, a high frequency power source is used as the power source, but a DC power source may be used in addition to this.

また、対向電極を試料電極と同様番こ独立に形成しても
良い。
Further, the counter electrode may be formed independently in the same manner as the sample electrode.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、面積比率を大きくでき
るので、電極への余分な電力の印加を抑制でき電源容量
の余分な増大を防止できるという効果がある。
As explained above, the present invention can increase the area ratio, so it has the effect of suppressing the application of extra power to the electrodes and preventing unnecessary increases in power supply capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるプラズマ処理装置の一実施例を
示す処理室部の縦断面図、第2図は、第1図のA−A視
断面図、第3図は、本発明によるプラズマ処理装置の第
2の実施例を示す処理室部の縦断面図、第4図は、第3
図のB−B視断面図、第5図は、本発明によるプラズマ
処理装置の第3の実施例を示す処理室部の縦断面図、第
6図は、第5図のC−C視断面図である。 10・・・・・・処理室、加・・・・・・試料電極、(
9)、30′・・・・・・す・ 11・
FIG. 1 is a longitudinal cross-sectional view of a processing chamber showing an embodiment of a plasma processing apparatus according to the present invention, FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1, and FIG. FIG. 4 is a longitudinal cross-sectional view of the processing chamber section showing the second embodiment of the processing apparatus.
5 is a vertical sectional view of a processing chamber showing a third embodiment of the plasma processing apparatus according to the present invention, and FIG. 6 is a sectional view taken along CC in FIG. 5. It is a diagram. 10...processing chamber, processing...sample electrode, (
9), 30'... 11.

Claims (1)

【特許請求の範囲】[Claims] 1、減圧排気される処理室内で処理ガスをプラズマ化し
、該プラズマで複数個の試料を同時に処理する装置にお
いて、前記試料が1個毎設置される試料電極と、該試料
電極が電気的に独立して配設される、サポートとを前記
処理室に内設し、試料電極を電源にサポートを介して接
続したことを特徴とするプラズマ処理装置。
1. In an apparatus that converts processing gas into plasma in a processing chamber that is evacuated under reduced pressure, and simultaneously processes multiple samples with the plasma, the sample electrode on which each sample is installed is electrically independent of the sample electrode. A plasma processing apparatus characterized in that a support is disposed in the processing chamber, and a sample electrode is connected to a power source via the support.
JP59244426A 1984-06-06 1984-11-21 Plasma processing device Expired - Lifetime JPH0622216B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59244426A JPH0622216B2 (en) 1984-11-21 1984-11-21 Plasma processing device
KR1019850003951A KR890002801B1 (en) 1984-06-06 1985-06-05 Plasma treating method and apparatus therefor
US06/741,526 US4664767A (en) 1984-06-06 1985-06-05 Plasma treating method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59244426A JPH0622216B2 (en) 1984-11-21 1984-11-21 Plasma processing device

Publications (2)

Publication Number Publication Date
JPS61124135A true JPS61124135A (en) 1986-06-11
JPH0622216B2 JPH0622216B2 (en) 1994-03-23

Family

ID=17118478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59244426A Expired - Lifetime JPH0622216B2 (en) 1984-06-06 1984-11-21 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH0622216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833374A2 (en) * 1996-09-26 1998-04-01 Kokusai Electric Co., Ltd. Substrate processing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142328A (en) * 1983-02-01 1984-08-15 Yokoi Kikai Kosakusho:Kk Air-fuel ratio controlling device in combustion apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142328A (en) * 1983-02-01 1984-08-15 Yokoi Kikai Kosakusho:Kk Air-fuel ratio controlling device in combustion apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833374A2 (en) * 1996-09-26 1998-04-01 Kokusai Electric Co., Ltd. Substrate processing apparatus
EP0833374A3 (en) * 1996-09-26 1998-05-13 Kokusai Electric Co., Ltd. Substrate processing apparatus
US6053980A (en) * 1996-09-26 2000-04-25 Kokusai Electric Co., Ltd. Substrate processing apparatus

Also Published As

Publication number Publication date
JPH0622216B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
KR102594442B1 (en) Plasma processing apparatus
CN103243314A (en) Film deposition apparatus
JPH11158633A (en) Device for preventing initial mixing of reactant gas in cvd reaction and pecvd reaction and method therefor
JP7320874B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
US5846331A (en) Plasma processing apparatus
US11158492B2 (en) Film forming apparatus and film forming method
JP2001148378A (en) Plasma processing apparatus, cluster tool and plasma control method
CN111354672B (en) Electrostatic chuck and plasma processing apparatus
JPH057861B2 (en)
KR20170046703A (en) Radical gas generation system
KR101076516B1 (en) Plasma processing method and apparatus
US5789324A (en) Uniform gas flow arrangements
JPS61124135A (en) Plasma treating device
JPH07153743A (en) Plasma treatment device
JPS5610932A (en) Plasma treating apparatus
JPH0637051A (en) Plasma device
JPS6056793B2 (en) Plasma surface treatment equipment
KR101079224B1 (en) Top electrode assembly and plasma processing apparatus
KR102566903B1 (en) A substrate processing apparatus
KR100683255B1 (en) Plasma processing apparatus and exhausting device
JPS60123033A (en) Plasma treating device
JPS60258924A (en) Plasma processing device
JPH03211726A (en) Plasma processor
JPS631036A (en) Plasma cvd system
KR100686284B1 (en) Upper electrode unit and plasma processing apparatus