JPS61123175A - Manufacture of hetero-junction bipolar transistor - Google Patents

Manufacture of hetero-junction bipolar transistor

Info

Publication number
JPS61123175A
JPS61123175A JP24323684A JP24323684A JPS61123175A JP S61123175 A JPS61123175 A JP S61123175A JP 24323684 A JP24323684 A JP 24323684A JP 24323684 A JP24323684 A JP 24323684A JP S61123175 A JPS61123175 A JP S61123175A
Authority
JP
Japan
Prior art keywords
layer
base
emitter
bipolar transistor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24323684A
Other languages
Japanese (ja)
Inventor
Kunio Tsuda
邦男 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24323684A priority Critical patent/JPS61123175A/en
Publication of JPS61123175A publication Critical patent/JPS61123175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To form the surface of an external base as a high-concentration impurity layer, to inhibit the contact resistance of a base to a low value even when an element area is reduced and to obtain a bipolar transistor having high performance and the high degree of integration by implanting the ions of impurity elements of two kinds or more to shape the external base. CONSTITUTION:An n<+> type GaAs layer 12 and an n type GaAS layer 13 as collector layers, a p type GaAs layer 14 as a base layer, an n type AlGaAs layer 15 as an emitter layer and an n<+> GaAs layer 16 functioning as a cap layer for easily taking the ohmic contact of an emitter are grown on a GaAs semi-insulating substrate 11 in an epitaxial manner in succession. A mask is shaped into an emitter region, the unnecessary layer 16 is removed, Mg ions are implanted first, and Zn ions are implanted. A p<+> type external base 17 is formed through flash annealing by infrared rays after Zn ions are implanted. Sections up to the layer 12 are etched, sections up to the substrate 11 are mesa- etched for isolating elements, and a collector electrode 19, an emitter electrode 18 and a base electrode 20 are shaped. Accordingly, a fined bipolar transistor having high performance and the high degree of integration is acquired.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は化合物半導体を用いたヘテロ接合バイポーラト
ランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a heterojunction bipolar transistor using a compound semiconductor.

〔従来技術とその問題点〕[Prior art and its problems]

Gaps等の化合物半導体を用いたヘテロ接合バイポー
ラトランジスタは次代の高速デバイスとして注目されて
いる。ヘテロ接合バイポーラトランジスタは極めて薄い
ベース層と良質なヘテロ接合の形成が不可欠であり、現
在分子線エピタキシー(MBE)法、有機金属気相成長
(MOCvD)法等のエピタキシャル成長技術が用いら
れている。コレクタ、ベース、エミッタとなる半導体層
をエピタキシャル成長させたウェハを用いてヘテロ接合
バイポーラトランジスタを形成する際(はコレクタ及び
エミッタの2つの半導体層にはさまれたベース層にコン
タクトを形成する必要があり、そのための方法の1つと
してイオン注入技術を用いて外部ベースを形成すること
が行なわれている。このバイポーラトランジスタにおい
てはエミッタ、ベース。
Heterojunction bipolar transistors using compound semiconductors such as Gaps are attracting attention as next-generation high-speed devices. For a heterojunction bipolar transistor, it is essential to form an extremely thin base layer and a high-quality heterojunction, and epitaxial growth techniques such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCvD) are currently used. When forming a heterojunction bipolar transistor using a wafer on which semiconductor layers to become the collector, base, and emitter are epitaxially grown, it is necessary to form a contact on the base layer sandwiched between the two semiconductor layers, the collector and emitter. One method for this purpose is to use ion implantation technology to form an external base.In this bipolar transistor, the emitter and base are formed.

コレクタの各コンタクト抵抗の大小は素子性能に大きな
影響を及ぼすことは周知である。ヘテロ接合バイポーラ
トランジスタにおいても同様であり、イオン注入によっ
て形成した外部ベース上のべ−スコンタクト抵抗の低減
が求められている。
It is well known that the magnitude of each contact resistance of the collector has a large effect on device performance. The same applies to heterojunction bipolar transistors, and there is a need to reduce the base contact resistance on the external base formed by ion implantation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は微細化による高性能高集積化に適したヘ
テロ接合バイポーラトランジスタの製造方法を提供する
ことにある。
An object of the present invention is to provide a method for manufacturing a heterojunction bipolar transistor suitable for high performance and high integration through miniaturization.

〔発明の概要〕[Summary of the invention]

本発明にがかるヘテロ接合バイポーラトランジスタの製
造方法は、化合物半導体基板にエミッタ接合、コレクタ
接合の少なくとも一方がヘテロ接合となるように半導体
層をエミッタ、ベース、コレクタもしくはコレクタ、ベ
ース、エミッタ接合に順次エピタキシャル成長させたウ
ェハを用いて構成されるものであって、イオン注入によ
って外部ベースを形成するに際し、第一の不純物のイオ
ン注入によって外部ベースを形成し、さらに第2の不純
物をイオン注入して外部ベースの表面近傍を高濃度化す
ることによって外部ベースのコンタクト抵抗を低減せし
めたヘテロ接合バイポーラトランジスタを得ることを特
徴とする。
The method for manufacturing a heterojunction bipolar transistor according to the present invention involves epitaxially growing a semiconductor layer on a compound semiconductor substrate in order of emitter, base, collector or collector, base, emitter junction so that at least one of the emitter junction and the collector junction becomes a heterojunction. When forming the external base by ion implantation, the external base is formed by ion-implanting a first impurity, and the external base is formed by ion-implanting a second impurity. The present invention is characterized by obtaining a heterojunction bipolar transistor in which the contact resistance of the external base is reduced by increasing the concentration near the surface of the transistor.

〔発明の効果〕〔Effect of the invention〕

本発明により得られるヘテロ接合バイポーラトランジス
タは、外部ベース表面が高濃度層となっているため、素
子面積を縮小してもベースのコンタクト抵抗を低く抑え
られ、微細化による高性能高集積化が可能となる。
Since the heterojunction bipolar transistor obtained by the present invention has a highly doped layer on the external base surface, the contact resistance of the base can be kept low even if the element area is reduced, and high performance and high integration can be achieved through miniaturization. becomes.

〔発明の実施例〕[Embodiments of the invention]

第1図はエミッタ接合にAlGaAs/GaAsのヘテ
ロ接合を用いた一実施例のヘテロ接合バイポーラトラン
ジスタの構造を示す。第2図(81〜(clはその製造
工程を示す。以下その構造と製造工程を第2図 ′(a
l〜fclを参照して説明する。半絶縁性基板11にコ
レクタ層となるnfiGaAs層12及びn型GaAs
層13、ベース層となるpfiGaAs層14、エミツ
タ層となるn 屋klGaks層15、エミッタのオー
ミックコンタクトを収りやすくするためのキャップ層と
なるn+型GaAs層16を順次MBE法によりエピタ
キシャル成長させる(第2図(a))。例えばn+型G
aAs層12は8iを2 X 10” cm−” ドー
プした5oooKのn+層、n型層13は同じ(8iを
5XIO16cIrL−3ドープした5000人のnf
i層とし、pm層14はBeを3X10”、−m−3ド
ープした1000λのp型層とし、n型層15は3iを
I X 101?cm−”ドープしたn型層(AJの%
に比は0.3)とし、n+層16はSik 2 x 1
0”CIrL−’ )−−プした1000λのn+層と
する。次にエミッタ領域にマスク(図示せず)tl−形
成し、不要なn+層をエツチング除去した後、Mgを2
xiO”cm−” 200KeV ティオン注入し、さ
らにZnを1xlO”cm−2100KeVでイオン注
入した後900’02秒の赤外線(よるフラッシュアニ
ールを施してp+型の外部ベースを形成する(第2図(
b))。この外部ベース層の深さ方向の濃度分布は第3
図に示すととくで表面から100OAの閑さまでは約9
X10”cm−’ 1000λから500 OAの深さ
までは約7 X 10” cm−’のp型となる。
FIG. 1 shows the structure of an embodiment of a heterojunction bipolar transistor using an AlGaAs/GaAs heterojunction for the emitter junction. Figure 2 (81~(cl) indicates its manufacturing process.The structure and manufacturing process are shown in Figure 2'(a
This will be explained with reference to l to fcl. A semi-insulating substrate 11 has an nfiGaAs layer 12 serving as a collector layer and an n-type GaAs layer.
The layer 13, the pfiGaAs layer 14 that will become the base layer, the n+ type GaAs layer 15 that will become the emitter layer, and the n+ type GaAs layer 16 that will become the cap layer to make it easier to fit the emitter ohmic contact are epitaxially grown by the MBE method. Figure 2(a)). For example, n+ type G
aAs layer 12 is a 5oooK n+ layer doped with 8i 2 X 10"cm-", n-type layer 13 is the same (5000nf 8i doped with 5XIO16cIrL-3)
The pm layer 14 is a 1000λ p-type layer doped with Be 3X10", -m-3, and the n-type layer 15 is a 1000λ p-type layer doped with 3i I x 101?cm-" (% of AJ).
The ratio is 0.3), and the n+ layer 16 is Sik 2 x 1
0"CIrL-')-- to form a 1000λ n+ layer. Next, a mask (not shown) tl- is formed in the emitter region, and after removing the unnecessary n+ layer by etching, Mg is etched by 2
After ion implantation at xiO"cm-" 200KeV and further Zn ion implantation at 1xlO"cm-2100KeV, a p+ type external base is formed by flash annealing using infrared radiation for 900'02 seconds (see Fig. 2).
b)). The concentration distribution in the depth direction of this external base layer is the third
As shown in the figure, the distance from the surface to 100OA is approximately 9
From a depth of 1000λ to a depth of 500 OA, it becomes p-type with a depth of approximately 7×10” cm.

次いでコンクタコ/タクト形成のためコレクタ接合層ま
でメサエッチングを施し、さら罠素子分離のため半絶縁
性基板11までメサエッチングを施す(第2図(C))
。この後、エミッタ及びコレクタにライてばAuGe/
Au 、ベースについてはAu/AuZnからなる各成
l318 、19 、20を形成し、最後に素子間の内
部配線をTi/Pt/Auにより形成して完成する(第
1図)。
Next, mesa etching is performed to the collector junction layer to form a contactor/tact, and further mesa etching is performed to the semi-insulating substrate 11 to separate the trap elements (Fig. 2 (C)).
. After this, lay AuGe/on the emitter and collector.
For the base, each component 1318, 19, 20 made of Au/AuZn is formed, and finally, the internal wiring between the elements is formed of Ti/Pt/Au to complete the process (FIG. 1).

こうして得られたAJGaAs/13aAsヘテロバイ
ポーラトランジスタは、f−10GHz h、Ii中3
00  と優れた性能を示した。この時外部ベース上の
ベースコンタクトは熱処理なしでオーミックコンタクト
が得られ、コンタクト抵抗率はI X 10−’ (l
crrL” と楊めて低い値を示し、本発明による製造
方法を用いない場合に比ベ−スコンタクト抵抗は著しく
低減できた。また通常n型とp型のオーミックコンタク
トのための熱処理を同時に行なうため熱処理条件のマツ
チングをとる必要があるが、本発明による製造方法によ
り熱処理条件をn型のエミッタ及びコレクタコンタクト
のだめの最適条件とすることができ、エミッタ及びコレ
クタコンタクト抵抗も低減することができた。
The thus obtained AJGaAs/13aAs hetero bipolar transistor has a f-10 GHz h, Ii medium 3
00 and showed excellent performance. At this time, an ohmic contact can be obtained for the base contact on the external base without heat treatment, and the contact resistivity is I x 10-' (l
crrL'', and the specific base contact resistance was significantly reduced when the manufacturing method of the present invention was not used.Also, heat treatment for n-type and p-type ohmic contacts is usually performed at the same time. Therefore, it is necessary to match the heat treatment conditions, but the manufacturing method according to the present invention allows the heat treatment conditions to be optimal for the n-type emitter and collector contacts, and also reduces the emitter and collector contact resistance. .

さらに本発明による製造方法を用いれば、素子寸法を縮
小し、ベースコンタクト面積が減少してもベースコンタ
クト抵抗が低いためコンタクト抵抗の大小に起因する性
能の低下を抑制でき、微細化による高性能化、高集積化
が可能となる。
Furthermore, by using the manufacturing method according to the present invention, even if the element dimensions are reduced and the base contact area is reduced, the base contact resistance is low, so it is possible to suppress performance degradation caused by large or small contact resistance, and improve performance due to miniaturization. , high integration becomes possible.

本実施例では外部ベース形成のための注入不純物として
MgとZnを用いた場合について述べたが、例えば前者
をBeとしても同樺の効果が得られる。
In this embodiment, a case has been described in which Mg and Zn are used as the implanted impurities for forming the external base, but the same effect can be obtained even if the former is Be, for example.

例えばBe t−lXl0”ci−’ 150KeV、
 ZnをI X 10”Cm ’ 100KeVでイオ
ン注入し、950’01秒の赤外線によるフラッシュア
ニールを施す。この時形成された外部ベース層は表面か
ら100OAの深さまで約9xlO”m−” 1000
^から5000^の深さまでは約8X10”C7n″の
pmとなり、コンタクト抵抗率はほぼI X 10′−
となる。
For example, Be t-lXl0"ci-' 150KeV,
Zn is ion-implanted at I x 10"Cm' 100KeV and flash annealed using infrared rays for 950'01 seconds. The external base layer formed at this time has a thickness of about 9xlO"m-" 1000 from the surface to a depth of 100OA.
From ^ to 5000^ depth, the pm is approximately 8X10"C7n", and the contact resistivity is approximately I X 10'-
becomes.

また実施例では表面側がエミッタであり、かつエミッタ
にヘテロ接合を用いたヘテロ接合バイポーラトランジス
タについて述べたが、表面側がコレクタとなった。半絶
縁性基板−二ミツタ−ベース−コレクタという構造の場
合やコレクタ又はエミッタ及びコレクタの両方の接合に
ヘテロ接合を用いた場合にも本発明が有効であることは
言うまでもない。
Further, in the embodiment, a heterojunction bipolar transistor in which the emitter is on the front side and a heterojunction is used for the emitter is described, but the collector is on the front side. It goes without saying that the present invention is also effective in the case of a semi-insulating substrate-two-meter-base-collector structure or in the case of using a heterojunction for the collector or both the emitter and collector junctions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法で得られたヘテロ接合バイポーラ
トランジスタの断面図、第2図は本発明の一実施例の製
造方法を説明するだめの工程断面図、第3図は本発明の
一実施例のイオン注入における不純物濃度の変化を示し
た図である。 11二半絶縁性基板、12:n+型GaAs 4 (−
r vフタ)。 13:n型GaAs層(コレクタ)、14.n型GaA
s層(ベース)、15:n型GaA/As層(エミッタ
)、16:n+型GaAs層。 代理人 弁理士 則 近 憲 佑 (ばか1名)第  
2 図  (α2 第  2 図
FIG. 1 is a cross-sectional view of a heterojunction bipolar transistor obtained by the method of the present invention, FIG. FIG. 3 is a diagram showing changes in impurity concentration during ion implantation in an example. 11: Two semi-insulating substrates, 12: n+ type GaAs 4 (-
r v lid). 13: n-type GaAs layer (collector), 14. n-type GaA
s layer (base), 15: n-type GaA/As layer (emitter), 16: n+-type GaAs layer. Agent Patent Attorney Kensuke Chika (Idiot 1) No.
Figure 2 (α2 Figure 2

Claims (1)

【特許請求の範囲】 1、化合物半導体基板にエミッタ接合、コレクタ接合の
少なくとも一方がヘテロ接合となるようにコレクタ、ベ
ース、エミッタとなる半導体層をエピタキシャル成長さ
せて構成されるヘテロ接合バイポーラトランジスタにお
いて、少なくとも2種類の不純物元素をイオン注入する
ことによつて外部ベースを形成することを特徴とするヘ
テロ接合バイポーラトランジスタの製造方法。 2、前記外部ベース形成のための注入不純物元素はBe
、Mg、Zn、Cdのうちのいずれかであることを特徴
とする特許請求の範囲第1項記載のヘテロ接合バイポー
ラトランジスタの製造方法。
[Scope of Claims] 1. A heterojunction bipolar transistor formed by epitaxially growing semiconductor layers serving as a collector, a base, and an emitter on a compound semiconductor substrate so that at least one of the emitter junction and the collector junction becomes a heterojunction, comprising at least A method for manufacturing a heterojunction bipolar transistor, characterized in that an external base is formed by ion-implanting two types of impurity elements. 2. The implanted impurity element for forming the external base is Be.
, Mg, Zn, and Cd, the method for manufacturing a heterojunction bipolar transistor according to claim 1.
JP24323684A 1984-11-20 1984-11-20 Manufacture of hetero-junction bipolar transistor Pending JPS61123175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24323684A JPS61123175A (en) 1984-11-20 1984-11-20 Manufacture of hetero-junction bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24323684A JPS61123175A (en) 1984-11-20 1984-11-20 Manufacture of hetero-junction bipolar transistor

Publications (1)

Publication Number Publication Date
JPS61123175A true JPS61123175A (en) 1986-06-11

Family

ID=17100859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24323684A Pending JPS61123175A (en) 1984-11-20 1984-11-20 Manufacture of hetero-junction bipolar transistor

Country Status (1)

Country Link
JP (1) JPS61123175A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198776A (en) * 1985-02-28 1986-09-03 Fujitsu Ltd Hetero-junction bipolar transistor and manufacture thereof
JPH02254728A (en) * 1989-03-28 1990-10-15 Matsushita Electric Ind Co Ltd Manufacture of compound semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198776A (en) * 1985-02-28 1986-09-03 Fujitsu Ltd Hetero-junction bipolar transistor and manufacture thereof
JPH0458703B2 (en) * 1985-02-28 1992-09-18 Fujitsu Ltd
JPH02254728A (en) * 1989-03-28 1990-10-15 Matsushita Electric Ind Co Ltd Manufacture of compound semiconductor device

Similar Documents

Publication Publication Date Title
US4889831A (en) Method of forming a high temperature stable ohmic contact to a III-V substrate
US4789643A (en) Method of manufacturing a heterojunction bipolar transistor involving etch and refill
EP0184016A1 (en) Heterojunction bipolar transistor
US4593457A (en) Method for making gallium arsenide NPN transistor with self-aligned base enhancement to emitter region and metal contact
US4662060A (en) Method of fabricating semiconductor device having low resistance non-alloyed contact layer
EP0194197B1 (en) Heterojunction bipolar transistor and process for fabricating same
EP0064829A2 (en) High electron mobility semiconductor device and process for producing the same
US5631173A (en) Method for forming collector up heterojunction bipolar transistor having insulative extrinsic emitter
JPH0622242B2 (en) Heterojunction bipolar transistor type semiconductor device manufacturing method
US4983534A (en) Semiconductor device and method of manufacturing the same
EP0130774B1 (en) Process for fabricating bipolar transistor
JPS61123175A (en) Manufacture of hetero-junction bipolar transistor
JP2611342B2 (en) Method for manufacturing semiconductor device
US5413947A (en) Method for manufacturing a semiconductor device with an epitaxial void
US6521504B1 (en) Semiconductor device and method of fabricating the same
US20070037369A1 (en) Method of manufacturing silicon carbide semiconductor device
JPH0212927A (en) Manufacture of mesfet
JPH0249012B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPH055170B2 (en)
JPS63248168A (en) Hetero-junction bipolar transistor and manufacture thereof
JP3035941B2 (en) Method for manufacturing group III-V compound semiconductor device
KR0161200B1 (en) Method for fabricating bipolar transistor
JPS59139649A (en) Structure of wiring
JPH01108772A (en) Manufacture of bipolar transistor
KR960000384B1 (en) Making method of hbt using emitter re-growth